
HiPE
High Performance Erlang

A brief overview of the compiler

2

Open Source Erlang (Erlang/OTP)

• Part of Ericsson’s Open Telecom Platform (OTP).
• Implemented and commercially supported by

Ericsson, but the source code is free and
available on-line (www.erlang.org).

• Till October 2001, Erlang/OTP was exclusively a
byte-code interpreter for a virtual machine:
– JAM (stack-based) - not supported anymore;
– BEAM (register-based) – current VM.

3

HiPE: High Performance Erlang Compiler

• HiPE is a native code compiler on top of BEAM, written
in Erlang.

• HiPE is fully and tightly integrated within Open Source
Erlang/OTP (starting with Release 8B)

• Compiler for the complete Erlang language

• Back-ends for:
– SPARC V8+ (or higher) running Solaris 8, 9 or 10
– x86 based machines running Linux, FreeBSD or Solaris
– x86_64 based machines running Linux or FreeBSD
– PowerPC (32 and 64-bits) machines running MacOS X or Linux
– ARM

4

HiPE Compiler: Design Goals

A native code compiler for Erlang

– Allows flexible, user-controlled compilation of
Erlang programs to native machine code

– Fine-grained: Compilation unit was (till R15B) just a
single function. Nowadays, it’s a whole module.

Desiderata:
– Reasonable compilation times
– Acceptable sizes of object code

5

Alternatives to Bytecode Interpretation

• Compile to another “similar” language with a
more mature implementation (e.g., Scheme)

• Compile to a sufficiently low-level and fast
language such as C

• Use C-- as a portable assembly language
• Use a retargetable code generator as ML-RISC
• Compile to the gcc back-end
• Compile directly to native code

One can roughly expect a decrease in portability and increase in
performance and implementation effort for choices lower in
the list.

6

Erlang Run-Time System HiPE Compiler

BEAM
Emulator

Code area

BEAM
Dissassembler

HiPE
Loader

BEAM

Bytecode

Other
Data

Native
Code

Symbolic
BEAM

Icode

RTL

SPARC X86

A HiPE-enabled Erlang/OTP system

Current HiPE Architecture

AMD64

7

Erlang Run-Time System HiPE Compiler

BEAM
Emulator

Code area

BEAM
Dissassembler

HiPE
Loader

BEAM

Bytecode

Other
Data

Native
Code

Symbolic
BEAM

Icode

RTL

SPARC X86

A HiPE-enabled Erlang/OTP system

Current HiPE Architecture
1,48,

2,18,34,32,

1,64,

56,85,19,

65,19,35,19,

27,5,3,17,3,

6,32,69,

1,80,

19

8

Erlang Run-Time System HiPE Compiler

BEAM
Emulator

Code area

BEAM
Dissassembler

HiPE
Loader

BEAM

Bytecode

Other
Data

Native
Code

Symbolic
BEAM

Icode

RTL

SPARC X86

A HiPE-enabled Erlang/OTP system

Current HiPE Architecture
1,48,

2,18,34,32,

1,64,

56,85,19,

65,19,35,19,

27,5,3,17,3,

6,32,69,

1,80,

19

label 3:

func_info({length,len,2})

label 4:

is_nonempty_list(x1) fail 5

{x1,x2} = get_list(x1)

x0 = x0 + 1

call_only({length,len,2},x0,x1)

label 5:

return

9

Erlang Run-Time System HiPE Compiler

BEAM
Emulator

Code area

BEAM
Dissassembler

HiPE
Loader

BEAM

Bytecode

Other
Data

Native
Code

Symbolic
BEAM

Icode

RTL

SPARC X86

A HiPE-enabled Erlang/OTP system

Current HiPE Architecture
label 3:

func_info({length,len,2})

label 4:

is_nonempty_list(x1) fail 5

{x1,x2} = get_list(x1)

x0 = x0 + 1

call_only({length,len,2},x0,x1)

label 5:

return

length:len(v0, v5) ->

%% Info:['Not a closure','Leaf function']

1:

redtest() (primop)

if is_cons(v5) then 3 (0.50) else 10

3:

v5 := unsafe_tl(v5) (primop)

v8 := 1

v0 := '+'(v0, v8) (primop)

goto 1

10:

return(v0)

10

Erlang Run-Time System HiPE Compiler

BEAM
Emulator

Code area

BEAM
Dissassembler

HiPE
Loader

BEAM

Bytecode

Other
Data

Native
Code

Symbolic
BEAM

Icode

RTL

SPARC X86

A HiPE-enabled Erlang/OTP system

Current HiPE Architecture

length:len(v0, v5) ->

%% Info:['Not a closure','Leaf function']

1:

redtest() (primop)

if is_cons(v5) then 3 (0.50) else 10

3:

v5 := unsafe_tl(v5) (primop)

v8 := 1

v0 := '+'(v0, v8) (primop)

goto 1

10:

return(v0)

{length,len,2}(v40, v41) ->

.DataSegment

.DL0: [{length,len,2}]

.CodeSegment

L2: v45 <- v41

v46 <- v40

goto L3

L3: %i5 <- %i5 sub 1 if lt then L5 (0.01) else L6

L5: <- suspend_0() [c] then L6

L6: r47 <- v45 'and' 2 if eq then L7 (0.50) else L8

L7: v48 <- [v45+3]

v49 <- 31

r51 <- v46 'and' 31

r52 <- r51 'and' 15

if (r52 eq 15) then L12 (0.99) else L11

L12:v50 <- v46 add 16 if overflow then L11 (0.01) else L10

L11:v50 <- '+'(v46, v49) [c] then L10

L10:v45 <- v48

v46 <- v50

goto L3

L8: return(v46)

11

Erlang Run-Time System HiPE Compiler

BEAM
Emulator

Code area

BEAM
Dissassembler

HiPE
Loader

BEAM

Bytecode

Other
Data

Native
Code

Symbolic
BEAM

Icode

RTL

SPARC X86

A HiPE-enabled Erlang/OTP system

Current HiPE Architecture{length,len,2}(v40, v41) ->

.DataSegment

.DL0: [{length,len,2}]

.CodeSegment

L2: v45 <- v41

v46 <- v40

goto L3

L3: %i5 <- %i5 sub 1 if lt then L5 (0.01) else L6

L5: <- suspend_0() [c] then L6

L6: r47 <- v45 'and' 2 if eq then L7 (0.50) else L8

L7: v48 <- [v45+3]

v49 <- 31

r51 <- v46 'and' 31

r52 <- r51 'and' 15

if (r52 eq 15) then L12 (0.99) else L11

L12:v50 <- v46 add 16 if overflow then L11 (0.01) else L10

L11:v50 <- '+'(v46, v49) [c] then L10

L10:v45 <- v48

v46 <- v50

goto L3

L8: return(v46)

.section ".text"

.align 4

.global length_len_2

.section ".data"

.length_len_2_dl_0: .word 0 ! .term [{length,len,2}]

.section ".code"

length_len_2:

.length_len_2_22:

add %i3, 16, %i3

stw %o7, [%i3+-16]

mov %o2, %g3

mov %o1, %l5

.length_len_2_3:

subcc %i5, 1, %i5

bge %icc, .length_len_2_6

nop

.length_len_2_5:

stw %g3, [%i3+-4]

call suspend_0 ! () <>[c]<|4| Live: [0,1]>

stw %l5, [%i3+-8]

lduw [%i3+-4], %g3

lduw [%i3+-8], %l5

.length_len_2_6:

andcc %g3, 2, %g4

be,pn %icc, .length_len_2_7

nop

.length_len_2_8:

mov %l5, %o0

lduw [%i3+-16], %o7

jmpl %o7+8, %g0 ! (%o0)

sub %i3, 16, %i3

.length_len_2_7:

and %l5, 31, %o4

and %o4, 15, %o5

subcc %o5, 15, %g0

be %icc, .length_len_2_12

lduw [%g3+3], %g5

.length_len_2_11:

mov %l5, %o1

mov 31, %o2

call '+' ! (%o1, %o2) <%o0>[c]<|4| Live: [2]>

stw %g5, [%i3+-12]

lduw [%i3+-12], %g5

.length_len_2_19:

mov %o0, %l0

.length_len_2_10:

mov %g5, %g3

ba .length_len_2_3

mov %l0, %l5

.length_len_2_12:

addcc %l5, 16, %l0

bvc %icc, .length_len_2_10

nop

ba .length_len_2_11

nop

12

Intermediate Representations in HiPE

Icode
– Idealized Erlang assembly language;
– Stack is implicit; unlimited number of temporaries

which survive function calls;
– Most of memory management is explicit;
– Process scheduling is implicit.

RTL (Register Transfer Language)
– Generic 3-address target-independent language;
– Tagging is made explicit: RTL has both tagged and

untagged registers;
– Data accesses and initializations are turned into

loads and stores.

13

HiPE: Technical Details

• HiPE exists as a component (currently about
100,000 lines of Erlang code and 15,000 lines of C
and assembly code) added to an otherwise mostly
unchanged Open-Source Erlang/OTP system.

• HiPE provides its user with a set of profiling
tools to identify the hot-code parts of the
applications.

14

HiPE: Runtime System Issues

• Both virtual machine code and native code can
happily co-exist in the runtime system
– To simplify the garbage collector, we use separate

stacks for native and interpreted execution

• HiPE optimizes calls to functions which execute
in the same mode (no overhead)

• Preserves tail-calls (required feature of Erlang)

15

The HiPE Runtime System

Machine-specific parts
1. Code for mode-switch interface (in assembly)
2. Glue code for calling C BIFs from native code

(in assembly)
3. Code to traverse the stack for GC (in C)
4. Code to create native code stubs & to apply

patches to native code during loading (in C)

16

The HiPE Linker

• When a function f is compiled to native code
– The bytecode for f is patched so that future calls

to f are redirected to its native code
– If f contains calls to a function g that is not (yet)

compiled to native code, a native code-stub for the
callee (g) is created to redirect the call to the
emulator.

• When a module is reloaded or recompiled, all
calls from native code to that module are
patched to call the new module

(in accordance to the hot-code loading semantics)

17

Optimizations Performed by the HiPE Compiler

• Adaptive pattern matching compilation of
construction and matching against binaries.

• Copy & sparse conditional constant propagation,
constant folding (partly make up for the absence of
types) on Icode and RTL.

• Dead & unreachable code removal on Icode and RTL.
• Partial redundancy elimination on RTL.

• Merging of heap-overflow checks through backward
propagation.

18

HiPE Compiler: SPARC back-end

• Parameter-passing in registers (up to 16)
• Register allocation based on choice between a Briggs-

style graph coloring, iterated register coalescing,
optimistic coalescing, or a linear scan algorithm [SPE’03]
– Iterated coalescing default on x86 and AMD-64
– Linear scan default on SPARC and PowerPC

• Cache-conscious code linearization

• Garbage collection:
– Based on two-generational copying
– Aided by stack descriptors (live-variable maps)
– Performs generational stack collection.

19

HiPE Compiler: x86 and AMD-64 backends

• Use the native stack of the machine
– Use %esp as the current process’ stack pointer

• Pay attention to register usage
– Preferred (and default) register allocator:

iterated register coalescing
• Stack-frame minimization

– Spill-slot coalescing

• Pay attention to branch prediction
– Use call and ret instructions consistently.

20

Backend Passes

Register Allocation

RTL

Frame Management

Code Linearization

Pseudo-instruction Expansion

Peephole Optimization

Assembling

RTL to AMD64 Translation

21

Performance of HiPE on SPARC & x86 (Feb 2002)

0%

200%

400%

600%

800%

fib tak
length qsort smith huff

decode ring
prettypr

estone

BEAM

HiPE/SPARC

HiPE/x86

22

Performance Comparison on more platforms

0

1

2

3

4

5

6

7

8

9

fib tak length qsort smith huff decode life yaws prettypr w_estone

BEAM

SPARC
x86
AMD64

23

Performance: Speedups (Programs w Binaries)

0

2

4

6

8

10

12

14

bs_extract bs_decode bs_encode ber_decode ber_encode decode2bs descrypt

BEAM
SPARC

x86
AMD64

24

Performance: Speedups (Programs w Floats)

0

1

2

3

4

5

barnes pseudoknot float_bm

BEAM

SPARC

x86

AMD64

25

Space Performance (very rough)

HiPE generates native code that is roughly about
2.5 to 3 times bigger than BEAM bytecode

