
1

An Introduction to Erlang

(thanks to Richard Carlsson for the initial version of the slides)

Part 1 – Sequential Erlang

Erlang Buzzwords
Functional (strict)
Single-assignment
Dynamically typed
Concurrent
Distributed
Message passing
Soft real-time
Fault tolerant
No sharing

Automatic memory
management (GC)
Virtual Machine
(BEAM)
Dynamic code loading
Hot-swapping code
Multiprocessor support
OTP (Open Telecom
Platform) libraries
Open source

Background
Developed by Ericsson, Sweden
− Experiments 1982-1986 with existing languages

Higher productivity, fewer errors
Suitable for writing (large) telecom applications
Must handle concurrency and error recovery

− No good match - decided to make their own
1986-1987: First experiments with own language
Erlang (after Danish mathematician A. K. Erlang)
1988-1989: Internal use
1990-1998: Erlang sold as a product by Ericsson

− Open Source (MPL-based license) since 1998
Development still done by Ericsson

Erlang at Uppsala University

High Performance Erlang (HiPE) research group
− Native code compiler (SPARC, x86, x86_64, PowerPC, ARM)

− Program analysis and optimization
− Runtime system improvements
− Language development and extensions
− Programming and static analysis tools

Most results from the HiPE project have been
included in the official Erlang distribution

Hello, World!

'%' starts a comment
'.' ends each declaration
Every function must be in a module
− One module per source file
− Source file name is module name + “.erl”

':' used for calling functions in other modules

%% File: hello.erl

-module(hello).
-export([run/0]).

run() -> io:format("Hello, World!\n").

Running Erlang

The Erlang VM emulator is called 'erl'
The interactive shell lets you write any Erlang
expressions and run them (must end with '.')
The “1>”, “2>”, etc. is the shell input prompt
The “halt()” function call exits the emulator

$ erl
Erlang (BEAM) emulator version 5.5.1

Eshell V5.5.1 (abort with ^G)
1> 6*7.
42
2> halt().
$

2

Compiling a module

The “c(Module)” built-in shell function compiles a
module and loads it into the system
− If you change something and do “c(Module)” again,

the new version of the module will replace the old
There is also a standalone compiler called “erlc”
− Running “erlc hello.erl” creates “hello.beam”
− Can be used in a normal Makefile

$ erl
Erlang (BEAM) emulator version 5.5.1

Eshell V5.5.1 (abort with ^G)
1> c(hello).
{ok,hello}
2>

Running a program

Compile all your modules
Call the exported function that you want to run,
using “module:function(...).”
The final value is always printed in the shell
− “ok” is the return value from io:format(...)

Eshell V5.5.1 (abort with ^G)
1> c(hello).
{ok,hello}
2> hello:run().
Hello, World!
ok
3>

A recursive function

Variables start with upper-case characters!
';' separates function clauses
Variables are local to the function clause
Pattern matching and guards to select clauses
Run-time error if no clause matches (e.g., N < 0)
Run-time error if N is not an integer

-module(factorial).
-export([fac/1]).

fac(N) when N > 0 ->
N * fac(N-1);

fac(0) ->
1.

Tail recursion with accumulator

The arity is part of the function name: fac/1≠fac/2
Non-exported functions are local to the module
Function definitions cannot be nested (as in C)
Last call optimization: the stack does not grow if
the result is the value of another function call

-module(factorial).
-export([fac/1]).

fac(N) -> fac(N, 1).

fac(N, Product) when N > 0 ->
fac(N-1, Product*N);

fac(0, Product) ->
Product.

Recursion over lists

Pattern matching selects components of the data
“_” is a “don't care”-pattern (not a variable)
“[Head|Tail]” is the syntax for a single list cell
“[]” is the empty list (often called “nil”)
“[X,Y,Z]” is a list with exactly three elements
“[X,Y,Z|Tail]” has three or more elements

-module(list).
-export([last/1]).

last([Element]) -> Element;
last([_|Rest]) -> last(Rest).

List recursion with accumulator

The same syntax is used to construct lists
Strings are simply lists of character codes
− "Hello" = [$H, $e, $l, $l, $o] = [72,101,...]

− "" = []

-module(list).
-export([reverse/1]).

reverse(List) -> reverse(List, []).

reverse([Head|Tail], Acc) ->
reverse(Tail, [Head|Acc]);

reverse([], Acc) ->
Acc.

3

Numbers

Arbitrary-size integers (but usually just one word)
#-notation for base-N integers
$-notation for character codes (ISO-8859-1)
Normal floating-point numbers (standard syntax)
− cannot start with just a '.', as in e.g. C

12345
-9876
16#ffff
2#010101
$A
0.0
3.1415926
6.023e+23

Atoms

Must start with lower-case character or be quoted
Single-quotes are used to create arbitrary atoms
Similar to hashed strings
− Use only one word of data (just like a small integer)
− Constant-time equality test (e.g., in pattern matching)
− At run-time: atom_to_list(Atom), list_to_atom(List)

true % boolean
false % boolean
ok % used as “void” value
hello_world
doNotUseCamelCaseInAtoms
'This is also an atom'
'foo@bar.baz'

Tuples

Tuples are the main data constructor in Erlang
A tuple whose 1st element is an atom is called a
tagged tuple - this is used like constructors in ML
− Just a convention – but almost all code uses this

The elements of a tuple can be any values
At run-time: tuple_to_list(Tup), list_to_tuple(List)

{}
{42}
{1,2,3,4}
{movie, "Yojimbo", 1961, "Kurosawa"}
{foo, {bar, X},

{baz, Y},
[1,2,3,4,5]}

Other data types
Functions
− Anonymous and other

Bit streams
− Sequences of bits
− <<0,1,2,...,255>>

Process identifiers
− Usually called 'Pids'

References
− Unique “cookies”
− R = make_ref()

No separate booleans
− atoms true/false

Erlang values in
general are often
called “terms”
All terms are ordered
and can be compared
with <, >, ==, =:=, etc.

Type tests and conversions
Note that is_list only
looks at the first cell of
the list, not the rest
A list cell whose tail is
not another list cell or
an empty list is called
an “improper list”.
− Avoid creating them!

Some conversion
functions are just for
debugging: avoid!
− pid_to_list(Pid)

is_integer(X)
is_float(X)
is_number(X)
is_atom(X)
is_tuple(X)
is_pid(X)
is_reference(X)
is_function(X)
is_list(X) % [] or [_|_]

atom_to_list(A)
list_to_tuple(L)
binary_to_list(B)

term_to_binary(X)
binary_to_term(B)

Built-in functions (BIFs)
Implemented in C
All the type tests and
conversions are BIFs
Most BIFs (not all) are
in the module “erlang”
Many common BIFs
are auto-imported
(recognized without
writing “erlang:...”)
Operators (+,-,*,/,...)
are also really BIFs

length(List)
tuple_size(Tuple)
element(N, Tuple)
setelement(N, Tuple, Val)

abs(N)
round(N)
trunc(N)

throw(Term)
halt()

time()
date()
now()

self()
spawn(Function)
exit(Term)

4

Standard Libraries
Application Libraries
− kernel

erlang
code
file, filelib
inet
os

− stdlib
lists
dict, ordict
sets, gb_sets
gb_trees
ets, dets

Written in Erlang
“Applications” are
groups of modules
− Libraries
− Application programs

Servers/daemons
Tools
GUI system (gs)

Expressions
Boolean and/or/xor are
strict (always evaluate
both arguments)
Use andalso/orelse for
short-circuit evaluation
“=:=” for equality, not “=”
We can always use
parentheses when not
absolutely certain about
the precedence

%% the usual operators
(X + Y) / -Z * 10 – 1

%% boolean
X and not Y or (Z xor W)
(X andalso Y) orelse Z

%% bitwise operators
((X bor Y) band 15) bsl 2

%% comparisons
X /= Y % not !=
X =< Y % not <=

%% list operators
List1 ++ List2

Fun-expressions
Anonymous functions
(lambda expressions)
− Usually called “funs”

Can have several
clauses
All variables in the
patterns are new
− All variable bindings in

the fun are local
− Variables bound in the

environment can be
used in the fun-body

F1 = fun () -> 42 end
42 = F1()

F2 = fun (X) -> X + 1 end
11 = F2(10)

F3 = fun (X, Y) ->
{X, Y, Z}

end

F4 = fun ({foo, X}, Y) ->
X + Y;

({bar, X}, Y) ->
X - Y;

(_, Y) ->
Y

end

F5 = fun f/3

F6 = fun mod:f/3

Pattern matching with '='

Match failure causes runtime error (badmatch)
Successful matching binds the variables
− But only if they are not already bound to a value!
− Previously bound variables can be used in patterns
− A new variable can also be repeated in a pattern

Tuple = {foo, 42, "hello"},
{X, Y, Z} = Tuple,

List = [5, 5, 5, 4, 3, 2, 1],
[A, A | Rest] = List,

Struct = {foo, [5,6,7,8], {17, 42}},
{foo, [A|Tail], {N, Y}} = Struct

Case-switches
Any number of clauses
Patterns and guards,
just as in functions
“;” separates clauses
Use “_” as catch-all
Variables may also
begin with underscore
− Signals “I don't intend to

use this value”
− Compiler won't warn if

variable is not used

case List of
[X|Xs] when X >= 0 ->

X + f(Xs);
[_X|Xs] ->

f(Xs);
[] ->

0;
_ ->

throw(error)
end

%% boolean switch:
case Bool of

true -> ...;
false -> ...

end

If-switches and guard details
Like a case-switch
without the patterns
and the “when” keyword
Use “true” as catch-all
Guards are special
− Comma-separated list
− Only specific built-in

functions (and all
operators)

− No side effects

if
X >= 0, X < 256 ->

X + f(Xs);
true ->

f(Xs)
end

5

List comprehensions
Left of the “||” is an
expression template
“Pattern <- List” is a
generator
− Elements are picked

from the list in order
The other expressions
are boolean filters
If there are multiple
generators, you get all
combinations of values

%% map
[f(X) || X <- List]

%% filter
[X || X <- Xs, X > 0]

%% quicksort example
qsort([P|Xs]) ->

qsort([X || X <- Xs,
X < P])

++ [P] % pivot element
++ qsort([X || X <- Xs,

X >= P]);
qsort([]) ->

[].

Catching exceptions
Three classes of
exceptions
− throw: user-defined
− error: runtime errors
− exit: end process
− Only catch throw

exceptions, normally
(implicit if left out)

Re-thrown if no catch-
clause matches
“after” part is always
run (side effects only)

try
lookup(X)

catch
not_found ->

use_default(X);
exit:Term ->

handle_exit(Term)
end

%% with 'of' and 'after'
try lookup(X, File) of

Y when Y > 0 -> f(Y);
Y -> g(Y)

catch
...

after
close_file(File)

end

Old-style exception handling
“catch Expr”
− Value of “Expr” if no

exception
− Value X of “throw(X)”

for a throw-exception
− “{'EXIT',Term}” for

other exceptions
Hard to tell what
happened (not safe)
Mixes up errors/exits
In lots of old code

Val = (catch lookup(X)),

case Val of
not_found ->

%% probably thrown
use_default(X);

{'EXIT', Term} ->
handle_exit(Term);

_ ->
Val

end

Record syntax
Records are just a
syntax for working with
tagged tuples
You don't have to
remember element
order and tuple size
Good for internal work
within a module
Not so good in public
interfaces (users must
have same definition!)

-record(foo, {a=0, b}).

{foo, 0, 1} = #foo{b=1}

R = #foo{}
{foo, 0, undefined} = R

{foo, 0, 2} = R#foo{b=2}

{foo, 2, 1} = R#foo{b=1,
a=2}

0 = R#foo.a
undefined = R#foo.b

f(#foo{b=undefined}) -> 1;
f(#foo{a=A, b=B})

when B > 0 -> A + B;
f(#foo{}) -> 0.

Preprocessor
C-style token-level
preprocessor
− Runs after tokenizing,

but before parsing
Record definitions
often put in header
files, to be included
Use macros mainly for
constants
Use functions instead
of macros if you can
(compiler can inline)

-include("defs.hrl").

-ifndef(PI).
-define(PI, 3.1415926).
-endif.

area(R) -> ?PI * (R*R).

-define(foo(X), {foo,X+1}).

{foo,2} = ?foo(1)

%% pre-defined macros
?MODULE
?LINE

Type declarations
Erlang has a notation for declaring types out of
the “built-in” ones

-type fruit() :: 'apple' | 'banana' | 'orange'.

-type fruit_list() :: [fruit()].

-type atom_int_list() :: [atom() | integer()].

These types can then be used to declare the type
of record fields

-record(my_rec, {a = 0 :: integer(),
b :: fruit(),
c = [] :: atom_int_list()}).

6

Spec declarations
Types can also be used to declare the type of
function arguments and return type

-spec price(fruit()) -> integer().

price(apple) -> 10;
price(banana) -> 9;
price(orange) -> 8.

-spec my_app([atom()], [integer()]) -> atom_int_list().

my_app([], Is) -> Is;
my_app([A|As], Is) -> [A | my_app(As, Is)].

... and they can be used to impose constraints
that are not necessarily present in the code but
reflect programmers’ intentions

Dialyzer
A static analysis tool that finds discrepancies in
Erlang code bases

End

Resources:
www.erlang.org

- Getting Started
- Erlang Reference Manual

- Library Documentation

