Just-In-Time and Dynamic
Compilation Techniques

Kostis Sagonas
kostis@it.uu.se

Lecture's Outline

1. Background

2. Selective and Adaptive Compilation

3. JIT Compiler Engineering

4. Feedback-directed and Speculative Optimizations

Just-In-Time, Dynamic and Adaptive Compilation

Terminology: Virtual Machine

How are Programs Executed?

Virtual machine (VM) is a software execution engine for

a program written in a machine-independent language

- Ex. Java bytecodes, CLI, Pascal p-code, Smalltalk v-code,
WAM code, BEAM code, etfc.

Just-In-Time, Dynamic and Adaptive Compilation

1. Interpretation
+ Popular approach for high-level languages
Ex. APL, Perl, Python, MATLAB
Useful for memory-challenged environments

Low startup overhead, but much slower than native code
execution

2. Classic just-in-time compilation
Compile each function to native code on first invocation
Ex. ParcPlace Smalltalk-80, Self-91
Initial high (time & space) overhead for each compilation

Sophisticated optimizations (e.g., SSA, etc.) typically not
performed due to their (perceived) high cost

Responsible for many myths

Just-In-Time, Dynamic and Adaptive Compilation

Lecture's Outline

Selective and Adaptive Optimization

1. Background

2. Selective and Adaptive Compilation
What is selective and adaptive compilation?
How to find candidates?
How to decide what to recompile?
Case studies

3. JIT Compiler Engineering
4. Feedback-directed and Speculative Optimizations

Just-In-Time, Dynamic and Adaptive Compilation

Hypothesis: Most execution is spent in a small
percentage of functions/code

Idea: use two execution strategies:
1. Interpreter or non-optimizing compiler
2. Full-fledged optimizing compiler

Approach:
- Use strategy 1 for initial execution of all functions
- Profile application to find “hot" subset of functions
- Use strategy 2 for this subset

Just-In-Time, Dynamic and Adaptive Compilation

Selective Optimization Examples

+ Adaptive Fortran: interpreter + 2 compilers
+ Self'93: non-optimizing + optimizing compilers
+ Erlang: bytecode interpreter + optimizing compiler

+ JVMs:

- Interpreter + compilers: Sun's HotSpot, IBM DK for Java,
IBM's J9

- Multiple compilers: Jikes RVM, Intel's Judo/ORP
+ CLR:
- Multiple compilers

Just-In-Time, Dynamic and Adaptive Compilation

Profiling: Finding Candidates for Optimization

+ Counters
+ Call stack sampling

+ Combinations

- E.g., use counters initially and sampling later on
- Ex. IBM DK for Java

Just-In-Time, Dynamic and Adaptive Compilation 8

Profiling via Counters

Insert function-specific counters on function entry
and loop back edges

Count how often a function is called and approximate
how much time is spent in the function

+ Very popular approach: Self, Hotspot Java, ...
+ Issue: Overhead for incrementing counters might be
significant
- Not present in original code

Just-In-Time, Dynamic and Adaptive Compilation 9

Profiling via Call Stack Sampling

Periodically record which function(s) are on the call
stack

* Approximates amount of fime spent in each function

- Does not necessarily need to be compiled into the
code
- Ex. Jikes RVM:
+ samples occur at taken yield points (approx 100/sec)
« organizer thread communicates sampled methods to controller

+ Issue: timer-based profiling is not deterministic

Just-In-Time, Dynamic and Adaptive Compilation 10

Recompilation Policies

Problem: Given recompilation candidates, which ones
should be optimized?

Counters:
1. Optimize function that surpasses threshold
Simple but hard to tune; doesn't consider context
2. Optimize function on the call stack based on inlining policies
Addresses context issue

Call Stack Sampling:
1. Optimize all functions that are sampled
Simple but doesn't consider frequency of sampled functions
2. Use a cost/benefit model (Jikes RVM)
Seemingly complicated but easy to engineer
Maintenance free
Naturally supports multiple optimization levels

Just-In-Time, Dynamic and Adaptive Compilation 1

The Cost/Benefit Model of Jikes RVM

+ Define
- cur: current optimization level of method m
- Exe(j): expected future execution time if compiled at level j
- Comp(j): expected compilation cost at optimization level j

+ Choose j>cur that minimizes Exe(j)+ Comp(j)

+ If Exe(j) + Comp(j) < Exe(cur) then recompile at level |

*+ Assumptions:
- Sample data determines how long a method has executed

- Method will continue to execute as much in the future as it
has in the past

- Compilation speed and speedup are of fline averages

Just-In-Time, Dynamic and Adaptive Compilation 12

Case Study: IBM DK for Java

IBM DK for Java: Profile Collection

Execution levels:
1. MMI (Mixed Mode Interpreter)
- Fast interpreter implemented in assembly

2. Quick Compilation
- Reduced set of optimizations for fast compilation
- Little inlining

3. Full Compilation
- Full optimizations only for selected hot methods

Methods can progress sequentially through these 3 levels

Just-In-Time, Dynamic and Adaptive Compilation 13

* MMI Profiler (Counter Based)
- Invocation frequency and loop iteration (*)

- Sampling Profiler
- Lightweight for operating during the entire execution
- Only monitors compiled methods

- Maintains a list of hot methods and calling relationships
between them

(*) MMI also collects branch frequencies for FDO

Just-In-Time, Dynamic and Adaptive Compilation 14

IBM DK for Java: Recompilation Policy

Selective Recompilation: Other Issues

+ Methods are promoted sequentially through the levels
+ MMI -> Quick

- Based on loop and iteration counts with special treatment for
certain kinds of loops
+ Quick -> Full
- Based on sampling profiler
- Roots of call graphs are recompiled with inline directives
« Inspired by Self'93

Just-In-Time, Dynamic and Adaptive Compilation 15

+ Synchronous vs. asynchronous recompilation
- Is optimization performed in the background?

+ Static or dynamic view of profile data
- Is profile data pre-packaged or used in flight?

+ Skipping optimization levels
- How to decide when to do it?

Collecting dead compiled code
- Whenis it safe?

Installing new compiled code
- Stack rewriting, code patching, etc.
Reliability, Availability, Serviceability issues

- How repeatable/reproducible is the behavior?

Just-In-Time, Dynamic and Adaptive Compilation 16

Lecture's Outline

What is a JIT Compiler?

1. Background
2. Selective and Adaptive Compilation

3. JIT Compiler Engineering
What is a JIT compiler?
Case studies of JITs
VM/JIT integration and inferaction

4. Feedback-directed and Speculative Optimizations

Just-In-Time, Dynamic and Adaptive Compilation 17

+ Code generation component of a virtual machine

+ Compiles VM bytecodes to in-memory native code
- Simpler front-end and back-end than traditional compiler
- Not responsible for source-language error reporting
- Doesn't have to generate object files or re-locatable code
- Compilation is interspersed with program execution
- Compilation time and space consumption are very important
+ Compile program incrementally; unit of compilation is a

function
- JIT may never see the entire program
- Must modify traditional notions of inter-procedural analysis

Just-In-Time, Dynamic and Adaptive Compilation 18

JIT Compiler: Design Requirements

+ High performance (of executing application)
- Generate "reasonable” code at “reasonable” compilation times
- Selective optimization enables multiple design points

+ Deployed on production servers
- Reliability, Availability, and Serviceability (RAS) requirements
- Facilities for logging and “replaying” compilation activity
+ Tension between high-performance and RAS
- Especially true in the presence of (sampling-based)
feedback-directed optimizations
- So far, a bias to performance at the expense of RAS, but
that is changing as VM technology matures

Just-In-Time, Dynamic and Adaptive Compilation 19

Structure of a JIT Compiler (Example)

Front-end

Common
Optimizer

TA32-specific PPC/32-specific

TA32 code PPC/32 code

Just-In-Time, Dynamic and Adaptive Compilation 20

Case Study 1: Jikes RVM

+ Java bytecodes = IA32, PPC/32

+ 3 Intermediate Representations (IR)
- All register-based; CF6G of extended basic blocks
- HIR: operators similar to Java bytecode

- LIR: expands complex operators, exposes runtime system
implementation details (object model, memory management)

- MIR: target specific, very close to target instruction set
+ Multiple optimization levels
- Suite of classical compiler + some Java-specific optimizations

- Optimizer preserves and exploits Java static types all the
way through MIR

- Many optimizations are guided by profile-derived branch
probabilities

Just-In-Time, Dynamic and Adaptive Compilation 21

Jikes RVM: Opt Level O

On-the-fly (bytecode — IR) constant, type and non-null propagation,
constant folding, branch optimizations, field analysis, unreachable code
elimination

BURS-based instruction selection

Linear scan register allocation

Inline trivial methods (methods smaller than the calling sequence)
Local redundancy elimination (CSE, loads, exception checks)

Local copy and constant propagation; constant folding

Simple control-flow optimizations
- Static splitting, tail recursion elimination, peephole branch optimizations

Simple code reordering

Scalar replacement of aggregates & short arrays

One pass of global, flow-insensitive copy and constant propagation and
dead assignment elimination

Just-In-Time, Dynamic and Adaptive Compilation 22

Jikes RVM: Opt Level 1

+ Much more aggressive inlining
- Larger space thresholds, profile-directed

Runs multiple passes of many -O0 optimizations

More sophisticated code reordering algorithm

+ Over time, many optimizations shifted from -O1 to -O0

+ Aggressive inlining is currently the primary difference
between -O1 and -O0

Just-In-Time, Dynamic and Adaptive Compilation 23

Jikes RVM: Opt Level 2

+ Loop normalization, peeling & unrolling

+ Scalar SSA

- Constant & type propagation

- Global value humbering

- Global CSE

- Redundant conditional branch elimination
* Heap Array SSA

- Load/store elimination

- Global code replacement (PRE/LICM)

Just-In-Time, Dynamic and Adaptive Compilation 24

Case Study 2: IBM DK

IBM DK: Optimizations on Extended Bytecodes

+ Java bytecodes = IA32, IA64, PPC/32, PPC/64, S/390

+ 3 Intermediate Representations (IR)

- Extended bytecodes (compact, but can't express all
transformations)

- Quadruples (register-based IR)
- DAG (quadruples + explicit representation of dependencies)

+ Multiple optimization levels
+ Many optimizations use profile information

Just-In-Time, Dynamic and Adaptive Compilation 25

Java bytecodes + type information:
- Compact representation
- Can't express some transformations

+ Flow-sensitive type inference (de-virtualization)
* Method inlining, includes guarded inlining
* Null-check and array bounds check elimination

- Flow-sensitive type inference (checkcast/instanceof)

Just-In-Time, Dynamic and Adaptive Compilation 26

IBM DK: Optimizations on Quadruples

IBM DK: Optimizations on DAG of QUADs

Quadruples:
- Register-based; CFG of extended basic blocks
- Close to native instruction set; some pseudo-operations

+ Copy and constant propagation; dead code elimination
+ Frequency-directed splitting

+ Escape analysis & scalar replacement

+ Exception check optimization (partial-PRE)

- Type inference (checkcast/instanceof)

Just-In-Time, Dynamic and Adaptive Compilation 27

DAG: augment quadruples with explicit dependence edges

SSA form: loop versioning, induction variable elimination
Pre-pass instruction scheduling

Instruction selection

Sign extension elimination

Code reordering (move infrequent blocks to end)

Register allocation
- Special purpose for TA32
- Linear scan on other platforms
- Considering graph coloring
Post-pass instruction scheduling

Just-In-Time, Dynamic and Adaptive Compilation 28

IBM DK: Cost Effectiveness of Optimizations

Case Study 3: HotSpot Server JIT

+ Generally effective and cheap
- Method inlining for tiny methods
- Exception check elimination by forward dataflow
- Scalar replacement via forward dataflow

+ Sometimes effective and cheap
- Exception check elimination via PRE
- Elimination of redundant checkcast/instanceof
- Splitting
+ Occasionally effective, but expensive
- Method inlining of larger methods via static heuristics
- Scalar replacement via escape analysis
- All of their DAG-based optimizations

Just-In-Time, Dynamic and Adaptive Compilation 29

+ HotSpot Server Compiler

- Client compiler is simpler; small set of optimizations but
faster compile time

- Java bytecodes = SPARC, IA32
- Extensive use of On Stack Replacement (OSR)

- Supports a variety of speculative optimizations
- Integral part of JIT's design

+ Of the 3 JITs, it has the most advanced static
optimizer
- SSA form and heavy optimization
- Design assumes selective optimization (thus HotSpot)

Just-In-Time, Dynamic and Adaptive Compilation 30

HotSpot Server JIT

+ Virtually all optimizations done on SSA-based CFG
- Global value numbering
- Sparse conditional constant propagation
- Fast/Slow path separation
- Instruction selection
- Global code motion

+ Graph coloring register allocation with live-range
splitting
- Approx 50% of compile time

- However, much more than just allocation
+ Out-of-SSA transformation, GC maps, OSR support, etc.

Just-In-Time, Dynamic and Adaptive Compilation 31

JIT/VM Interactions

+ Runtime services often require support from JIT
- Memory management
- Exception delivery and symbolic debugging

+ JIT generated code assumes extensive runtime
support

- Runtime services such as type checking, allocation

- Common to use hardware traps & signal handlers

- Helper routines for uncommon cases (dynamic linking)
+ Collaboration enables optimization opportunities

- Inline common case of allocation, type tests, etc.

- Co-design of VM & JIT essential for high performance

Just-In-Time, Dynamic and Adaptive Compilation 32

JIT Support for Memory Management

+ 6C Maps
- Required for type-accurate GC to identify roots for collection

- Generated by JIT for every program point where a 6C may
occur

- Can constrain some optimizations

+ Write barriers for generational collection

- Requires JIT cooperation (barriers inserted in generated
code)

- Common case of barriers is usually inlined
- Variety of barrier implementations with different trade-offs

+ Cooperative scheduling

- Inmany VMs, all mutator threads must be stopped at GC
points. One solution requires JITs tfo insert GC yieldpoints at
regular intervals in the generated code.

Just-In-Time, Dynamic and Adaptive Compilation 33

JIT Support for Other Runtime Services

- Exception tables
- Encode try/catch structure in tferms of generated machine
code
- Typical implementation in a Java VM consists of compact
meta-data generated by the JIT and used when an exception
occurs (ho runtime cost when there is no exception)

* Mapping from machine code to original bytecodes
- Primary usage is of source-level debugging, but if the mapping
exists it can be used to support a variety of other runtime
services
- One complication is the encoding of inlining structure to
present view of virtual call stack

Just-In-Time, Dynamic and Adaptive Compilation 34

Runtime Support for JIT Generated Code

Memory allocation
- Occurs frequently, therefore JIT usually inlines common case
- Details of GC implementation often “leak” into the JIT making GC
harder to maintain and change
Null pointer checks & array bounds checks
- Implemented via SIGSEGV and/or trap instructions
- Runtime installs signal handlers to handle traps and create/throw
appropriate language level exception
JIT generated code relies on extensive set of runtime helper
routines
- "QOutline" infrequent operations and uncommon cases of frequent
operations
- Very common place for JIT details to “leak” into the runtime system
and vice versa
- Often use specialized calling conventions for either fast invocation
or reduced code space

Just-In-Time, Dynamic and Adaptive Compilation 35

JIT/VM Integration

+ Integrating a JIT system where native code can
coexist with interpreted code in the VM is not trivial

+ Context switches between native and interpreted

code have to be fast

- They can occur at function calls, returns, and when
exceptions are thrown

Ensuring proper tail-calls with a mixed mode of
execution is tricky

Just-In-Time, Dynamic and Adaptive Compilation 36

Lecture's Outline

1. Background

2. Selective and Adaptive Compilation
3. JIT Compiler Engineering
4

Feedback-directed and Speculative Optimizations
Gathering profile information
Exploiting profile information ina JIT
Feedback-directed optimizations
Aggressive speculation and invalidation
Exploiting profile information in the VM
Dispatch optimizations
Adaptive 6C techniques and locality optimizations

Just-In-Time, Dynamic and Adaptive Compilation 37

Feedback-Directed Optimization (FDO)

Exploit information gathered at run-time to optimize execution
- ‘“selective optimization": what to optimize
- "FDO" howto optimize
Advantages of FDO
- Can exploit dynamic information that cannot be inferred statically
- System can change and revert decisions when conditions change
- Runtime binding allows more flexible systems
Challenges for fully automatic online FDO
- Compensate for profiling overhead
- Compensate for runtime transformation overhead
- Account for partial profile available and changing conditions

Just-In-Time, Dynamic and Adaptive Compilation 38

Profiling Methods

Categories:

1. Runtime service monitors
E.g. dispatch tables, synchronization services, GC

2. Hardware performance monitors
3. Sampling
E.g. sample function running, call stack at context switch

4. Program instrumentation
E.g. basic block counters, value profiling

Myth: Sophisticated profiling is too expensive to perform online
Reality: Well-known technology can collect sophisticated profiles
with sampling and minimal overhead

Just-In-Time, Dynamic and Adaptive Compilation 39

Common FDO Techniques

- Compiler optimizations
- Inlining
- Code layout (Code positioning)
- Multiversioning
- FDO Potpourri

* Run-time system optimizations
- Caching
- Speculative meta-data representations
- 6C acceleration
- Locality optimizations

Just-In-Time, Dynamic and Adaptive Compilation 40

Fully Automatic Profile-Directed Inlining

Example: Self'93 [Holzle&Ungar'94]
- Profile-directed inlining integrated by sampling-based
recomputation

- When sampling counter triggers, crawl up the stack to find
“root" method of inline sequence

A7

D exceeds counter threshold

B: 300 .
Crawl up the stack to examine counters

€: 900 . -
Recompile B and inline € and D

D: 1000

Just-In-Time, Dynamic and Adaptive Compilation 41

Fully Automatic Profile-Directed Inlining

Example: IBM DK for Java [Suganuma et al'02]
- Always inline tiny methods (e.g., getters)
- Use dynamic instrumentation to collect call site distribution
+ Determine the most frequently call sites in “*hot" methods
- Constructs partial dynamic call graph of “hot" call edges
- Inlining database to avoid performance perturbation

- Experimental conclusion
+ Use static heuristics for small size methods
+ Inline medium and bigger methods based on profile data

Just-In-Time, Dynamic and Adaptive Compilation 42

Code Positioning

+ Easy and profitable: employed on most (all?)
production VMs

+ Synergy with trace scheduling

0xc0000000

mlamM|T||w|>

0xc0000100

Just-In-Time, Dynamic and Adaptive Compilation 43

Multiversioning

+ Compiler generates multiple implementations of a code
sequence
- Emits code to choose best implementation at runtime

+ Static multiversioning
- All possible implementations generated beforehand
- Can be done by static compiler
- FDO: Often driven by profile data

Dynamic multiversioning
- Multiple implementations generated on-the-fly
- Requires run-time code generation

Just-In-Time, Dynamic and Adaptive Compilation 44

FDO Potpourri

Many opportunities to use profile info during various compiler
phases

Almost any heuristic-based decision can be improved by profile
data

Examples:
- Loop unrolling
« Unroll “hot" loops only
- Register allocation
« Spillin “cold” paths first
- Global code motion
* Move computation from "hot” to “cold" blocks
- Exception handling optimizations
* Avoid expensive runtime handlers for frequent exceptional flow
- Speculative stack allocation
« Stack allocate objects that only escape in “cold"” paths
- Software prefetching

Just-In-Time, Dynamic and Adaptive Compilation 45

Aggressive Speculation

+ Speculative code generation

- Generate code that would be incorrect if some condition
changes

- Invalidate generated code fo recover if needed

* Why speculate?
- Hard to analyze features (reflection, dynamic class loading)
- Heavier use of OO language features, generic frameworks
- Constraints on compilation resources

+ How to invalidate speculative code?

Just-In-Time, Dynamic and Adaptive Compilation 46

