K-
[
Spring 2006

Code Scheduling

Simple Machine Model

* Instructions are executed in sequence
— Fetch, decode, execute, store results
— One instruction at a time
* For branch instructions, start fetching from a
different location if needed
— Check branch condition

— Next instruction may come from a new location
given by the branch instruction

Kostis Sagonas 3 Spring 2006

Outline

* Modern architectures

¢ Delay slots

« Introduction to instruction scheduling
¢ List scheduling

* Resource constraints

« Interaction with register allocation
* Scheduling across basic blocks

¢ Trace scheduling

¢ Scheduling for loops

¢ Loop unrolling

* Software pipelining

Kostis Sagonas 2 Spring 2006

Execution Models

Simple Execution Model

5 Stage pipe-line

‘ fetch decode | execute | memory |write back|

Fetch: get the next instruction
Decode: figure out what that instruction is
Execute: perform ALU operation

address calculation in a memory operation
Memory: do the memory access in a mem. op.
Write Back: write the results back

Kostis Sagonas 4 Spring 2006

time
Model 1
Inst 1 ‘ IF ‘ DE ‘ EXE ‘MEM‘ WB ‘
Inst 2 ‘ IF ‘ DE ‘EXE ‘MEM‘ WB ‘
Inst 1 ‘ IF ‘ DE ‘ EXE ‘MEM‘ WB ‘
Inst 2 ‘ ¥ ‘ DE | EXE | MEM | WB ‘ Model 2
Inst 3 ‘ IF | DE | EXE | MEM | WB ‘
Inst 4 IF DE | EXE MEM‘ WB ‘
Inst 5 ¥ DE | EXE ‘MEM‘ WB ‘

Kostis Sagonas 5 Spring 2006

Outline

¢ Modern architectures

¢ Delay slots

¢ Introduction to instruction scheduling
¢ List scheduling

» Resource constraints

* Interaction with register allocation
* Scheduling across basic blocks

¢ Trace scheduling

¢ Scheduling for loops

¢ Loop unrolling

» Software pipelining

Kostis S: s 6 Spring 2006

Handling Branch Instructions

Problem: We do not know the location of the next

instruction until later
— after DE in jump instructions
— after EXE in conditional branch instructions

Handling Branch Instructions

What to do with the middle 2 instructions?
1. Stall the pipeline in case of a branch until we
know the address of the next instruction

wasted cycles

Branch ‘ ¥ | DE ‘ EXE |MEM | WB
22? IF ‘ DE }XE MEM WB ‘
999 ‘ w7 bE | EXE MEM‘ Wb ‘
Next Inst \{ IF ‘ DE ‘ EXE ‘MEM‘ wB ‘

What to do with the middle 2 instructions?

9

Spring 2006

Kostis Sagonas

Handling Branch Instructions

What to do with the middle 2 instructions?

2. Delay the action of the branch
Make branch affect only after two instructions
Following two instructions after the branch get

executed regardless of the branch

Branch ‘ IF ‘ DE ‘EXE R\IEM‘ WB ‘
IF DE XE]\IEM‘ WB ‘

‘ IFﬁ DE ‘EXE ‘MEM‘ WB ‘

\ﬁ IF ‘ DE ‘EXE‘MEM‘ WB‘

Next seq inst

Next seq inst

Branch target inst

9 Spring 2006

Kostis Sagonas

Filling the Branch Delay Slot
Simple Solution: Put a no-op

Wasted instruction, just like a stall

ble r3, 1lbl

Branch delay slot

Kostis Sagonas

Branch | IF DE | EXE | MEM | WB

Next inst \5 IF DE | EXE | MEM | WB

Kostis Sagonas B Spring 2006
Branch Delay Slot(s)

Spring 2006

MIPS has a branch delay slot

— The instruction after a conditional branch gets
executed even if the code branches to target

— Fetching from the branch target takes place only

after that

ble r3, foo

|:| Branch delay slot

What instruction to put in the branch delay slot?

Spring 2006

10

Kostis Sagonas

Filling the Branch Delay Slot

Move an instruction from above the branch

Pres—aT
ble r3, 1bl
Branch delay slot

¢ moved instruction executes iff branch executes
— So, get the instruction from the same basic block as
the branch
— don’t move a branch instruction!
e instruction needs to be moved over the branch

— branch does not depend on the result of the instr.
Spring 2006

12

Kostis Sagonas

Filling the Branch Delay Slot

Move an instruction dominated by the branch
instruction

ble r3, 1lbl

Branch delay slot
1bl:
dewm—+Fstr
Kostis Sagonas 13 Spring 2006
Load Delay Slots

Problem: Results of the loads are not available
until end of MEM stage

Load IF | DE ‘ EXE ‘ MEM AWB ‘
Use Of load IF DE\{ EXE | MEM ‘ WB

If the value of the load is used...what to do??

Kostis Sagonas 15 Spring 2006

Filling the Branch Delay Slot

Move an instruction from the branch target
— Instruction dominated by target
— No other ways to reach target (if so, take care of them)

— If conditional branch, the moved instruction should not
have a lasting effect if the branch is not taken

Branch delay slot

Kostis Sagonas 14 Spring 2006

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r4d = r2 + r3
r5 = r2 -1
goto L1

Load Delay Slots

If the value of the load is used...what to do??

* Always stall one cycle

« Stall one cycle if next instruction uses the value
— Need hardware to do this

* Have a delay slot for load
— The new value is only available after two instructions
— If next instr. uses the register, it will get the old value

Load IF | DE | EXE ‘MEM an ‘

299 IF DE ‘ EXEA’(EM‘ WB ‘

Kostis Sagonas 17 Spring 2006

Use of load IF DE\< EXE | MEM ‘ WB ‘
Kostis Sagonas 16 Spring 2006
Example
r2 = *(rl + 4)
r3 = *(rl + 8)

goto L1
noop

Assume 1 cycle delay on branches
and 1 cycle latency for loads

Kostis Sagonas 18 Spring 2006

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r5 =r2 -1

noop

Assume 1 cycle delay on branches
and 1 cycle latency for loads

Kostis Sagonas 19 Spring 2006

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r5 = r2 -1
goto L1

r4d = r2 + r3

Final code after delay slot filling

Kostis Sagonas 21 Spring 2006

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r5 = r2 -1

goto L1
r4d = r2 + r3

Assume 1 cycle delay on branches
and 1 cycle latency for loads

Kostis Sagonas 20 Spring 2006

From a Simple Machine Model
to a Real Machine Model

¢ Many pipeline stages
— MIPS R4000 has 8 stages

* Different instructions take different amount of
time to execute
— mult 10 cycles
—div 69 cycles
—ddiv 133 cycles

» Hardware to stall the pipeline if an instruction
uses a result that is not ready

Kostis Sagonas 23 Spring 2006

Outline

¢ Modern architectures

¢ Delay slots

¢ Introduction to instruction scheduling
¢ List scheduling

* Resource constraints

« Interaction with register allocation
* Scheduling across basic blocks

¢ Trace scheduling

¢ Scheduling for loops

* Loop unrolling

* Software pipelining

Kostis Sagonas 2 Spring 2006

Real Machine Model cont.

* Most modern processors have multiple
execution units (superscalar)
— If the instruction sequence is correct, multiple
operations will take place in the same cycles

— Even more important to have the right instruction
sequence

Kostis Sagonas 24 Spring 2006

Instruction Scheduling

Goal: Reorder instructions so that pipeline stalls
are minimized

Constraints on Instruction Scheduling:
— Data dependencies
— Control dependencies
— Resource constraints

Kostis Sagonas 25 Spring 2006

Computing Data Dependencies

* For basic blocks, compute dependencies by
walking through the instructions

* Identifying register dependencies is simple
— is it the same register?

* For memory accesses
— simple: base + offset] ?= base + offset2
— data dependence analysis: a[2i] ?= a[2i+1]
— interprocedural analysis: global ?= parameter

— pointer alias analysis: pl ?=p

Kostis Sagonas 27 Spring 2006

Data Dependencies

* If two instructions access the same variable,
they can be dependent

* Kinds of dependencies
— True: write — read
— Anti: read — write
— Output: write — write

* What to do if two instructions are dependent?
— The order of execution cannot be reversed
— Reduces the possibilities for scheduling

Kostis Sagonas 2 Spring 2006

Example
1: r2 = *(rl + 4)
2: r3 = *(r2 + 4)
3: r4d = r2 + r3
4: r5 =1r2 - 1 o 3 e
2
2
Kostis Sagonas 29 Sgring 2006

Representing Dependencies

* Using a dependence DAG, one per basic block
* Nodes are instructions, edges represent
dependencies
1: r2 = *(rl + 4) o 9
r3 = *(rl + 8) 2 2

2:

2
3: r4d = r2 + r3
4: 0 9

r5 = r2 -1

Edge is labeled with latency:
v(i = j) = delay required between initiation times of
i and j minus the execution time required by i

Kostis Sagonas 28 Spring 2006

Another Example

r2 = *(rl + 4)
*(rl + 4) = r3
r3 = r2 + r3
r5 = r2 -1

[N VVI SR)

Kostis Sagonas 30 Spring 2006

Control Dependencies and

Resource Constraints

 For now, let’s worry only about basic blocks

» For now, let’s look at simple pipelines

Kostis Sagonas

Spring 2006

Example

Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
(1]2)3 a]st]st]s]
Kostis Sagonas 33 Spring 2006

Example

Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: sT r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)

‘1‘2‘3‘4‘st‘st‘5‘ﬁ‘st‘st‘st‘7‘8‘

Kostis Sagonas

35

Example

Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: 8T r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
Kostis Sagonas 32 Spring 2006

Example

Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
11203 alst]st|s]6[st]st|st]7]

Kostis Sagonas

34

Spring 2006

Spring 2006

W oo WN R
1]
H

Example

Results available in

rl,array
r2,4(rl)
r3,r3,0x00FF
r6,r6,100
r7,4(r6)
r5,r5,100
r4,r2,r5
r5,r2,r4
r4,0(rl)

1

1
1
3

o

cycle
cycle
cycle
cycles

cycles
cycle
cycles

14 cycles!

(10203 ast]st|5]6]st]st|st|7]8]9]

Kostis Sagonas

36

Spring 2006

Outline

* Modern architectures

¢ Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
¢ Scheduling across basic blocks
Trace scheduling

Scheduling for loops

* Loop unrolling

Software pipelining

Kostis Sagonas 37 Spring 2006

List Scheduling Algorithm

* Create a dependence DAG of a basic block
* Topological Sort
READY = nodes with no predecessors
Loop until READY is empty
Schedule each node in READY when no stalling

READY += nodes whose predecessors have all been
scheduled

List Scheduling Algorithm

* Idea
— Do a topological sort of the dependence DAG

— Consider when an instruction can be scheduled
without causing a stall

— Schedule the instruction if it causes no stall and all
its predecessors are already scheduled

* Optimal list scheduling is NP-complete

— Use heuristics when necessary

Kostis Sagonas 38 Spring 2006

Kostis Sagonas 39 Spring 2006

Heuristics for selection

Pick the node with the longest path to a leaf in the
dependence graph

Algorithm (for node x)
— If x has no successors d, =0
—d,=MAX(d, +c,,) forall successors y of x

Use reverse breadth-first visiting order

Heuristics for selection

Heuristics for selecting from the READY list
1. pick the node with the longest path to a leaf in the
dependence graph
2. pick a node with the most immediate successors

3. pick a node that can go to a less busy pipeline
(in a superscalar implementation)

Kostis Sagonas 40 Spring 2006

Kostis Sagonas 41 Spring 2006

Heuristics for selection

Pick a node with the most immediate successors

Algorithm (for node x):

— f, = number of successors of x

Kostis Sagonas 42 Spring 2006

Example

Results available in

1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: sT r7,4(x6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
Kostis Sagonas 43 Spring 2006
Example
d=5 d=0 ° d=3
f=0 f=1
3
READY ={ } d=7 d=0
o (D
d=0
f=0
Kostis Sagonas 45 Spring 2006

Example

READY ={6,1,4,3}

6]

Example
1: LA rl,array o
2: LD r2,4(rl) 3
3: AND r3,r3, 0x00FF o
4: MULC r6,r6,100
5: 8T r7,4(r6)
6: DIVC r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
Kostis Sagonas 44 Spring 2006
Example
d=3
f=1
1,3,4,6 3
READY ={6,1,4,3} e
=0
Kostis Sagonas 46 Spring 2006

Kostis Sagonas 47 Spring 2006

Example

READY ={1,4,3}

Kostis Sagonas 48 Spring 2006

Example

I8N
w

Example
2 oF: of
’ READY ={2,4,3} ’
O o o=

READY ={4,3}

Spring 2006 Kostis Sagonas 50 Spring 2006

Kostis Sagonas

Example Example
d=5 d=0 d=3 d=3
=1 £=0 0 f=1 7 f=1
3
d=
=0

3
READY ={4,3}

READY ={2,4,3} ded

6l1]2] ol1]2]
Spring 2006 Kostis Sagonas 52 Spring 2006

Kostis Sagonas

Example

Example
d=5 - -
m OB OE
3

READY ={7,4,3}

READY ={7,4,3}

611]2] 6124
Spring 2006 Kostis Sagonas Spring 2006

Example

-0
1
=

5
READY ={7,3}

° u°
™ e
TigT
S

Kostis Sagonas 55 Spring 2006

Example

d=5 d=0 ° d=3
f=1 f=0 f=1

READY ={7,3,5}

6l1l2]al7]

Kostis Sagor 57 Spring 2006

Example

READY ={3,5,8,9}

Example
()
3 f=1
READY ={7,3,5} deo
(i
6l1]2]4]
Kostis Sagonas 56 Spring 2006
Example
d=3
8,9 s
READY = (3,5} d=0
f=0
ol1f2]a]7]
Kostis Sagonas 58 Spring 2006

Spring 2006

Example

READY ={5,8,9}

Kostis Sagonas 60 Spring 2006

10

Example Example
(D O}=
READY ={5,8,9} oo READY ={8,9} 4o
e £=0 o £=0
L6 1l2]al7]3]s] l6f12]a]7]3]5]
Kostis Sagonas 61 Spring 2006 Kostis Sagonas 62 Spring 2006
Example Example
N0 O}~
READY ={8,9}] i READY ={9} }
(}‘=Z o g=00 ?:(;)
d=0
=0
L6 1l2]af7]3]5]s] L6 1l2laf7][s]s]s
Kostis Sagonas 63 Spring 2006 Kostis Sagonas 64 Spring 2006
Example Example
READY ={9} READY ={ }

lol1f2]al7[3]s]s]s]

Kostis Sagonas 66

Example

Results available in

1: LA rl, array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3, 0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(x6)

6: DIVC r5,r5,100 4 cycles
7: ADD rd4,r2,r5 1 cycle
8: MUL r5,r2,r4d 3 cycles
9: ST r4,0(rl)

.1‘2‘3‘4‘st‘st‘5‘6‘st‘st‘st‘7‘8‘9‘

14 cycles
6l1]2]al7]3][5]8]9] Vs.

9 cycles
Kostis Sagonas 67 Spring 2006

Resource Constraints

* Modern machines have many resource
constraints

* Superscalar architectures:
— can run few parallel operations
— but have constraints

Outline

* Modern architectures

¢ Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

¢ Loop unrolling

Software pipelining

.

.

.

Kostis Sagonas 68 Spring 2006

Kostis Sagonas 69 Spring 2006

List Scheduling Algorithm with
Resource Constraints

* Represent the superscalar architecture as multiple
pipelines
— Each pipeline represents some resource

Resource Constraints of a
Superscalar Processor

Example:
— 1 integer operation
ALUop dest, srcl, src2 #1in 1 clock cycle
In parallel with
— 1 memory operation
LD dst, addr
ST src, addr

#1n 2 clock cycles
#1n 1 clock cycle

Kostis Sagonas 70 Spring 2006

Kostis Sagonas 71

Spring 2006

List Scheduling Algorithm with
Resource Constraints

» Represent the superscalar architecture as multiple
pipelines
— Each pipeline represents some resource
* Example
— One single cycle ALU unit
— One two-cycle pipelined memory unit

ALUop
MEM 1
MEM 2
Kostis Sagonas 72 Spring 2006

12

List Scheduling Algorithm with
Resource Constraints

* Create a dependence DAG of a basic block
* Topological Sort
READY = nodes with no predecessors
Loop until READY is empty
Letn € READY be the node with the highest priority
Schedule n in the earliest slot
that satisfies precedence + resource constraints
Update READY

Kostis Sagonas 73 Spring 2006

Example
1: LA rl,array
2: 1D r2,4(rl)
3: AND r3,r3, 0x00FF
4: 1D r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,rd
9: ST r4,0(rl)
READY ={6,4,3} «2
ALUop | 1
MEM 1
MEM 2
Kostis Sagonas 75 Spring 2006
Example
1: LA rl,array
2: LD r2,4(rl)
3: AND r3,r3, 0x00FF
4: 1D r6, 8 (sp)
5: ST r7,4(x6)
6: ADD r5,r5,100
7: ADD rd,r2,r5
8: MUL r5,r2,r4d
9: ST r4,0(rl)
READY ={6,4,3}
ALUop | 1 | 6
MEM 1 2
MEM 2 2
Kostis Sagonas 77 Spring 2006

Example
1: LA rl,array d=0 d=2
2: LD r2,4(rl) =0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST r7,4(x6) f=1 =0
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST rd,0(rl)
READY ={1,6,4,3} d_=(?
ALUop | 1
MEM 1
MEM 2
Kostis Sagonas 74 Spring 2006
Example
1: 1A rl,array d=2
2: LD r2,4(rl) f=1
3: AND r3, r3, 0x00FF
4: LD r6,8(sp) d=0
5: ST r7,4(x6) =0
6: ADD r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
READY ={2,6,4,3}
ALUop
MEM 1 2
MEM 2 2
Kostis Sagonas 76 Spring 2006
Example
1: LA rl,array d=0 d=2
2: LD r2,4(rl) f=0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST £7,4(x6) =1 f=
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
READY ={4,3}«7 d_=g
ALUop | 1 |6
MEM 1 2
MEM 2 2
Kostis Sagonas 78 Spring 2006

13

Example
1: LA rl,array d=0 o d=2
2: LD r2,4(rl) =0 f=1
3: AND r3,r3, 0x00FF 2
4: 1D r6,8(sp) d=2 d=0
5: ST r7,4(r6) f=1 f=0
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(xrl)
READY ={4,7,3} ‘gfg
ALUop | 1 | 6
MEM1| 4 | 2
MEM 2 412
Kostis Sagonas 79 Spring 2006
Example
1: LA rl,array
2: 1D r2,4(rl)
3: AND r3,r3, 0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,rd
9: ST r4,0(rl)

READY ={7,3,5}

ALUop 7
MEM1 | 4 | 2
MEM 2
Kostis Sagonas 81 Spring 2006
Example
1: LA rl,array
2: LD r2,4(rl)
3: AND r3,r3, 0x00FF
4: 1D r6, 8 (sp)
5: ST r7,4(x6)
6: ADD r5,r5,100
7: ADD rd,r2,r5
8: MUL r5,r2,r4d
9: ST r4,0(rl)
READY ={3,5,8,9}
ALUop | 1|6 |3 | 7
MEM1 | 4 | 2
MEM 2 412
Kostis Sagonas 83 Spring 2006

Example

1: LA rl,array d=0 d=2
2: LD r2,4(rl) =0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST r7,4(x6) f=1 =0
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST rd,0(rl)
READY ={7,3} 5 d_=(?
ALUop | 1 | 6
MEM1 | 4 | 2
MEM 2 412
Kostis Sagonas 80 Spring 2006
Example
1: 1A rl,array = d=0 d=2
2: 1D r2,4(rl) =1 =0 f=1
3: AND r3,r3, 0x00FF 1 2
4: LD r6,8(sp) d=0
5: ST r7,4(r6) e f:()
6: ADD r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
READY ={3,5}+38,9
ALUop | 1 |6 7
MEM1 | 4 | 2
MEM 2 412
Kostis Sagonas 82 Spring 2006
Example
1: LA rl,array d=0 d=2
2: LD r2,4(rl) f=0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST £7,4(x6) =1 f=
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
READY ={5,8,9} dfg
ALUop | 16 [3] 7
MEM1| 4|2 |5
MEM 2 2
Kostis Sagonas 84 Spring 2006

14

Example

Example

1: LA rl,array

2: LD r2,4(rl)

3: AND r3,r3, 0x00FF

4: 1D r6,8(sp)

5: ST r7,4(x6)

6: ADD r5,r5,100

7: ADD rd,r2,r5

8: MUL r5,r2,rd

9: ST r4,0(rl)

READY ={8,9}
ALUop | 1|6 |3 8
MEM1| 4|2 |5
MEM 2 412

Kostis Sagonas 85 Spring 2006

Example

1: LA rl,array

2: LD r2,4(rl)

3: AND r3,r3, 0x00FF

4: 1D r6,8(sp)

5: ST r7,4(r6)

6: ADD r5,r5,100

7: ADD rd4,r2,r5

8: MUL r5,r2,rd

9: ST r4,0(rl)

READY ={ }

ALUop | 16 |3 | 7|8

MEM1| 4|2 |5 9

MEM 2 412

Kostis Sagonas 87 Spring 2006

1: LA rl,array d=0 d=2
2: LD r2,4(rl) =0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST r7,4(x6) f=1 =0
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
— d=0
READY ={9} =
avvop | 1]6 |3 s
MEM1| 4|2 |5 9
MEM 2 412
Kostis Sagonas 86 Spring 2006
Outline

¢ Modern architectures

¢ Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

Loop unrolling

Software pipelining

.

Kostis Sagonas 88 Spring 2006

Register Allocation
and Instruction Scheduling

« If register allocation is performed before
instruction scheduling
— the choices for scheduling are restricted

Kostis Sagonas 89 Spring 2006

Example

1: 1D r2,0(rl)

2: ADD r3,r3,r2

3: LD r2,4(r5)

4: ADD r6,r6,r2
ALUop 2 4
MEM1 | 1 3
MEM 2 1 3

Kostis Sagonas 90 Spring 2006

15

Example

: LD r2,0(rl) 0

1

2: ADD r3,r3,r2 3

3: LD r2,4(xr5) 1
4: ADD r6,r6,r2 o
Anti-dependence L o

How about using a different register? o

Kostis Sagonas 91 Spring 2006

Register Allocation
and Instruction Scheduling
* If register allocation is performed before

instruction scheduling

— the choices for scheduling are restricted

* If instruction scheduling is performed before
register allocation
— register allocation may spill registers
— will change the carefully done schedule!!!

Kostis Sagonas 93 Spring 2006

Scheduling across basic blocks

¢ Number of instructions in a basic block is small
— Cannot keep a multiple units with long pipelines
busy by just scheduling within a basic block
* Need to handle control dependencies
— Scheduling constraints across basic blocks
— Scheduling policy

Example

1: 1D r2,0(rl)

2: ADD r3,r3,r2 3

3: LD r4,4(r5)

4: ADD r6,r6,rd

3

ALUop 214 o
MEM1 |1 |3
MEM 2 13

Kostis Sagonas 92 Spring 2006

Outline

¢ Modern architectures

¢ Delay slots

¢ Introduction to instruction scheduling
¢ List scheduling

* Resource constraints

« Interaction with register allocation
* Scheduling across basic blocks

¢ Trace scheduling

¢ Scheduling for loops

* Loop unrolling

* Software pipelining

Kostis Sagonas 94 Spring 2006

Kostis Sagonas 95 Spring 2006

Moving across basic blocks

Downward to adjacent basic block

A path to B that does not execute A?

Kostis Sagonas 9% Spring 2006

16

Moving across basic blocks

Upward to adjacent basic block

A path from C that does not reach A?

Kostis Sagonas 97 Spring 2006

Control Dependencies

Constraints in moving instructions across basic blocks

if (. . .)) if (. . .))
d = *(al)

Outline

* Modern architectures

Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

¢ Loop unrolling

Software pipelining

Kostis Sagonas 99 Spring 2006

Trace Scheduling

B

a=bopec
Not allowed if e.g. Not allowed if e.g.
if (¢ !'=0) if (valid_address (al))
a=b / c d = *(al)
Kostis Sagonas 98 Spring 2006
Trace Scheduling

* Find the most common trace of basic blocks
— Use profile information

¢ Combine the basic blocks in the trace and
schedule them as one block

 Create compensating (clean-up) code if the
execution goes off-trace

Kostis Sagonas 100 Spring 2006

A
C
E
G
101

Kostis Sagonas

Spring 2006

Trace Scheduling

£

;

)
Q

|

Kostis Sagonas 102 Spring 2006

17

Trace Scheduling

Kostis Sagonas 103 Spring 2006

Trace Scheduling

T

Kostis Sagonas 105 Spring 2006

Trace Scheduling

i L

Kostis Sagonas 104 Spring 2006

Large Basic Blocks via
Code Duplication

* Creating large extended basic blocks by
duplication

* Schedule the larger blocks

B B

Outline

* Modern architectures

Delay slots

Introduction to instruction scheduling
List scheduling

Resource constraints

Interaction with register allocation
Scheduling across basic blocks
Trace scheduling

Scheduling for loops

Loop unrolling

Software pipelining

Kostis Sagonas 107 Spring 2006

C C
) '
D . b | D |
v A
E [E] [E]
Scheduling for Loops

* Loop bodies are typically small

* But a lot of time is spend in loops due to their
iterative nature

* Need better ways to schedule loops

Kostis Sagonas 108 Spring 2006

18

Loop Example

Machine:

— One load/store unit
* load 2 cycles
* store 2 cycles

— Two arithmetic units
e add 2 cycles
* branch 2 cycles (no delay slot)
» multiply 3 cycles

— Both units are pipelined (initiate one op each cycle)

Kostis Sagonas 109 Spring 2006

Loop Example

Source Code
for i =1 to N
A[i] = A[i] * b

Assembly Code
loop:
1ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Kostis Sagonas 110 Spring 2006

Loop Example

Assembly Code
loop:
1d «r6, (r2)
mul ré6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule (9 cycles per iteration)

Kostis Sagonas 111 Spring 2006

Outline

¢ Modern architectures

Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

* Loop unrolling

Software pipelining

.

.

.

Loop Unrolling

Oldest compiler trick of the trade:
Unroll the loop body a few times

Pros:

— Creates a much larger basic block for the body

— Eliminates few loop bounds checks
Cons:

— Much larger program

— Setup code (# of iterations < unroll factor)

— Beginning and end of the schedule can still have
unused slots

Kostis S: 113 Spring 2006

Kostis Sagonas 112 Spring 2006
Loop Example
loop: loop:
1ld r6, (r2) 1d «r6, (r2)
mul r6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6, (r2)
add r2, r2, 4 add r2, r2, 4
ble r2, r5, loop 1d «r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
Schedule (8 cycles per iteration) ble r2, r5, loop

Kostis Sagonas 114 Spring 2006

19

Loop Unrolling

* Rename registers
— Use different registers in different iterations

Kostis Sagonas 115 Spring 2006

Loop Unrolling

* Rename registers
— Use different registers in different iterations

» Eliminate unnecessary dependencies

— again, use more registers to eliminate true, anti and
output dependencies

— eliminate dependent-chains of calculations when

possible

Kostis Sagonas 117 Spring 2006
Loop Example

loop: loop:

1d r6, (rl) 1d ré6, (rl)

mul r6, r6, r3 mul r6, r6, r3

st r6, (rl) st r6, (rl)

add r2, rl, 4 add r2, rl, 4

1ld r7, (r2) 1d 7, (r2)

mul r7, r7, r3 mul r7, r7, r3

st r7, (r2) st r7, (r2)

add rl1l, r2, 4 add rl, r2, 4

ble rl, r5, loop ble rl, r5, loop
Kostis Sagonas 119 Spring 2006

Loop Example
loop: loop:
1ld =6, (r2) 1d r6, (r2)
mul ré6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6, (r2)
add r2, r2, 4 add r2, r2, 4
1d «r6, (r2) 1d 7, (r2)
mul r6, r6, r3 mul r7, r7, r3
st r6, (r2) st r7, (r2)
add r2, r2, 4 add r2, r2, 4
ble r2, r5, loop ble r2, r5, loop
Kostis Sagonas 116 Spring 2006
Loop Example
loop: loop:
1d «r6, (r2) 1d r6, (rl)
mul r6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6, (rl)
add r2, r2, 4 add r2, rl, 4
1d r7, (r2) 1d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add r2, r2, 4 add rl, r2, 4
ble r2, r5, loop ble rl, r5, loop
Kostis Sagonas 118 Spring 2006
Loop Example
loop: loop:
1ld ré6, (rl) 1d r6, (rl)
mul r6, r6, r3 mul r6, r6, r3
st r6, (rl) st r6, (rl)
add r2, rl, 4 add r2, rl, 4
1d «r7, (r2) 1d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add r1l, r2, 4 add r1, rl, 8
ble rl, r5, loop ble rl, r5, loop

Kostis Sagonas

120

Spring 2006

20

Loop Example
loop:

1d r6, (rl)

mul r6, r6, r3

st r6, (rl)

add r2, rl, 4

1d 7, (r2)

mul r7, r7, r3

st r7, (r2)

add rl1, rl, 8
ble rl, r5, loop

Schedule (4.5 cycles per iteration)

Kostis Sagonas 121

Spring 2006

Outline

* Modern architectures

¢ Delay slots

Introduction to instruction scheduling
List scheduling

.

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

¢ Loop unrolling

Software pipelining

.

.

Software Pipelining

* Try to overlap multiple iterations so that the
slots will be filled

* Find the steady-state window so that:
— all the instructions of the loop body are executed
— but from different iterations

Kostis Sagonas 123 Spring 2006
Loop Example
Assembly Code 143
loop: 1d3
1d r6, (r2) mul2
mul r6, r6, r3 mul2
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop
Schedule (2 cycles per iteration)
Kosti 125 Spring 2006

Kostis Sagonas 122 Spring 2006
Loop Example
Assembly Code
loop:
1d r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop
Schedule
1d id1 192 [st_[1d3 [sti_[laa stz Jid5 st]ide
1d 1d1 92 |st [1d3 |stt |1da |st2 |ia5 |sts
mul mult mul2 | ble mul3 | ble1 | mul4 | ble2 | mul5
mul mult mul2| ble mul3 | ble1 | mul4 | ble2
mul mull mul2 mul3 mul4
add add1 add2 add3
add add1 add2 add3
Kostis Sagonas 124 Spring 2006
Loop Example
4 iterations are overlapped 1d3
— values of 3 and r5 don’t change 1d3
mul2
— 4 regs for &A[i] (12) mul2
— each addr. incremented by 4%4
— 4 regs to keep value A[i] (r6)
loop:
— Same registers can be reused 1d1 rg, (1672) 3
. . mul r6, r6, r
after 4 of these blocks st r6. (r2)
generate code for 4 blocks, add r2, r2, 4
otherwise need to move ble r2, r5, loop
Kostis Sagonas 126 SErinE 2006

21

Software Pipelining

* Optimal use of resources
* Need a lot of registers
— Values in multiple iterations need to be kept
¢ Issues in dependencies
— Executing a store instruction in an iteration before branch
instruction is executed for a previous iteration (writing when
it should not have)
— Loads and stores are issued out-of-order (need to figure-out
dependencies before doing this)
* Code generation issues
— Generate pre-amble and post-amble code
— Multiple blocks so no register copy is needed

Kostis Sagonas

127 Spring 2006

22

