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Code Scheduling

Simple Machine Model

* Instructions are executed in sequence
— Fetch, decode, execute, store results
— One instruction at a time
* For branch instructions, start fetching from a
different location if needed
— Check branch condition

— Next instruction may come from a new location
given by the branch instruction
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Outline

* Modern architectures

¢ Delay slots

« Introduction to instruction scheduling
¢ List scheduling

* Resource constraints

« Interaction with register allocation
* Scheduling across basic blocks

¢ Trace scheduling

¢ Scheduling for loops

¢ Loop unrolling

* Software pipelining
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Execution Models

Simple Execution Model

5 Stage pipe-line

‘ fetch decode | execute | memory |write back|

Fetch: get the next instruction
Decode: figure out what that instruction is
Execute: perform ALU operation

address calculation in a memory operation
Memory: do the memory access in a mem. op.
Write Back: write the results back

Kostis Sagonas 4 Spring 2006

time
Model 1
Inst 1 ‘ IF ‘ DE ‘ EXE ‘MEM‘ WB ‘
Inst 2 ‘ IF ‘ DE ‘EXE ‘MEM‘ WB ‘
Inst 1 ‘ IF ‘ DE ‘ EXE ‘MEM‘ WB ‘
Inst 2 ‘ ¥ ‘ DE | EXE | MEM | WB ‘ Model 2
Inst 3 ‘ IF | DE | EXE | MEM | WB ‘
Inst 4 IF DE | EXE MEM‘ WB ‘
Inst 5 ¥ DE | EXE ‘MEM‘ WB ‘

Kostis Sagonas 5 Spring 2006

Outline

¢ Modern architectures

¢ Delay slots

¢ Introduction to instruction scheduling
¢ List scheduling

» Resource constraints

* Interaction with register allocation
* Scheduling across basic blocks

¢ Trace scheduling

¢ Scheduling for loops

¢ Loop unrolling

» Software pipelining

Kostis S: s 6 Spring 2006




Handling Branch Instructions

Problem: We do not know the location of the next

instruction until later
— after DE in jump instructions
— after EXE in conditional branch instructions

Handling Branch Instructions

What to do with the middle 2 instructions?
1. Stall the pipeline in case of a branch until we
know the address of the next instruction

wasted cycles

Branch ‘ ¥ | DE ‘ EXE |MEM | WB
22? IF ‘ DE }XE MEM WB ‘
999 ‘ w7 bE | EXE MEM‘ Wb ‘
Next Inst \{ IF ‘ DE ‘ EXE ‘MEM‘ wB ‘

What to do with the middle 2 instructions?
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Handling Branch Instructions

What to do with the middle 2 instructions?

2. Delay the action of the branch
Make branch affect only after two instructions
Following two instructions after the branch get

executed regardless of the branch

Branch ‘ IF ‘ DE ‘EXE R\IEM‘ WB ‘
IF DE XE ]\IEM‘ WB ‘

‘ IFﬁ DE ‘EXE ‘MEM‘ WB ‘

\ﬁ IF ‘ DE ‘EXE‘MEM‘ WB‘

Next seq inst

Next seq inst

Branch target inst

9 Spring 2006
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Filling the Branch Delay Slot
Simple Solution: Put a no-op

Wasted instruction, just like a stall

ble r3, 1lbl

Branch delay slot

Kostis Sagonas

Branch | IF DE | EXE | MEM | WB

Next inst \5 IF DE | EXE | MEM | WB

Kostis Sagonas B Spring 2006
Branch Delay Slot(s)

Spring 2006

MIPS has a branch delay slot

— The instruction after a conditional branch gets
executed even if the code branches to target

— Fetching from the branch target takes place only

after that

ble r3, foo

|:| Branch delay slot

What instruction to put in the branch delay slot?

Spring 2006
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Filling the Branch Delay Slot

Move an instruction from above the branch

Pres—aT
ble r3, 1bl
Branch delay slot

¢ moved instruction executes iff branch executes
— So, get the instruction from the same basic block as
the branch
— don’t move a branch instruction!
e instruction needs to be moved over the branch

— branch does not depend on the result of the instr.
Spring 2006
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Filling the Branch Delay Slot

Move an instruction dominated by the branch
instruction

ble r3, 1lbl

Branch delay slot
1bl:
dewm—+Fstr
Kostis Sagonas 13 Spring 2006
Load Delay Slots

Problem: Results of the loads are not available
until end of MEM stage

Load IF | DE ‘ EXE ‘ MEM AWB ‘
Use Of load IF DE\{ EXE | MEM ‘ WB

If the value of the load is used...what to do??

Kostis Sagonas 15 Spring 2006

Filling the Branch Delay Slot

Move an instruction from the branch target
— Instruction dominated by target
— No other ways to reach target (if so, take care of them)

— If conditional branch, the moved instruction should not
have a lasting effect if the branch is not taken

Branch delay slot

Kostis Sagonas 14 Spring 2006

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r4d = r2 + r3
r5 = r2 -1
goto L1

Load Delay Slots

If the value of the load is used...what to do??

* Always stall one cycle

« Stall one cycle if next instruction uses the value
— Need hardware to do this

* Have a delay slot for load
— The new value is only available after two instructions
— If next instr. uses the register, it will get the old value

Load IF | DE | EXE ‘MEM an ‘

299 IF DE ‘ EXEA’(EM‘ WB ‘
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Use of load IF DE\< EXE | MEM ‘ WB ‘
Kostis Sagonas 16 Spring 2006
Example
r2 = *(rl + 4)
r3 = *(rl + 8)

goto L1
noop

Assume 1 cycle delay on branches
and 1 cycle latency for loads

Kostis Sagonas 18 Spring 2006




Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r5 =r2 -1

noop

Assume 1 cycle delay on branches
and 1 cycle latency for loads
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Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r5 = r2 -1
goto L1

r4d = r2 + r3

Final code after delay slot filling
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Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r5 = r2 -1

goto L1
r4d = r2 + r3

Assume 1 cycle delay on branches
and 1 cycle latency for loads

Kostis Sagonas 20 Spring 2006

From a Simple Machine Model
to a Real Machine Model

¢ Many pipeline stages
— MIPS R4000 has 8 stages

* Different instructions take different amount of
time to execute
— mult 10 cycles
—div 69 cycles
—ddiv 133 cycles

» Hardware to stall the pipeline if an instruction
uses a result that is not ready
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Outline

¢ Modern architectures

¢ Delay slots

¢ Introduction to instruction scheduling
¢ List scheduling

* Resource constraints

« Interaction with register allocation
* Scheduling across basic blocks

¢ Trace scheduling

¢ Scheduling for loops

* Loop unrolling

* Software pipelining
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Real Machine Model cont.

* Most modern processors have multiple
execution units (superscalar)
— If the instruction sequence is correct, multiple
operations will take place in the same cycles

— Even more important to have the right instruction
sequence

Kostis Sagonas 24 Spring 2006




Instruction Scheduling

Goal: Reorder instructions so that pipeline stalls
are minimized

Constraints on Instruction Scheduling:
— Data dependencies
— Control dependencies
— Resource constraints

Kostis Sagonas 25 Spring 2006

Computing Data Dependencies

* For basic blocks, compute dependencies by
walking through the instructions

* Identifying register dependencies is simple
— is it the same register?

* For memory accesses
— simple: base + offset] ?= base + offset2
— data dependence analysis: a[2i] ?= a[2i+1]
— interprocedural analysis: global ?= parameter

— pointer alias analysis: pl ?=p

Kostis Sagonas 27 Spring 2006

Data Dependencies

* If two instructions access the same variable,
they can be dependent

* Kinds of dependencies
— True: write — read
— Anti: read — write
— Output: write — write

* What to do if two instructions are dependent?
— The order of execution cannot be reversed
— Reduces the possibilities for scheduling

Kostis Sagonas 2 Spring 2006

Example
1: r2 = *(rl + 4)
2: r3 = *(r2 + 4)
3: r4d = r2 + r3
4: r5 =1r2 - 1 o 3 e
2
2
Kostis Sagonas 29 Sgring 2006

Representing Dependencies

* Using a dependence DAG, one per basic block
* Nodes are instructions, edges represent
dependencies
1: r2 = *(rl + 4) o 9
r3 = *(rl + 8) 2 2

2:

2
3: r4d = r2 + r3
4: 0 9

r5 = r2 -1

Edge is labeled with latency:
v(i = j) = delay required between initiation times of
i and j minus the execution time required by i

Kostis Sagonas 28 Spring 2006

Another Example

r2 = *(rl + 4)
*(rl + 4) = r3
r3 = r2 + r3
r5 = r2 -1

[N VVI SR )
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Control Dependencies and

Resource Constraints

 For now, let’s worry only about basic blocks

» For now, let’s look at simple pipelines

Kostis Sagonas
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Example

Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
(1 ]2 )3 a]st]st]s]
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Example

Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: sT r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)

‘1‘2‘3‘4‘st‘st‘5‘ﬁ‘st‘st‘st‘7‘8‘

Kostis Sagonas
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Example

Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: 8T r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
Kostis Sagonas 32 Spring 2006

Example

Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
11203 alst]st|s]6[st]st|st]7]
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Example

Results available in

rl,array
r2,4(rl)
r3,r3,0x00FF
r6,r6,100
r7,4(r6)
r5,r5,100
r4,r2,r5
r5,r2,r4
r4,0(rl)

1

1
1
3

o

cycle
cycle
cycle
cycles

cycles
cycle
cycles

14 cycles!

(10203 ast]st|5]6]st]st|st|7]8]9]

Kostis Sagonas

36

Spring 2006




Outline

* Modern architectures

¢ Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
¢ Scheduling across basic blocks
Trace scheduling

Scheduling for loops

* Loop unrolling

Software pipelining
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List Scheduling Algorithm

* Create a dependence DAG of a basic block
* Topological Sort
READY = nodes with no predecessors
Loop until READY is empty
Schedule each node in READY when no stalling

READY += nodes whose predecessors have all been
scheduled

List Scheduling Algorithm

* Idea
— Do a topological sort of the dependence DAG

— Consider when an instruction can be scheduled
without causing a stall

— Schedule the instruction if it causes no stall and all
its predecessors are already scheduled

* Optimal list scheduling is NP-complete

— Use heuristics when necessary

Kostis Sagonas 38 Spring 2006
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Heuristics for selection

Pick the node with the longest path to a leaf in the
dependence graph

Algorithm (for node x)
— If x has no successors d, =0
—d,=MAX(d, +c,,) forall successors y of x

Use reverse breadth-first visiting order

Heuristics for selection

Heuristics for selecting from the READY list
1. pick the node with the longest path to a leaf in the
dependence graph
2. pick a node with the most immediate successors

3. pick a node that can go to a less busy pipeline
(in a superscalar implementation)

Kostis Sagonas 40 Spring 2006

Kostis Sagonas 41 Spring 2006

Heuristics for selection

Pick a node with the most immediate successors

Algorithm (for node x):

— f, = number of successors of x

Kostis Sagonas 42 Spring 2006




Example

Results available in

1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: sT r7,4(x6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
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Example
d=5 d=0 ° d=3
f=0 f=1
3
READY ={ } d=7 d=0
o (D
d=0
f=0
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Example

READY ={6,1,4,3}

6]

Example
1: LA rl,array o
2: LD r2,4(rl) 3
3: AND r3,r3, 0x00FF o
4: MULC r6,r6,100
5: 8T r7,4(r6)
6: DIVC r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
Kostis Sagonas 44 Spring 2006
Example
d=3
f=1
1,3,4,6 3
READY ={6,1,4,3} e
=0
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Example

READY ={1,4,3}
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Example

I8N
w

Example
2 oF: of
’ READY ={2,4,3} ’
O o o=

READY ={4,3}

Spring 2006 Kostis Sagonas 50 Spring 2006
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Example Example
d=5 d=0 d=3 d=3
=1 £=0 0 f=1 7 f=1
3
d=
=0

3
READY ={4,3}

READY ={2,4,3} ded

6l1]2] ol1]2]
Spring 2006 Kostis Sagonas 52 Spring 2006
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Example

Example
d=5 - -
m OB OE
3

READY ={7,4,3}

READY ={7,4,3}

611]2] 6124
Spring 2006 Kostis Sagonas Spring 2006




Example

-0
1
=

5
READY ={7,3}

° u°
™ e
TigT
S
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Example

d=5 d=0 ° d=3
f=1 f=0 f=1

READY ={7,3,5}

6l1l2]al7]
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Example

READY ={3,5,8,9}

Example
()
3 f=1
READY ={7,3,5} deo
(i
6l1]2]4]
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Example
d=3
8,9 s
READY = (3,5} d=0
f=0
ol1f2]a]7]
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Example

READY ={5,8,9}

Kostis Sagonas 60 Spring 2006
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Example Example
(D O}=
READY ={5,8,9} oo READY ={8,9} 4o
e £=0 o £=0
L6 1l2]al7]3]s] l6f12]a]7]3]5]
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Example Example
N0 O}~
READY ={8,9} ] i READY ={9} }
(}‘=Z o g=00 ?:(;)
d=0
=0
L6 1l2]af7]3]5]s] L6 1l2laf7][s]s]s
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Example Example
READY ={9} READY ={ }

lol1f2]al7[3]s]s]s]
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Example

Results available in

1: LA rl, array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3, 0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(x6)

6: DIVC r5,r5,100 4 cycles
7: ADD rd4,r2,r5 1 cycle
8: MUL r5,r2,r4d 3 cycles
9: ST r4,0(rl)

.1‘2‘3‘4‘st‘st‘5‘6‘st‘st‘st‘7‘8‘9‘

14 cycles
6l1]2]al7]3][5]8]9] Vs.

9 cycles
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Resource Constraints

* Modern machines have many resource
constraints

* Superscalar architectures:
— can run few parallel operations
— but have constraints

Outline

* Modern architectures

¢ Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

¢ Loop unrolling

Software pipelining

.

.

.
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List Scheduling Algorithm with
Resource Constraints

* Represent the superscalar architecture as multiple
pipelines
— Each pipeline represents some resource

Resource Constraints of a
Superscalar Processor

Example:
— 1 integer operation
ALUop dest, srcl, src2 #1in 1 clock cycle
In parallel with
— 1 memory operation
LD dst, addr
ST src, addr

#1n 2 clock cycles
#1n 1 clock cycle

Kostis Sagonas 70 Spring 2006
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List Scheduling Algorithm with
Resource Constraints

» Represent the superscalar architecture as multiple
pipelines
— Each pipeline represents some resource
* Example
— One single cycle ALU unit
— One two-cycle pipelined memory unit

ALUop
MEM 1
MEM 2
Kostis Sagonas 72 Spring 2006
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List Scheduling Algorithm with
Resource Constraints

* Create a dependence DAG of a basic block
* Topological Sort
READY = nodes with no predecessors
Loop until READY is empty
Letn € READY be the node with the highest priority
Schedule n in the earliest slot
that satisfies precedence + resource constraints
Update READY

Kostis Sagonas 73 Spring 2006

Example
1: LA rl,array
2: 1D r2,4(rl)
3: AND r3,r3, 0x00FF
4: 1D r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,rd
9: ST r4,0(rl)
READY ={6,4,3} «2
ALUop | 1
MEM 1
MEM 2
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Example
1: LA rl,array
2: LD r2,4(rl)
3: AND r3,r3, 0x00FF
4: 1D r6, 8 (sp)
5: ST r7,4(x6)
6: ADD r5,r5,100
7: ADD rd,r2,r5
8: MUL r5,r2,r4d
9: ST r4,0(rl)
READY ={6,4,3}
ALUop | 1 | 6
MEM 1 2
MEM 2 2
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Example
1: LA rl,array d=0 d=2
2: LD r2,4(rl) =0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST r7,4(x6) f=1 =0
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST rd,0(rl)
READY ={1,6,4,3} d_=(?
ALUop | 1
MEM 1
MEM 2
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Example
1: 1A rl,array d=2
2: LD r2,4(rl) f=1
3: AND r3, r3, 0x00FF
4: LD r6,8(sp) d=0
5: ST r7,4(x6) =0
6: ADD r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
READY ={2,6,4,3}
ALUop
MEM 1 2
MEM 2 2
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Example
1: LA rl,array d=0 d=2
2: LD r2,4(rl) f=0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST £7,4(x6) =1 f=
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
READY ={4,3}«7 d_=g
ALUop | 1 |6
MEM 1 2
MEM 2 2
Kostis Sagonas 78 Spring 2006
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Example
1: LA rl,array d=0 o d=2
2: LD r2,4(rl) =0 f=1
3: AND r3,r3, 0x00FF 2
4: 1D r6,8(sp) d=2 d=0
5: ST r7,4(r6) f=1 f=0
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(xrl)
READY ={4,7,3} ‘gfg
ALUop | 1 | 6
MEM1| 4 | 2
MEM 2 412
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Example
1: LA rl,array
2: 1D r2,4(rl)
3: AND r3,r3, 0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,rd
9: ST r4,0(rl)

READY ={7,3,5}

ALUop 7
MEM1 | 4 | 2
MEM 2
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Example
1: LA rl,array
2: LD r2,4(rl)
3: AND r3,r3, 0x00FF
4: 1D r6, 8 (sp)
5: ST r7,4(x6)
6: ADD r5,r5,100
7: ADD rd,r2,r5
8: MUL r5,r2,r4d
9: ST r4,0(rl)
READY ={3,5,8,9}
ALUop | 1|6 |3 | 7
MEM1 | 4 | 2
MEM 2 412
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Example

1: LA rl,array d=0 d=2
2: LD r2,4(rl) =0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST r7,4(x6) f=1 =0
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST rd,0(rl)
READY ={7,3} 5 d_=(?
ALUop | 1 | 6
MEM1 | 4 | 2
MEM 2 412
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Example
1: 1A rl,array = d=0 d=2
2: 1D r2,4(rl) =1 =0 f=1
3: AND r3,r3, 0x00FF 1 2
4: LD r6,8(sp) d=0
5: ST r7,4(r6) e f:()
6: ADD r5,r5,100
7: ADD rd4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
READY ={3,5}+38,9
ALUop | 1 |6 7
MEM1 | 4 | 2
MEM 2 412
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Example
1: LA rl,array d=0 d=2
2: LD r2,4(rl) f=0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST £7,4(x6) =1 f=
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
READY ={5,8,9} dfg
ALUop | 16 [3 ] 7
MEM1| 4|2 |5
MEM 2 2
Kostis Sagonas 84 Spring 2006
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Example

Example

1: LA rl,array

2: LD r2,4(rl)

3: AND r3,r3, 0x00FF

4: 1D r6,8(sp)

5: ST r7,4(x6)

6: ADD r5,r5,100

7: ADD rd,r2,r5

8: MUL r5,r2,rd

9: ST r4,0(rl)

READY ={8,9}
ALUop | 1|6 |3 8
MEM1| 4|2 |5
MEM 2 412
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Example

1: LA rl,array

2: LD r2,4(rl)

3: AND r3,r3, 0x00FF

4: 1D r6,8(sp)

5: ST r7,4(r6)

6: ADD r5,r5,100

7: ADD rd4,r2,r5

8: MUL r5,r2,rd

9: ST r4,0(rl)

READY ={ }

ALUop | 16 |3 | 7|8

MEM1| 4|2 |5 9

MEM 2 412
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1: LA rl,array d=0 d=2
2: LD r2,4(rl) =0 f:l
3: AND r3,r3, 0x00FF 2
4: LD r6, 8 (sp) d=2 d=0
5: ST r7,4(x6) f=1 =0
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(rl)
— d=0
READY ={9} =
avvop | 1]6 |3 s
MEM1| 4|2 |5 9
MEM 2 412
Kostis Sagonas 86 Spring 2006
Outline

¢ Modern architectures

¢ Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

Loop unrolling

Software pipelining

.
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Register Allocation
and Instruction Scheduling

« If register allocation is performed before
instruction scheduling
— the choices for scheduling are restricted

Kostis Sagonas 89 Spring 2006

Example

1: 1D r2,0(rl)

2: ADD r3,r3,r2

3: LD r2,4(r5)

4: ADD r6,r6,r2
ALUop 2 4
MEM1 | 1 3
MEM 2 1 3

Kostis Sagonas 90 Spring 2006
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Example

: LD r2,0(rl) 0

1

2: ADD r3,r3,r2 3

3: LD r2,4(xr5) 1
4: ADD r6,r6,r2 o
Anti-dependence L o

How about using a different register? o
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Register Allocation
and Instruction Scheduling
* If register allocation is performed before

instruction scheduling

— the choices for scheduling are restricted

* If instruction scheduling is performed before
register allocation
— register allocation may spill registers
— will change the carefully done schedule!!!
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Scheduling across basic blocks

¢ Number of instructions in a basic block is small
— Cannot keep a multiple units with long pipelines
busy by just scheduling within a basic block
* Need to handle control dependencies
— Scheduling constraints across basic blocks
— Scheduling policy

Example

1: 1D r2,0(rl)

2: ADD r3,r3,r2 3

3: LD r4,4(r5)

4: ADD r6,r6,rd

3

ALUop 214 o
MEM1 |1 |3
MEM 2 13
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Outline

¢ Modern architectures

¢ Delay slots

¢ Introduction to instruction scheduling
¢ List scheduling

* Resource constraints

« Interaction with register allocation
* Scheduling across basic blocks

¢ Trace scheduling

¢ Scheduling for loops

* Loop unrolling

* Software pipelining
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Moving across basic blocks

Downward to adjacent basic block

A path to B that does not execute A?

Kostis Sagonas 9% Spring 2006
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Moving across basic blocks

Upward to adjacent basic block

A path from C that does not reach A?
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Control Dependencies

Constraints in moving instructions across basic blocks

if (. . .) ) if (. . .) )
d = *(al)

Outline

* Modern architectures

Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

¢ Loop unrolling

Software pipelining
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Trace Scheduling

B

a=bopec
Not allowed if e.g. Not allowed if e.g.
if (¢ !'=0) if (valid_address (al))
a=b / c d = *(al)
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Trace Scheduling

* Find the most common trace of basic blocks
— Use profile information

¢ Combine the basic blocks in the trace and
schedule them as one block

 Create compensating (clean-up) code if the
execution goes off-trace
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Trace Scheduling
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Trace Scheduling
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Trace Scheduling

T
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Trace Scheduling

i L
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Large Basic Blocks via
Code Duplication

* Creating large extended basic blocks by
duplication

* Schedule the larger blocks

B B

Outline

* Modern architectures

Delay slots

Introduction to instruction scheduling
List scheduling

Resource constraints

Interaction with register allocation
Scheduling across basic blocks
Trace scheduling

Scheduling for loops

Loop unrolling

Software pipelining
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C C
) '
D . b | D |
v A
E [ E ] [ E ]
Scheduling for Loops

* Loop bodies are typically small

* But a lot of time is spend in loops due to their
iterative nature

* Need better ways to schedule loops

Kostis Sagonas 108 Spring 2006
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Loop Example

Machine:

— One load/store unit
* load 2 cycles
* store 2 cycles

— Two arithmetic units
e add 2 cycles
* branch 2 cycles (no delay slot)
» multiply 3 cycles

— Both units are pipelined (initiate one op each cycle)
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Loop Example

Source Code
for i =1 to N
A[i] = A[i] * b

Assembly Code
loop:
1ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Kostis Sagonas 110 Spring 2006

Loop Example

Assembly Code
loop:
1d «r6, (r2)
mul ré6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule (9 cycles per iteration)
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Outline

¢ Modern architectures

Delay slots

Introduction to instruction scheduling
List scheduling

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

* Loop unrolling

Software pipelining

.

.

.

Loop Unrolling

Oldest compiler trick of the trade:
Unroll the loop body a few times

Pros:

— Creates a much larger basic block for the body

— Eliminates few loop bounds checks
Cons:

— Much larger program

— Setup code (# of iterations < unroll factor)

— Beginning and end of the schedule can still have
unused slots

Kostis S: 113 Spring 2006
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Loop Example
loop: loop:
1ld r6, (r2) 1d «r6, (r2)
mul r6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6, (r2)
add r2, r2, 4 add r2, r2, 4
ble r2, r5, loop 1d «r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
Schedule (8 cycles per iteration) ble r2, r5, loop

Kostis Sagonas 114 Spring 2006
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Loop Unrolling

* Rename registers
— Use different registers in different iterations

Kostis Sagonas 115 Spring 2006

Loop Unrolling

* Rename registers
— Use different registers in different iterations

» Eliminate unnecessary dependencies

— again, use more registers to eliminate true, anti and
output dependencies

— eliminate dependent-chains of calculations when

possible
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Loop Example

loop: loop:

1d r6, (rl) 1d ré6, (rl)

mul r6, r6, r3 mul r6, r6, r3

st r6, (rl) st r6, (rl)

add r2, rl, 4 add r2, rl, 4

1ld r7, (r2) 1d 7, (r2)

mul r7, r7, r3 mul r7, r7, r3

st r7, (r2) st r7, (r2)

add rl1l, r2, 4 add rl, r2, 4

ble rl, r5, loop ble rl, r5, loop
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Loop Example
loop: loop:
1ld =6, (r2) 1d r6, (r2)
mul ré6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6, (r2)
add r2, r2, 4 add r2, r2, 4
1d «r6, (r2) 1d 7, (r2)
mul r6, r6, r3 mul r7, r7, r3
st r6, (r2) st r7, (r2)
add r2, r2, 4 add r2, r2, 4
ble r2, r5, loop ble r2, r5, loop
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Loop Example
loop: loop:
1d «r6, (r2) 1d r6, (rl)
mul r6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6, (rl)
add r2, r2, 4 add r2, rl, 4
1d r7, (r2) 1d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add r2, r2, 4 add rl, r2, 4
ble r2, r5, loop ble rl, r5, loop
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Loop Example
loop: loop:
1ld ré6, (rl) 1d r6, (rl)
mul r6, r6, r3 mul r6, r6, r3
st r6, (rl) st r6, (rl)
add r2, rl, 4 add r2, rl, 4
1d «r7, (r2) 1d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add r1l, r2, 4 add r1, rl, 8
ble rl, r5, loop ble rl, r5, loop

Kostis Sagonas
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Loop Example
loop:

1d r6, (rl)

mul r6, r6, r3

st r6, (rl)

add r2, rl, 4

1d 7, (r2)

mul r7, r7, r3

st r7, (r2)

add rl1, rl, 8
ble rl, r5, loop

Schedule (4.5 cycles per iteration)

Kostis Sagonas 121
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Outline

* Modern architectures

¢ Delay slots

Introduction to instruction scheduling
List scheduling

.

* Resource constraints

Interaction with register allocation
* Scheduling across basic blocks
Trace scheduling

Scheduling for loops

¢ Loop unrolling

Software pipelining

.

.

Software Pipelining

* Try to overlap multiple iterations so that the
slots will be filled

* Find the steady-state window so that:
— all the instructions of the loop body are executed
— but from different iterations
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Loop Example
Assembly Code 143
loop: 1d3
1d r6, (r2) mul2
mul r6, r6, r3 mul2
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop
Schedule (2 cycles per iteration)
Kosti 125 Spring 2006
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Loop Example
Assembly Code
loop:
1d r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop
Schedule
1d id1 192 [st_[1d3 [sti_[laa stz Jid5 st ]ide
1d 1d1 92 |st [1d3 |stt |1da |st2 |ia5 |sts
mul mult mul2 | ble mul3 | ble1 | mul4 | ble2 | mul5
mul mult mul2| ble mul3 | ble1 | mul4 | ble2
mul mull mul2 mul3 mul4
add add1 add2 add3
add add1 add2 add3
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Loop Example
4 iterations are overlapped 1d3
— values of 3 and r5 don’t change 1d3
mul2
— 4 regs for &A[i] (12) mul2
— each addr. incremented by 4%4
— 4 regs to keep value A[i] (r6)
loop:
— Same registers can be reused 1d1 rg, (1672) 3
. . mul r6, r6, r
after 4 of these blocks st r6. (r2)
generate code for 4 blocks, add r2, r2, 4
otherwise need to move ble r2, r5, loop
Kostis Sagonas 126 SErinE 2006
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Software Pipelining

* Optimal use of resources
* Need a lot of registers
— Values in multiple iterations need to be kept
¢ Issues in dependencies
— Executing a store instruction in an iteration before branch
instruction is executed for a previous iteration (writing when
it should not have)
— Loads and stores are issued out-of-order (need to figure-out
dependencies before doing this)
* Code generation issues
— Generate pre-amble and post-amble code
— Multiple blocks so no register copy is needed

Kostis Sagonas
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