Loop Optimizations

Representing the control flow of a program

• Control forms a graph

• A very large graph

• Observation
 – lot of straight-line connections
 – simplify the graph by grouping some instructions

What is a Loop?

• Set of nodes
• Loop header
 – Single node
 – All iterations of loop go through header
• Back edge

Anomalous Situations

• Two back edges, two loops, one header
• Compiler merges loops

• No loop header, no loop
Defining Loops With Dominators

- **Concept of dominator**
 - Node \(n \) dominates a node \(m \) if all paths from start node to \(m \) go through \(n \)

- If \(d_1 \) and \(d_2 \) both dominate \(m \), then either
 - \(d_1 \) dominates \(d_2 \), or
 - \(d_2 \) dominates \(d_1 \) (but not both – look at path from start)

- **Immediate dominator** of \(m \) – last dominator of \(m \) on any path from start node

Dominator Problem Formulation

- A cross product of the lattice for each basic block:
 - Lattice per basic block

- Flow direction: *Forward Flow*

- Dataflow Equations:
 - \(\text{GEN} = \{ b_k \mid b_k \text{ is the current basic block} \} \)
 - \(\text{KILL} = \{ \} \)
 - \(\text{OUT} = \text{GEN} \cup (\text{IN} - \text{KILL}) \)
 - \(\text{IN} = \bigcap \text{OUT} \)

Computing Dominators

\[\text{OUT} = \text{GEN} \cup (\text{IN} - \text{KILL}) \]
\[\text{IN} = \bigcap \text{OUT} \]

Dominator Tree

- Nodes are nodes of control flow graph
- Edge from \(d \) to \(n \) if \(d \) is the immediate dominator of \(n \)
- This structure is a tree
- Rooted at start node

Example Dominator Tree

Control-flow graph

Dominator tree

Identifying Loops

- Unique entry point – header
- At least one path back to header
- Find edges whose heads dominate tails
 - These edges are back edges of loops
 - Given a back edge \(n \rightarrow d \)
 - Loop consists of \(n \) plus all nodes that can reach \(n \) without going through \(d \)
 (all nodes "between" \(d \) and \(n \))
 - \(d \) is loop header
Two Loops in Example

Loop Construction Algorithm

insert(m)
 if m \notin loop then
 loop = loop \cup \{m\};
 push m onto stack;
loop(d,n)
 loop = \emptyset; stack = \emptyset; insert(n);
 while stack not empty do
 m = pop stack;
 for all p \in pred(m) do insert(p);

Nested Loops

- If two loops do not have same header then
 - Either one loop (inner loop) is contained in the other (outer loop)
 - Or the two loops are disjoint
- If two loops have same header, typically they are unioned and treated as one loop

Two loops:
 \{1,2\} and \{1,3\}
Unioned: \{1,2,3\}

Loop Preheader

- Many optimizations stick code before the loop
- Put a special node (loop preheader) before the loop to hold this code

Loop Optimizations

- Now that we have the loop, we can optimize it!
- Loop invariant code motion
 - Stick loop invariant code in the header

Loop Invariant Code Motion

If a computation produces the same value in every loop iteration, move it out of the loop.

\[
\begin{align*}
 &\text{for } i = 1 \text{ to } N \\
 &\quad x = x + 1 \\
 &\quad \text{for } j = 1 \text{ to } N \\
 &\quad a[i,j] = 100*N + 10*i + j + x \\
 \end{align*}
\]
Detecting Loop Invariant Code

- A statement is loop-invariant if operands are
 - Constant,
 - Have all reaching definitions outside loop, or
 - Have exactly one reaching definition, and that definition comes from an invariant statement
- Concept of exit node of loop
 - node with successors outside loop

Loop Invariant Code Detection Algorithm

for all statements in loop
if operands are constant or have all reaching definitions outside loop, mark statement as invariant
do
for all statements in loop not already marked invariant
if operands are constant, have all reaching definitions outside loop, or have exactly one reaching definition from invariant statement
then mark statement as invariant
until there are no more invariant statements

Loop Invariant Code Motion

- Conditions for moving a statement s: x = y+z into loop header:
 - The node containing s dominates all exit nodes of loop
 - If it does not, some use after loop might get wrong value
 - Alternate condition: definition of x from s reaches no use outside loop (but moving s may increase run time)
 - No other statement in loop assigns to x
 - If one does, assignments might get reordered
 - No use of x in loop is reached by definition other than s
 - If one is, movement may change value read by use

Order of Statements in Preheader

Preserve data dependences from original program
(can use order in which discovered by algorithm)

Induction Variables

Example:
for j = 1 to 100
*(&A + 4*j) = 202 - 2*j

Base induction variable:
J = 1, 2, 3, 4,

Derived induction variable &A+4*j:
&A+4*j = &A+4, &A+8, &A+12, &A+16,

Induction Variable Elimination

Use of p
What are induction variables?

• x is an induction variable of a loop L if
 – variable changes its value on every loop iteration
 – the value is a function of number of iterations of the loop

• In many programs, this function is often a linear function
 Example: for loop index variable j, function d + c*j

What is an Induction Variable?

• Base induction variable
 – Only assignments in loop are of form i = i ± c

• Derived induction variables
 – Value is a linear function of a base induction variable
 – Within loop, j = ci + d, where i is a base induction variable
 – Very common in array index expressions – an access to a[i] produces code like p = a + 4*i

Strength Reduction for Derived Induction Variables

```
\begin{align*}
  i &= 0 \\
  p &= 0 \\
  i < 10 \\
  i &= i + 1 \\
  p &= 4 \cdot i \\
  \text{use of } p
\end{align*}
```

```
\begin{align*}
  i &= 0 \\
  p &= 0 \\
  i < 10 \\
  i &= i + 1 \\
  p &= p + 4 \\
  \text{use of } p
\end{align*}
```

Elimination of Superfluous Induction Variables

```
\begin{align*}
  i &= 0 \\
  p &= 0 \\
  i < 10 \\
  i &= i + 1 \\
  p &= p + 4 \\
  \text{use of } p
\end{align*}
```

```
\begin{align*}
  i &= 0 \\
  p &= 0 \\
  i < 10 \\
  i &= i + 1 \\
  p &= p + 4 \\
  \text{use of } p
\end{align*}
```

Three Algorithms

• Detection of induction variables
 – Find base induction variables
 – Each base induction variable has a family of derived induction variables, each of which is a linear function of base induction variable

• Strength reduction for derived induction variables

• Elimination of superfluous induction variables

Output of Induction Variable Detection Algorithm

• Set of induction variables
 – base induction variables
 – derived induction variables

• For each induction variable j, a triple <i,c,d>
 – i is a base induction variable
 – the value of j is i*c+d
 – j belongs to family of i
Induction Variable Detection Algorithm

Scan loop to find all base induction variables

- Scan loop to find all variables \(k \) with one assignment of form \(k = j \cdot b \) where \(j \) is an induction variable with triple \(\langle i, c, d \rangle \)
- make \(k \) an induction variable with triple \(\langle i, c \cdot b, d \rangle \)

Scan loop to find all variables \(k \) with one assignment of form \(k = j + b \) where \(j \) is an induction variable with triple \(\langle i, c, d \rangle \)

- make \(k \) an induction variable with triple \(\langle i, c, b + d \rangle \)

until no more induction variables are found

Strength Reduction

\[
t = 202
\]

for \(j = 1 \) to 100

\[
*(abase + 4*j) = t
\]

Base induction variable:

\[
J = 1, 2, 3, 4, ...
\]

Derived induction variable \(202 - 2^j \)

\[
t = 202, 200, 198, 196, ...
\]

Derived induction variable \(abase + 4^j \):

\[
abase + 4^j = abase + 4, abase + 8, abase + 12, abase + 16, ...
\]

Example

```
double A[256], B[256][256]
j = 1
while(j<100)
  A[j] = B[j][j]
j = j + 2
```

```
double A[256], B[256][256]
j = 1
  a = 4A + 8
  b = 4b + 2056 // 2048+8
while(j<100)
  *a = *b
  j = j + 2
  a = a + 16
  b = b + 4112 // 4096+16
```
Induction Variable Wrap-up

There is lots more to induction variables
– more general classes of induction variables
– more general transformations involving induction variables

Compiler Optimization Summary

• Wide range of analyses and optimizations
• Dataflow analyses and corresponding optimizations
 – reaching definitions, constant propagation
 – live variable analysis, dead code elimination
• Induction variable analyses and loop optimizations
 – Strength reduction
 – Induction variable elimination
 – Important because lots of time is spent in loops