
P3 / 2006

Loop Optimizations

Kostis Sagonas 2 Spring 2006

Representing the
control flow of a program

• Control forms a graph

• A very large graph
• Observation

– lot of straight-line connections
– simplify the graph by grouping some instructions

Kostis Sagonas 3 Spring 2006

test:
subu $fp, 16
sw zero, 0($fp)
sw zero, 4($fp)
sw zero, 8($fp)

lab1:
mul $t0, $a0, 4
div $t1, $t0, $a1
lw $t2, 8($fp)
mul $t3, $t1, $t2
lw $t4, 8($fp)
addui $t4, $t4, 1
lw $t5, 8($fp)
addui $t5, $t5, 1
mul $t6, $t4, $t5
addu $t7, $t3, $t6
lw $t8, 0($fp)
add $t8, $t7, $t8
sw $t8, 0($fp)
lw $t0, 4($fp)
mul $t1, $t0, a1
sw $t2, 0($fp)
lw $t0, 8($fp)
addui $t0, $t0, 1
sw $t0, 8($fp)
ble $t0, $a3, lab1

lw $v0, 0($fp)
addu $fp, 16
b $ra

Kostis Sagonas 4 Spring 2006

Loop Optimizations

• Important because lots of execution time occurs
in loops

• First, we will identify loops
• Then, we will study three optimizations

– Loop-invariant code motion
– Strength reduction
– Induction variable elimination

Kostis Sagonas 5 Spring 2006

What is a Loop?

• Set of nodes
• Loop header

– Single node
– All iterations of loop

go through header
• Back edge

Kostis Sagonas 6 Spring 2006

Anomalous Situations

• Two back edges,
two loops, one
header

• Compiler merges
loops

• No loop header,
no loop

Kostis Sagonas 7 Spring 2006

Defining Loops With Dominators
• Concept of dominator

– Node n dominates a node m if all paths from start node to m
go through n

• If d1 and d2 both dominate m, then either
– d1 dominates d2, or
– d2 dominates d1 (but not both – look at path from start)

• Immediate dominator of m – last dominator of m on
any path from start node

Kostis Sagonas 8 Spring 2006

Dominator Problem Formulation

• A cross product of the lattice for each basic block:
– Lattice per basic block

• Flow direction: Forward Flow
• Dataflow Equations:

– GEN = { bk | bk is the current basic block }
– KILL = { }
– OUT = GEN � (IN - KILL)
– IN = ���� OUT

� = not dominated

����dominated

Kostis Sagonas 9 Spring 2006

Computing Dominators

bb2

bb4bb3

bb5

bb6

IN = { }

bb1

IN = {1}

IN = {1,2} IN = {1,2}

IN = {1,2}

IN = {1,2,5}

OUT = GEN � (IN - KILL)
IN = ���� OUT

Kostis Sagonas 10 Spring 2006

Dominator Tree

• Nodes are nodes of control flow graph
• Edge from d to n if d is the immediate dominator

of n
• This structure is a tree
• Rooted at start node

Kostis Sagonas 11 Spring 2006

Example Dominator Tree
1

2

3

4

5 6

7

1

2 3

4

5 6 7

Control-flow graph Dominator tree

Kostis Sagonas 12 Spring 2006

Identifying Loops

• Unique entry point – header
• At least one path back to header
• Find edges whose heads dominate tails

– These edges are back edges of loops
– Given a back edge n�d
– Loop consists of n plus all nodes that can reach n

without going through d
(all nodes “between” d and n)

– d is loop header

Kostis Sagonas 13 Spring 2006

Two Loops in Example
1

2

3

4

5 6

7

1

2 3

4

5 6 7

Kostis Sagonas 14 Spring 2006

Loop Construction Algorithm
insert(m)

if m � loop then
loop = loop � {m};
push m onto stack;

loop(d,n)
loop = �; stack = �; insert(n);
while stack not empty do

m = pop stack;
for all p � pred(m) do insert(p);

Kostis Sagonas 15 Spring 2006

Nested Loops

• If two loops do not have same header then
– Either one loop (inner loop) is contained in the

other (outer loop)
– Or the two loops are disjoint

• If two loops have same header, typically they
are unioned and treated as one loop

1

2 3

Two loops:
{1,2} and {1,3}

Unioned: {1,2,3}

Kostis Sagonas 16 Spring 2006

Loop Preheader

• Many optimizations stick code before the loop
• Put a special node (loop preheader) before the

loop to hold this code

Kostis Sagonas 17 Spring 2006

Loop Optimizations

• Now that we have the loop, we can optimize it!
• Loop invariant code motion

– Stick loop invariant code in the header

Kostis Sagonas 18 Spring 2006

Loop Invariant Code Motion
If a computation produces the same value in every loop

iteration, move it out of the loop.

for i = 1 to N
x = x + 1
for j = 1 to N

a[i,j] = 100*N + 10*i + j + x

t1 = 100*N
for i = 1 to N

x = x + 1
t2 = t1 + 10*i + x
for j = 1 to N

a[i,j] = t2 + j

Kostis Sagonas 19 Spring 2006

Detecting Loop Invariant Code

• A statement is loop-invariant if operands are
– Constant,
– Have all reaching definitions outside loop, or
– Have exactly one reaching definition, and that

definition comes from an invariant statement
• Concept of exit node of loop

– node with successors outside loop

Kostis Sagonas 20 Spring 2006

Loop Invariant Code Detection
Algorithm

for all statements in loop
if operands are constant or have all reaching definitions
outside loop, mark statement as invariant

do
for all statements in loop not already marked invariant

if operands are constant, have all reaching definitions outside
loop, or have exactly one reaching definition from invariant
statement

then mark statement as invariant
until there are no more invariant statements

Kostis Sagonas 21 Spring 2006

Loop Invariant Code Motion
• Conditions for moving a statement s: x = y+z

into loop header:
– The node containing s dominates all exit nodes of

loop
• If it does not, some use after loop might get wrong value
• Alternate condition: definition of x from s reaches no use

outside loop (but moving s may increase run time)
– No other statement in loop assigns to x

• If one does, assignments might get reordered
– No use of x in loop is reached by definition other

than s
• If one is, movement may change value read by use

Kostis Sagonas 22 Spring 2006

Order of Statements in Preheader
Preserve data dependences from original program
(can use order in which discovered by algorithm)

b = 2
i = 0

i < 80

a = b * b
c = a + a
i = i + c

b = 2
i = 0

i < 80

i = i + c

a = b * b
c = a + a

Kostis Sagonas 23 Spring 2006

Induction Variables

Example:
for j = 1 to 100

*(&A + 4*j) = 202 - 2*j

Base induction variable:
J = 1, 2, 3, 4, …..

Derived induction variable &A+4*j:
&A+4*j = &A+4, &A+8, &A+12, &A+16, ….

Kostis Sagonas 24 Spring 2006

Induction Variable Elimination

i = 0

i < 10

i = i + 1
p = 4 * i use of p

p = 0

p < 40

p = p + 4 use of p

Kostis Sagonas 25 Spring 2006

What are induction variables?

• x is an induction variable of a loop L if
– variable changes its value on every loop iteration
– the value is a function of number of iterations of the

loop

• In many programs, this function is often a linear
function
Example: for loop index variable j, function d + c*j

Kostis Sagonas 26 Spring 2006

What is an Induction Variable?

• Base induction variable
– Only assignments in loop are of form i = i � c

• Derived induction variables
– Value is a linear function of a base induction

variable
– Within loop, j = c*i + d, where i is a base induction

variable
– Very common in array index expressions –

an access to a[i] produces code like p = a + 4*i

Kostis Sagonas 27 Spring 2006

Strength Reduction for Derived
Induction Variables

i = 0

i < 10

i = i + 1
p = 4 * i use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4 use of p

Kostis Sagonas 28 Spring 2006

Elimination of Superfluous
Induction Variables

p = 0

p < 40

p = p + 4 use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4 use of p

Kostis Sagonas 29 Spring 2006

Three Algorithms

• Detection of induction variables
– Find base induction variables
– Each base induction variable has a family of derived

induction variables, each of which is a linear
function of base induction variable

• Strength reduction for derived induction
variables

• Elimination of superfluous induction variables

Kostis Sagonas 30 Spring 2006

Output of Induction Variable
Detection Algorithm

• Set of induction variables
– base induction variables
– derived induction variables

• For each induction variable j, a triple <i,c,d>
– i is a base induction variable
– the value of j is i*c+d
– j belongs to family of i

Kostis Sagonas 31 Spring 2006

Induction Variable Detection Algorithm
Scan loop to find all base induction variables
do

Scan loop to find all variables k with one assignment of
form k = j*b where j is an induction variable with
triple <i,c,d>
make k an induction variable with triple <i,c*b,d>

Scan loop to find all variables k with one assignment of
form k = j�b where j is an induction variable with
triple <i,c,d>
make k an induction variable with triple <i,c,b�d>

until no more induction variables are found

Kostis Sagonas 32 Spring 2006

Strength Reduction
t = 202

for j = 1 to 100
t = t - 2

*(abase + 4*j) = t

Base induction variable:
J = 1, 2, 3, 4, …..

Derived induction variable 202 - 2*j
t = 202, 200, 198, 196, …..

Derived induction variable abase+4*j:
abase+4*j = abase+4, abase+8, abase+12, abase+16, ….

1 1 1

-2 -2 -2

4 4 4

Kostis Sagonas 33 Spring 2006

Strength Reduction Algorithm

for all derived induction variables j with triple <i,c,d>
Create a new variable s
Replace assignment j = c*i + d with j = s
Immediately after each assignment i = i + e,
insert statement s = s + c*e (c*e is constant)
Place s in family of i with triple <i,c,d>
Insert s = c*i + d into preheader

Kostis Sagonas 34 Spring 2006

Strength Reduction for Derived
Induction Variables

i = 0

i < 10

i = i + 1
p = 4 * i use of p

i = 0
s = 4*i+0

i < 10

i = i + 1
s = s + 4 use of s

Kostis Sagonas 35 Spring 2006

Example

double A[256], B[256][256]
j = 1

while(j<100)
A[j] = B[j][j]
j = j + 2

double A[256], B[256][256]
j = 1
a = &A + 8
b = &B + 2056 // 2048+8
while(j<100)

*a = *b
j = j + 2
a = a + 16
b = b + 4112 // 4096+16

Kostis Sagonas 36 Spring 2006

Induction Variable Elimination

Choose a base induction variable i such that
only uses of i are in

termination condition of the form i < n
assignment of the form i = i + m

Choose a derived induction variable k with <i,c,d>
Replace termination condition with k < c*n+d

Kostis Sagonas 37 Spring 2006

Induction Variable Wrap-up

There is lots more to induction variables
– more general classes of induction variables
– more general transformations involving induction

variables

Kostis Sagonas 38 Spring 2006

Compiler Optimization Summary
• Wide range of analyses and optimizations
• Dataflow analyses and corresponding

optimizations
– reaching definitions, constant propagation
– live variable analysis, dead code elimination

• Induction variable analyses and loop
optimizations
– Strength reduction
– Induction variable elimination
– Important because lots of time is spent in loops

