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Representing the 
control flow of a program

• Control forms a graph

• A very large graph
• Observation

– lot of straight-line connections
– simplify the graph by grouping some instructions
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test:
subu $fp, 16
sw zero, 0($fp)
sw zero, 4($fp)
sw zero, 8($fp) 

lab1:
mul $t0, $a0, 4
div $t1, $t0, $a1
lw $t2, 8($fp)
mul $t3, $t1, $t2
lw $t4, 8($fp)
addui $t4, $t4, 1
lw $t5, 8($fp)
addui $t5, $t5, 1
mul $t6, $t4, $t5
addu $t7, $t3, $t6
lw   $t8, 0($fp)
add  $t8, $t7, $t8
sw $t8, 0($fp)
lw $t0, 4($fp)
mul $t1, $t0, a1
sw $t2, 0($fp)
lw $t0, 8($fp)
addui $t0, $t0, 1
sw   $t0, 8($fp)
ble $t0, $a3, lab1

lw $v0, 0($fp)
addu $fp, 16
b $ra
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Loop Optimizations

• Important because lots of execution time occurs 
in loops

• First, we will identify loops
• Then, we will study three optimizations

– Loop-invariant code motion
– Strength reduction
– Induction variable elimination
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What is a Loop?

• Set of nodes
• Loop header

– Single node
– All iterations of loop 

go through header 
• Back edge
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Anomalous Situations

• Two back edges, 
two loops, one 
header

• Compiler merges 
loops

• No loop header, 
no loop
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Defining Loops With Dominators
• Concept of dominator

– Node n dominates a node m if all paths from start node to m
go through n

• If d1 and d2 both dominate m, then either
– d1 dominates d2, or
– d2 dominates d1 (but not both – look at path from start)

• Immediate dominator of m – last dominator of m on 
any path from start node
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Dominator Problem Formulation

• A cross product of the lattice for each basic block: 
– Lattice per basic block

• Flow direction:  Forward Flow
• Dataflow Equations:

– GEN = { bk | bk is the current basic block }
– KILL = {   }
– OUT = GEN � (IN - KILL)
– IN = ���� OUT

� = not dominated

����dominated
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Computing Dominators

bb2

bb4bb3

bb5

bb6

IN = { }

bb1

IN = {1}

IN = {1,2} IN = {1,2}

IN = {1,2}

IN = {1,2,5}

OUT = GEN � (IN - KILL)
IN = ���� OUT
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Dominator Tree

• Nodes are nodes of control flow graph
• Edge from d to n if d is the immediate dominator 

of n
• This structure is a tree
• Rooted at start node
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Example Dominator Tree
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Control-flow graph Dominator tree
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Identifying Loops

• Unique entry point – header
• At least one path back to header
• Find edges whose heads dominate tails

– These edges are back edges of loops
– Given a back edge n�d
– Loop consists of n plus all nodes that can reach n

without going through d
(all nodes “between” d and n)

– d is loop header
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Two Loops in Example
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Loop Construction Algorithm
insert(m)

if m � loop then 
loop = loop � {m};
push m onto stack;

loop(d,n)
loop = �; stack = �; insert(n);
while stack not empty do 

m = pop stack;
for all p � pred(m) do insert(p);
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Nested Loops

• If two loops do not have same header then
– Either one loop (inner loop) is contained in the 

other (outer loop)
– Or the two loops are disjoint

• If two loops have same header, typically they 
are unioned and treated as one loop

1

2 3

Two loops:
{1,2} and {1,3}

Unioned: {1,2,3}
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Loop Preheader

• Many optimizations stick code before the loop
• Put a special node (loop preheader) before the 

loop to hold this code
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Loop Optimizations

• Now that we have the loop, we can optimize it!
• Loop invariant code motion

– Stick loop invariant code in the header
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Loop Invariant Code Motion
If a computation produces the same value in every loop 

iteration, move it out of the loop.

for  i = 1 to N
x = x + 1
for  j = 1 to N

a[i,j] = 100*N + 10*i + j + x

t1 = 100*N
for  i = 1 to N

x = x + 1
t2 = t1 + 10*i + x
for  j = 1 to N

a[i,j] =  t2 + j
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Detecting Loop Invariant Code

• A statement is loop-invariant if operands are
– Constant,
– Have all reaching definitions outside loop, or
– Have exactly one reaching definition, and that 

definition comes from an invariant statement
• Concept of exit node of loop

– node with successors outside loop
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Loop Invariant Code Detection 
Algorithm

for all statements in loop
if operands are constant or have all reaching definitions 
outside loop, mark statement as invariant

do 
for all statements in loop not already marked invariant

if operands are constant, have all reaching definitions outside 
loop, or have exactly one reaching definition from invariant 
statement

then mark statement as invariant
until there are no more invariant statements
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Loop Invariant Code Motion
• Conditions for moving a statement s: x = y+z

into loop header:
– The node containing s dominates all exit nodes of 

loop
• If it does not, some use after loop might get wrong value
• Alternate condition: definition of x from s reaches no use 

outside loop (but moving s may increase run time)
– No other statement in loop assigns to x

• If one does, assignments might get reordered
– No use of x in loop is reached by definition other 

than s
• If one is, movement may change value read by use
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Order of Statements in Preheader
Preserve data dependences from original program
(can use order in which discovered by algorithm)

b = 2
i = 0

i < 80

a = b * b
c = a + a
i = i + c

b = 2
i = 0

i < 80

i = i + c

a = b * b
c = a + a
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Induction Variables

Example:
for j = 1 to 100

*(&A + 4*j) = 202 - 2*j

Base induction variable:
J = 1, 2, 3, 4, …..

Derived induction variable &A+4*j:
&A+4*j = &A+4,    &A+8,      &A+12,    &A+16,  ….
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Induction Variable Elimination

i = 0

i < 10

i = i + 1
p = 4 * i use of p

p = 0

p < 40

p = p + 4 use of p
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What are induction variables?

• x is an induction variable of a loop L if
– variable changes its value on every loop iteration
– the value is a function of number of iterations of the 

loop

• In many programs, this function is often a linear 
function
Example: for loop index variable j, function d + c*j
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What is an Induction Variable?

• Base induction variable
– Only assignments in loop are of form i = i � c

• Derived induction variables
– Value is a linear function of a base induction 

variable
– Within loop, j = c*i + d, where i is a base induction 

variable
– Very common in array index expressions –

an access to a[i] produces code like p = a + 4*i
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Strength Reduction for Derived 
Induction Variables

i = 0

i < 10

i = i + 1
p = 4 * i use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4 use of p
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Elimination of Superfluous 
Induction Variables

p = 0

p < 40

p = p + 4 use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4 use of p
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Three Algorithms

• Detection of induction variables
– Find base induction variables
– Each base induction variable has a family of derived 

induction variables, each of which is a linear 
function of base induction variable

• Strength reduction for derived induction 
variables

• Elimination of superfluous induction variables
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Output of Induction Variable 
Detection Algorithm

• Set of induction variables
– base induction variables
– derived induction variables

• For each induction variable j, a triple <i,c,d>
– i is a base induction variable
– the value of j is i*c+d
– j belongs to family of i
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Induction Variable Detection Algorithm
Scan loop to find all base induction variables
do

Scan loop to find all variables k with one assignment of 
form k = j*b where j is an induction variable with 
triple <i,c,d>
make k an induction variable with triple <i,c*b,d>

Scan loop to find all variables k with one assignment of 
form k = j�b where j is an induction variable with 
triple <i,c,d>
make k an induction variable with triple <i,c,b�d>

until no more induction variables are found
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Strength Reduction
t = 202

for j = 1 to 100
t = t - 2

*(abase + 4*j) = t

Base induction variable:
J = 1, 2, 3, 4, …..

Derived induction variable 202 - 2*j
t                = 202,       200,        198,          196, …..

Derived induction variable abase+4*j:
abase+4*j = abase+4, abase+8, abase+12, abase+16,  ….

1 1 1

-2 -2 -2

4 4 4
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Strength Reduction Algorithm

for all derived induction variables j with triple <i,c,d>
Create a new variable s
Replace assignment j = c*i + d with j = s
Immediately after each assignment i = i + e,           
insert statement s = s + c*e (c*e is constant)
Place s in family of i with triple <i,c,d>
Insert s = c*i + d into preheader
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Strength Reduction for Derived 
Induction Variables

i = 0

i < 10

i = i + 1
p = 4 * i use of p

i = 0
s = 4*i+0

i < 10

i = i + 1
s = s + 4 use of s
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Example

double A[256], B[256][256]
j = 1

while(j<100)
A[j] = B[j][j]
j = j + 2

double A[256], B[256][256]
j = 1
a = &A + 8
b = &B + 2056   // 2048+8
while(j<100)

*a = *b
j = j + 2
a = a + 16
b = b + 4112  // 4096+16
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Induction Variable Elimination

Choose a base induction variable i such that
only uses of i are in 

termination condition of the form i < n
assignment of the form i = i + m

Choose a derived induction variable k with <i,c,d>
Replace termination condition with k < c*n+d
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Induction Variable Wrap-up

There is lots more to induction variables
– more general classes of induction variables
– more general transformations involving induction 

variables
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Compiler Optimization Summary
• Wide range of analyses and optimizations
• Dataflow analyses and corresponding 

optimizations
– reaching definitions, constant propagation
– live variable analysis, dead code elimination

• Induction variable analyses and loop 
optimizations
– Strength reduction
– Induction variable elimination
– Important because lots of time is spent in loops


