
P3 / 2006

Using Program Analysis
for Optimization

Kostis Sagonas 2 Spring 2006

Analysis and Optimizations

• Program Analysis
– Discovers properties of a program

• Optimizations
– Use analysis results to transform program
– Goal: improve some aspect of program

• number of executed instructions, number of cycles
• cache hit rate
• memory space (code or data)
• power consumption

– Has to be safe: Keep the semantics of the program

Kostis Sagonas 3 Spring 2006

Control Flow Graph
int add(n, k) {

s = 0; a = 4; i = 0;
if (k == 0) b = 1;
else b = 2;
while (i < n) {

s = s + a*b;
i = i + 1;

}
return s;

}

s = 0; a = 4; i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

entry

Kostis Sagonas 4 Spring 2006

Control Flow Graph

• Nodes represent computation
– Each node is a Basic Block
– Basic Block is a sequence of instructions with

• No branches out of middle of basic block
• No branches into middle of basic block
• Basic blocks should be maximal

– Execution of basic block starts with first instruction
– Includes all instructions in basic block

• Edges represent control flow

Kostis Sagonas 5 Spring 2006

Two Kinds of Variables

• Temporaries introduced by the compiler
– Transfer values only within basic block
– Introduced as part of instruction flattening
– Introduced by optimizations/transformations

• Program variables
– Declared in original program
– May transfer values between basic blocks

Kostis Sagonas 6 Spring 2006

Basic Block Optimizations

• Common Sub-
Expression Elimination
– a = (x+y)+z; b = x+y;
– t = x+y; a = t+z; b = t;

• Constant Propagation
– x = 5; b = x+y;
– b = 5+y;

• Algebraic Simplification
– a = x * 1;
– a = x;

• Copy Propagation
– a = x+y; b = a; c = b+z;
– a = x+y; b = a; c = a+z;

• Dead Code Elimination
– a = x+y; b = a; c = a+z;
– a = x+y; c = a+z

• Strength Reduction
– t = i * 4;
– t = i << 2;

Kostis Sagonas 7 Spring 2006

Value Numbering
• Normalize basic block so that all statements are

of the form
– var = var op var (where op is a binary operator)
– var = op var (where op is a unary operator)
– var = var

• Simulate execution of basic block
– Assign a virtual value to each variable
– Assign a virtual value to each expression
– Assign a temporary variable to hold value of each

computed expression

Kostis Sagonas 8 Spring 2006

Value Numbering for CSE

• As we simulate execution of program
• Generate a new version of program

– Each new value assigned to temporary
• a = x+y; becomes a = x+y; t = a;

– Temporary preserves value for use later in program
even if original variable rewritten

• a = x+y; a = a+z; b = x+y becomes
• a = x+y; t = a; a = a+z; b = t;

Kostis Sagonas 9 Spring 2006

CSE Example
• Original

a = x+y
b = a+z
b = b+y
c = a+z

• After CSE
a = x+y
b = a+z
t = b
b = b+y
c = t• Issues

– Temporaries store values for use later
– CSE with different names

• a = x; b = x+y; c = a+y;
– Excessive Temp Generation and Use

Kostis Sagonas 10 Spring 2006

b � v5b � v6

a = x+y
b = a+z
b = b+y
c = a+z

a = x+y
t1 = a
b = a+z
t2 = b
b = b+y
t3 = b

x � v1
y � v2
a � v3
z � v4

c � v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2 � v3
v3+v4 � v5

Exp to Val
v1+v2 � t1
v3+v4 � t2

Exp to Tmp

c = t2

v5+v2 � v6 v5+v2 � t3

Kostis Sagonas 11 Spring 2006

Problems

• Algorithm has a temporary for each new value
– a = x+y; t1 = a

• Introduces
– lots of temporaries
– lots of copy statements to temporaries

• In many cases, temporaries and copy statements
are unnecessary

• So we eliminate them with copy propagation
and dead code elimination

Kostis Sagonas 12 Spring 2006

Copy Propagation

• Once again, simulate execution of program
• If possible, use the original variable instead of a

temporary
– a = x+y; b = x+y;
– After CSE becomes a = x+y; t = a; b = t;
– After CP becomes a = x+y; b = a;

• Key idea: determine when original variables are
NOT overwritten between computation of stored
value and use of stored value

Kostis Sagonas 13 Spring 2006

Copy Propagation Maps

• Maintain two maps
– tmp to var: tells which variable to use instead of a

given temporary variable
– var to set (inverse of tmp to var): tells which temps

are mapped to a given variable by tmp to var

Kostis Sagonas 14 Spring 2006

Copy Propagation Example

Original

a = x+y
b = a+z
c = x+y
a = b

After CSE and
Copy Propagation
a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

Kostis Sagonas 15 Spring 2006

Copy Propagation Example

a = x+y
t1 = a

Basic Block
After CSE

a = x+y
t1 = a

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 � a a �{t1}

Kostis Sagonas 16 Spring 2006

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 � a
t2 � b

a �{t1}
b �{t2}

Kostis Sagonas 17 Spring 2006

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 � a
t2 � b

a �{t1}
b �{t2}

Kostis Sagonas 18 Spring 2006

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 � a
t2 � b

a �{t1}
b �{t2}

Kostis Sagonas 19 Spring 2006

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 � a
t2 � b

a �{t1}
b �{t2}

Kostis Sagonas 20 Spring 2006

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 � t1
t2 � b

a �{}
b �{t2}

Kostis Sagonas 21 Spring 2006

Dead Code Elimination

• Copy propagation keeps all temps around
• There may be temps that are never read
• Dead Code Elimination (DCE) removes them

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

a = x+y
b = a+z
c = a
a = b

Basic Block After
CSE + Copy Prop

Basic Block After
CSE + Copy Prop + DCE

Kostis Sagonas 22 Spring 2006

Dead Code Elimination

• Basic Idea
– Process code in reverse execution order
– Maintain a set of variables that are needed later in

computation
– On encountering an assignment to a temporary that

is not needed, we remove the assignment

Kostis Sagonas 23 Spring 2006

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, c}

Assume that initially

Kostis Sagonas 24 Spring 2006

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b, c}

Kostis Sagonas 25 Spring 2006

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b, c}

Kostis Sagonas 26 Spring 2006

a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b, c}

Kostis Sagonas 27 Spring 2006

a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b, c, z}

Kostis Sagonas 28 Spring 2006

a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b, c, z}

Kostis Sagonas 29 Spring 2006

a = x+y

b = a+z

c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b, c, z}

Kostis Sagonas 30 Spring 2006

a = x+y

b = a+z

c = a
a = b

Basic Block after CSE Copy Propagation
and Dead Code Elimination

Needed Set
{a, b, c, z}

Kostis Sagonas 31 Spring 2006

a = x+y

b = a+z

c = a
a = b

Basic Block after
CSE + Copy Propagation + Dead Code Elimination

Needed Set
{a, b, c, z}

Kostis Sagonas 32 Spring 2006

Interesting Properties

• Analysis and Optimization Algorithms
Simulate Execution of Program
– CSE and Copy Propagation go forward
– Dead Code Elimination goes backwards

• Optimizations are stacked
– Group of basic transformations
– Work together to get good result
– Often, one transformation creates inefficient code

that is cleaned up by subsequent transformations

Kostis Sagonas 33 Spring 2006

Other Basic Block Transformations

• Constant Propagation
• Strength Reduction

– a << 2 = a * 4;
– a + a + a = 3 * a;

• Algebraic Simplification
– a = a * 1;
– b = b + 0;

• Unified transformation framework

Kostis Sagonas 34 Spring 2006

Dataflow Analysis

• Used to determine properties of programs that
involve multiple basic blocks

• Typically used to enable transformations
– common sub-expression elimination
– constant and copy propagation
– dead code elimination

• Analysis and transformation often come in pairs

Kostis Sagonas 35 Spring 2006

Reaching Definitions

• Concept of definition and use
– z = x+y
– is a definition of z
– is a use of x and y

• A definition reaches a use if
– value written by definition
– may be read by use

Kostis Sagonas 36 Spring 2006

Reaching Definitions
s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Kostis Sagonas 37 Spring 2006

Reaching Definitions and Constant
Propagation

• Is a use of a variable a constant?
– Check all reaching definitions
– If all assign variable to same constant
– Then use is in fact a constant

• Can replace variable with constant

Kostis Sagonas 38 Spring 2006

Is a constant in s = s+a*b?

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Yes!
On all reaching

definitions
a = 4

Kostis Sagonas 39 Spring 2006

Constant Propagation Transform

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + 4*b;
i = i + 1; return s

Yes!
On all reaching

definitions
a = 4

Kostis Sagonas 40 Spring 2006

Is b constant in s = s+a*b?

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

No!
One reaching
definition with

b = 1
One reaching
definition with

b = 2

Kostis Sagonas 41 Spring 2006

Computing Reaching Definitions

• Compute with sets of definitions
– represent sets using bit vectors
– each definition has a position in bit vector

• At each basic block, compute
– definitions that reach start of block
– definitions that reach end of block

• Do computation by simulating execution of
program until the fixed point is reached

Kostis Sagonas 42 Spring 2006

1: s = 0;
2: a = 4;
3: i = 0;
k == 0

4: b = 1; 5: b = 2;

i < n

6: s = s + a*b;
7: i = i + 1; return s

0000000

11100001110000

1111100
1111100

1111100

1111111
1111111

1111111

Kostis Sagonas 43 Spring 2006

Formalizing Analysis

• Each basic block has
– IN - set of definitions that reach beginning of block
– OUT - set of definitions that reach end of block
– GEN - set of definitions generated in block
– KILL - set of definitions killed in the block

• GEN[s = s + a*b; i = i + 1;] = 0000011
• KILL[s = s + a*b; i = i + 1;] = 1010000
• Compiler scans each basic block to derive GEN

and KILL sets
Kostis Sagonas 44 Spring 2006

1: s = 0;
2: a = 4;
3: i = 0;
k == 0

4: b = 1; 5: b = 2;

i < n

6: s = s + a*b;
7: i = i + 1; return s

GEN[0] = 1110000
KILL[0] = 0000011

GEN[1] = 0001000
KILL[1] = 0000100

GEN[2] = 0000100
KILL[2] = 0001000

GEN[3] = 0000000
KILL[3] = 0000000

GEN[5] = 0000000
KILL[5] = 0000000

GEN[4] = 0000011
KILL[4] = 1010000

Kostis Sagonas 45 Spring 2006

Dataflow Equations

• IN[b] = OUT[b1] � ... � OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) � GEN[b]
• IN[entry] = 0000000
• Result: system of equations

Kostis Sagonas 46 Spring 2006

Solving Equations
• Use fixed point algorithm
• Initialize with solution of OUT[b] = 0000000
• Repeatedly apply equations

– IN[b] = OUT[b1] � ... � OUT[bn]
– OUT[b] = (IN[b] - KILL[b]) � GEN[b]

• Until reaching fixed point
– I.e., until equation application has no further effect

• Use a worklist to track which equation
applications may have a further effect

Kostis Sagonas 47 Spring 2006

Reaching Definitions Algorithm
for all nodes n in N OUT[n] = �; // OUT[n] = GEN[n];
Worklist = N; // N = all nodes in graph
while (Worklist != �)

choose a node n in Worklist;
Worklist = Worklist - { n };
IN[n] = �;
for all nodes p in predecessors(n) IN[n] = IN[n] � OUT[p];
OUT[n] = (IN[n] - KILL[n]) � GEN[n];
if (OUT[n] changed)

for all nodes s in successors(n) Worklist = Worklist � { s };

Kostis Sagonas 48 Spring 2006

Questions

• Does the algorithm halt?
– yes, because transfer function is monotonic
– if increase IN, increase OUT
– in limit, all bits are 1

• If bit is 1, is there always an execution in which
corresponding definition reaches basic block?

• If bit is 0, does the corresponding definition
ever reach basic block?

• Concept of conservative analysis

Kostis Sagonas 49 Spring 2006

Available Expressions

• An expression x+y is available at a point p if
– every path from the initial node to p evaluates x+y

before reaching p,
– and there are no assignments to x or y after the

evaluation but before p.
• Available Expression information can be used

to do global (across basic blocks) CSE.
• If an expression is available at use, there is no

need to re-evaluate it.

Kostis Sagonas 50 Spring 2006

Computing Available Expressions

• Represent sets of expressions using bit vectors
• Each expression corresponds to a bit
• Run dataflow algorithm similar to reaching

definitions
• Big difference:

– A definition reaches a basic block if it comes from
ANY predecessor in CFG

– An expression is available at a basic block only if it
is available from ALL predecessors in CFG

Kostis Sagonas 51 Spring 2006

a = x+y;
x == 0

x = z;
b = x+y;

i < n

c = x+y;
i = i+c;

d = x+y

i = x+y;

Expressions
1: x+y
2: i < n
3: i+c
4: x == 0

0000

1001

1000

1000

1100 1100

Available Expressions Example

1000

1001

Kostis Sagonas 52 Spring 2006

a = x+y;
t = a;

x == 0

x = z;
b = x+y;

t = b;

i < n

c = t;
i = i+c;

d = t;

i = t;

Expressions
1: x+y
2: i < n
3: i+c
4: x == 0

0000

1001

1000

1000

1100 1100

Global CSE Transform

must use same temp
for CSE in all blocks

Kostis Sagonas 53 Spring 2006

Formalizing Analysis
• Each basic block has

– IN - set of expressions available at start of block
– OUT - set of expressions available at end of block
– GEN - set of expressions computed in block
– KILL - set of expressions killed in the block

• GEN[x = z; b = x+y] = 1000
• KILL[x = z; b = x+y] = 1001
• Compiler scans each basic block to derive GEN

and KILL sets

Kostis Sagonas 54 Spring 2006

Dataflow Equations

• IN[b] = OUT[b1] � ... � OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) � GEN[b]
• IN[entry] = 0000
• Result: system of equations

Kostis Sagonas 55 Spring 2006

Solving Equations
• Use fixed point algorithm
• IN[entry] = 0000
• Initialize OUT[b] = 1111
• Repeatedly apply equations

– IN[b] = OUT[b1] � ... � OUT[bn]
– OUT[b] = (IN[b] - KILL[b]) � GEN[b]

• Use a worklist algorithm to track which
equation applications may have further effect

Kostis Sagonas 56 Spring 2006

Available Expressions Algorithm
for all nodes n in N OUT[n] = E; // OUT[n] = E - KILL[n];
IN[Entry] = �; OUT[Entry] = GEN[Entry];
Worklist = N - { Entry }; // N = all nodes in graph
while (Worklist != �)

choose a node n in Worklist;
Worklist = Worklist - { n };
IN[n] = E; // E is set of all expressions
for all nodes p in predecessors(n)

IN[n] = IN[n] � OUT[p];
OUT[n] = (IN[n] - KILL[n]) � GEN[n];
if (OUT[n] changed)

for all nodes s in successors(n) Worklist = Worklist � { s };

Kostis Sagonas 57 Spring 2006

Questions

• Does algorithm always halt?
• If expression is available in some execution, is

it always marked as available in analysis?
• If expression is not available in some execution,

can it be marked as available in analysis?
• In what sense is the algorithm conservative?

Kostis Sagonas 58 Spring 2006

Duality In Two Algorithms

• Reaching definitions
– Confluence operation is set union
– OUT[b] initialized to empty set

• Available expressions
– Confluence operation is set intersection
– OUT[b] initialized to set of available expressions

• General framework for dataflow algorithms.
• Build parameterized dataflow analyzer once,

use for all dataflow problems

Kostis Sagonas 59 Spring 2006

Liveness Analysis

• A variable v is live at point p if
– v is used along some path starting at p, and
– no definition of v along the path before the use.

• When is a variable v dead at point p?
– No use of v on any path from p to exit node, or
– If all paths from p, redefine v before using v.

Kostis Sagonas 60 Spring 2006

What Use is Liveness Information?
• Register allocation.

– If a variable is dead, we can reassign its register
• Dead code elimination.

– Eliminate assignments to variables not read later.
– But must not eliminate last assignment to variable

(such as instance variable) visible outside CFG.
– Can eliminate other dead assignments.
– Handle by making all externally visible variables

live on exit from CFG

Kostis Sagonas 61 Spring 2006

Conceptual Idea of Analysis

• Simulate execution
• But start from exit and go backwards in CFG
• Compute liveness information from end to

beginning of basic blocks

Kostis Sagonas 62 Spring 2006

Liveness Example

a = x+y;
t = a;

c = a+x;
x == 0

b = t+z;

c = y+1;
1100100

1110000

• Assume a,b,c visible
outside function

• So are live on exit
• Assume x,y,z,t are

not visible
• Represent liveness

using a bit vector
– order is abcxyzt

11001111000111

Kostis Sagonas 63 Spring 2006

Using Liveness Information for
Dead Code Elimination

• Assume a,b,c visible
outside function

• So are live on exit
• Assume x,y,z,t are

not visible
• Represent liveness

using a bit vector
– order is abcxyzt

a = x+y;
t = a;

c = a+x;
x == 0

b = t+z;

c = y+1;
1100100

1110000

11001111000111

Kostis Sagonas 64 Spring 2006

Formalizing Analysis
• Each basic block has

– IN - set of variables live at start of block
– OUT - set of variables live at end of block
– USE - set of variables with upwards exposed uses in

block
– DEF - set of variables defined in block

• USE[x = z; x = x+1;] = { z } (x not in USE)
• DEF[x = z; x = x+1;y = 1;] = {x, y}
• Compiler scans each basic block to derive USE

and DEF sets

Kostis Sagonas 65 Spring 2006

Algorithm
OUT[Exit] = �;
IN[Exit] = USE[n];
for all nodes n in N - { Exit } IN[n] = �;
Worklist = N - { Exit };
while (Worklist != �)

choose a node n in Worklist;
Worklist = Worklist - { n };
OUT[n] = �;
for all nodes s in successors(n) OUT[n] = OUT[n] � IN[p];
IN[n] = USE[n] � (OUT[n] - DEF[n]);
if (IN[n] changed)

for all nodes p in predecessors(n) Worklist = Worklist �{ p };

Kostis Sagonas 66 Spring 2006

Similar to Other Dataflow
Algorithms

• Backwards analysis, not forwards
• Still have transfer functions
• Still have confluence operators
• Can generalize framework to work for both

forwards and backwards analyses

Kostis Sagonas 67 Spring 2006

Analysis Information Inside Basic
Blocks

• One detail:
– Given dataflow information at IN and OUT of node
– Also need to compute information at each statement

of basic block
– Simple propagation algorithm usually works fine
– Can be viewed as restricted case of dataflow

analysis

Kostis Sagonas 68 Spring 2006

Summary
• Basic blocks and basic block optimizations

– Copy and constant propagation
– Common sub-expression elimination
– Dead code elimination

• Dataflow Analysis
– Control flow graph
– IN[b], OUT[b], transfer functions, join points

• Paired of analyses and transformations
– Reaching definitions/constant propagation
– Available expressions/common sub-expression elimination
– Liveness analysis/Dead code elimination

