

Foundations of Dataflow Analysis

Terminology: Program Representation

Control Flow Graph:

- Nodes N statements of program
- Edges E flow of control
 - pred(n) = set of all immediate predecessors of n
 - succ(n) = set of all immediate successors of n
- Start node n₀
- Set of final nodes N_{final}

ostis Sagonas

Spring 2006

$\begin{array}{c} \textbf{Terminology: Control-Flow Graph} \\ & \\ \textbf{B} \\ \hline \textbf{D} \\ \hline \textbf{C} \\ \textbf{C} \\ \hline \textbf{C} \\ \textbf{C} \\ \hline \textbf{C$

Terminology: Program Points

- One program point before each node
- One program point after each node
- *Join point* program point with multiple predecessors
- Split point program point with multiple successors

Kostis Sagonas 5 Spring 2006

Dataflow Analysis

Compile-Time Reasoning About

Run-Time Values of Variables or Expressions at Different Program Points

- Which assignment statements produced the value of the variables at this point?
- Which variables contain values that are no longer used after this program point?
- What is the range of possible values of a variable at this program point?

is Sagonas 6 Spring 2000

Dataflow Analysis: Basic Idea

- Information about a program represented using values from an algebraic structure called *lattice*
- Analysis produces a lattice value for each program point
- · Two flavors of analyses
 - Forward dataflow analyses
 - Backward dataflow analyses

Kostis Sagonas 7 Spring 200

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 - Input value at program point before node
 - Output new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

lacones 0 Cuntus 200

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input value at program point after node
 - Output new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables

Sostis Sagonas 9 Spring

Partial Orders

- Set P
- Partial order \leq such that $\forall x,y,z \in P$

 $-x \le x$ (reflexive)

 $-x \le y$ and $y \le x$ implies x = y (asymmetric)

 $-x \le y \text{ and } y \le z \text{ implies } x \le z$ (transitive)

stis Sagonas 10 Spring 200

Upper Bounds

- If $S \subset P$ then
 - $-x \in P$ is an upper bound of S if $\forall y \in S, y \le x$
 - $-x \in P$ is the *least upper bound* of S if
 - x is an upper bound of S, and
 - $x \le y$ for all upper bounds y of S
 - ∨ *join*, least upper bound (lub), supremum (sup)
 - $\bullet \ \lor S$ is the least upper bound of S
 - $x \vee y$ is the least upper bound of $\{x,y\}$

Kostis Sagonas 11 Spring 200

Lower Bounds

- If $S \subset P$ then
 - $x \in P$ is a lower bound of S if $\forall y \in S, x \le y$
 - $-x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \le x$ for all lower bounds y of S
 - \wedge meet, greatest lower bound (glb), infimum (inf)
 - $\bullet \ \wedge \ S$ is the greatest lower bound of S
 - $x \wedge y$ is the greatest lower bound of $\{x,y\}$

Kostis Sagonas 12 Spring 2006

Coverings

- Notation: x < y if $x \le y$ and $x \ne y$
- x is covered by y (y covers x) if
 - -x < y, and
 - $-x \le z < y \text{ implies } x = z$
- Conceptually, y covers x if there are no elements between x and y

Kostis Sagona

13

Example

- P = {000, 001, 010, 011, 100, 101, 110, 111} (standard boolean lattice, also called hypercube)
- $x \le y$ if $(x \text{ bitwise_and } y) = x$

We can visualize a partial order with a Hasse Diagram

- If y covers x
 - Line from y to x
 - y is above x in diagram

Kostis Sagonas

Spring 2006

Lattices

- If x ∧ y and x ∨ y exist (i.e., are in P) for all x,y∈P, then P is a *lattice*.
- If $\wedge S$ and $\vee S$ exist for all $S \subseteq P$, then P is a *complete lattice*.
- Theorem: All finite lattices are complete
- Example of a lattice that is not complete
 - Integers Z
 - For any x, $y \in Z$, $x \lor y = max(x,y)$, $x \land y = min(x,y)$
 - But \vee Z and \wedge Z do not exist
 - $Z \cup \{+\infty, -\infty\}$ is a complete lattice

Kostis Sagona

15

Spring 20

Top and Bottom

- Greatest element of P (if it exists) is top (T)
- Least element of P (if it exists) is bottom (\perp)

stis Sagonas 16 Spring 20

Connection between \leq , \wedge , and \vee

The following 3 properties are equivalent:

- $-x \le y$
- $-x\vee y=y$
- $-x \wedge y = x$
- Will prove:
 - $-x \le y \text{ implies } x \lor y = y \text{ and } x \land y = x$
 - $x \lor y = y \text{ implies } x \le y$
 - $\ x \wedge y = x \text{ implies } x \leq y$
- · By Transitivity,
 - $-x \lor y = y \text{ implies } x \land y = x$
 - $-x \wedge y = x \text{ implies } x \vee y = y$

Kostis Sagonas

17

ring 2006

Connecting Lemma Proofs (1)

- Proof of $x \le y$ implies $x \lor y = y$
 - $-x \le y$ implies y is an upper bound of $\{x,y\}$.
 - Any upper bound z of $\{x,y\}$ must satisfy $y \le z$.
 - So y is least upper bound of $\{x,y\}$ and $x \lor y = y$
- Proof of $x \le y$ implies $x \land y = x$
 - $-x \le y$ implies x is a lower bound of $\{x,y\}$.
 - Any lower bound z of $\{x,y\}$ must satisfy $z \le x$.
 - So x is greatest lower bound of $\{x,y\}$ and $x \wedge y = x$

Kostis Sagonas

18

Connecting Lemma Proofs (2)

- Proof of $x \lor y = y$ implies $x \le y$ - y is an upper bound of {x,y} implies x ≤ y
- Proof of $x \wedge y = x$ implies $x \leq y$ -x is a lower bound of $\{x,y\}$ implies $x \le y$

Lattices as Algebraic Structures

- Have defined \vee and \wedge in terms of \leq
- Will now define \leq in terms of \vee and \wedge
 - Start with \vee and \wedge as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define ≤ using \vee and \wedge
 - Will show that \leq is a partial order

Algebraic Properties of Lattices

Assume arbitrary operations \vee and \wedge such that

```
-(x \lor y) \lor z = x \lor (y \lor z) (associativity of \lor)
```

(associativity of \land) $-(x \wedge y) \wedge z = x \wedge (y \wedge z)$

(commutativity of \vee)

 $-x \lor y = y \lor x$

(commutativity of ∧) $-x \wedge y = y \wedge x$

(idempotence of ∨) $-x \lor x = x$

(idempotence of \land) $-x \wedge x = x$

 $-x \lor (x \land y) = x$ (absorption of \vee over \wedge)

(absorption of \land over \lor) $- x \wedge (x \vee y) = x$

Connection Between ∧ and ∨

Theorem: $x \lor y = y$ if and only if $x \land y = x$

• Proof of $x \lor y = y$ implies $x = x \land y$

 $x = x \wedge (x \vee y)$ (by absorption)

> $= x \wedge y$ (by assumption)

• Proof of $x \wedge y = x$ implies $y = x \vee y$

 $y = y \lor (y \land x)$ (by absorption)

(by commutativity) $= y \lor (x \land y)$

(by assumption) $= y \vee x$

(by commutativity)

Properties of \leq

- Define $x \le y$ if $x \lor y = y$
- Proof of transitive property. Must show that

 $x \lor y = y$ and $y \lor z = z$ implies $x \lor z = z$

 $x \lor z = x \lor (y \lor z)$ (by assumption)

= $(x \lor y) \lor z$ (by associativity)

(by assumption) $= v \vee z$

(by assumption)

Properties of \leq

• Proof of asymmetry property. Must show that

 $x \lor y = y$ and $y \lor x = x$ implies x = y

(by assumption) $x = y \lor x$

(by commutativity) $= x \vee y$

= y(by assumption)

• Proof of reflexivity property. Must show that

 $x \lor x = x$

 $x \vee x = x$ (by idempotence)

Properties of \leq

- Induced operation ≤ agrees with original definitions of ∨ and ∧, i.e.,
 - $x \vee y = \sup \{x, y\}$
 - $-x \wedge y = \inf \{x, y\}$

Kostis Sagonas 25 Spring 2006

Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \le u$, i.e., $(x \lor y) \lor u = u$

 $u = x \vee u$ (by assumption)

 $= x \vee (y \vee u) \qquad \text{(by assumption)}$

 $= (x \lor y) \lor u$ (by associativity)

is Sagonas 26 Spring 2006

Proof of $x \wedge y = \inf \{x, y\}$

- Consider any lower bound 1 for x and y.
- Given $x \wedge l = l$ and $y \wedge l = l$, must show $l \leq x \wedge y$, i.e., $(x \wedge y) \wedge l = l$

 $1 = x \wedge 1$ (by assumption) = $x \wedge (y \wedge 1)$ (by assumption)

 $= (x \wedge y) \wedge 1$ (by associativity)

Kostis Sagonas 27 Spring 2006

Chains

- A set S is a *chain* if $\forall x,y \in S$. $y \le x$ or $x \le y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_1 \le x_2 \le ...$ there exists n such that $x_n = x_{n+1} = ...$

ostis Sagonas 28 Spring 2006

Transfer Functions

- Assume a lattice of abstract values P
- Transfer function f: P→P for each node in control flow graph
- f models effect of the node on the program information

Kostis Sagonas 29 Spring 2006

Properties of Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: P \rightarrow P$

- Identity function i∈F
- − F must be closed under composition: $\forall f,g \in F$, the function $h = \lambda x.f(g(x)) \in F$
- Each $f \in F$ must be monotone: $x \le y$ implies $f(x) \le f(y)$
- Sometimes all $f \in F$ are distributive: $f(x \lor y) = f(x) \lor f(y)$
- Distributivity implies monotonicity

tis Sagonas 30 Spring 2006

Distributivity Implies Monotonicity

Proof:

- Assume $f(x \lor y) = f(x) \lor f(y)$
- Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$ $f(y) = f(x \lor y)$ (by assumption) $= f(x) \lor f(y)$ (by distributivity)

Kostis Sagonas

31

2007

Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
 - in_n value at program point before n
 - out_n value at program point after n
 - f_n transfer function for n (given in_n, computes out_n)
- Require that solutions satisfy
 - $\forall n, out_n = f_n(in_n)$
 - $\ \forall n \neq n_0, \ in_n = \lor \{ \ out_m \mid m \ in \ pred(n) \ \}$
 - $-in_{n0} = \bot$

Kostis Sagonas

Spring 2006

Dataflow Equations

• Result is a set of dataflow equations

 $\operatorname{out}_n := \operatorname{f}_n(\operatorname{in}_n)$

 $in_n := \vee \{ out_m \mid m \text{ in pred}(n) \}$

• Conceptually separates analysis problem from program

Kostis Sagona

33

Spring 2006

Worklist Algorithm for Solving Forward Dataflow Equations

 $\begin{aligned} &\text{for each n do out}_n \coloneqq f_n(\bot) \\ &\text{worklist} \coloneqq N \end{aligned}$

while worklist $\neq \emptyset$ do

remove a node n from worklist

 $in_n := \vee \{ out_m \mid m \text{ in pred}(n) \}$

 $out_n := f_n(in_n)$

if out, changed then

 $worklist := worklist \cup succ(n)$

Sagonas

Spring 200

Correctness Argument

Why result satisfies dataflow equations?

- Whenever we process a node n, set $out_n := f_n(in_n)$ Algorithm ensures that $out_n = f_n(in_n)$
- Whenever out_m changes, put succ(m) on worklist.
 Consider any node n ∈ succ(m).
 It will eventually come off the worklist and the algorithm will set

$$\begin{split} &in_n := \vee \ \{ \ out_m \mid m \ in \ pred(n) \ \} \\ &to \ ensure \ that \ in_n = \vee \ \{ \ out_m \mid m \ in \ pred(n) \ \} \end{split}$$

Kostis Sagonas

35

ring 2006

Termination Argument

Why does the algorithm terminate?

- Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, the worklist empties and the algorithm terminates.
- If the lattice has the ascending chain property, the algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without the ascending chain property, we must use a *widening* operator

Kostis Sagonas

36

Widening Operators

- Detect lattice values that may be part of an infinitely ascending chain
- Artificially raise value to least upper bound of the chain
- Example:
 - Lattice is set of all subsets of integers
 - Widening operator might raise all sets of size n or greater to TOP
 - Could be used to collect possible values taken on by a variable during execution of the program

Kostis Sagona

37

pring 2006

Reaching Definitions

- · Concept of definition and use
 - -z = x+y
 - is a definition of z
 - is a use of x and y
- · A definition reaches a use if
 - the value written by definition
 - may be read by the use.

Kostis Sagonas

38

Spring 200

Reaching Definitions

Reaching Definitions Framework

- P = powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\vee = \cup$ (order is \subseteq)
- ⊥ = Ø
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
- a is set of definitions that node generates

General pattern for many transfer functions

 $- f(x) = GEN \cup (x-KILL)$

Sagonas

Spring 2006

Does Reaching Definitions Framework Satisfy Properties?

- \subseteq satisfies conditions for \le
 - $-x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (transitivity)
 - $-x \subseteq y$ and $y \subseteq x$ implies y = x (asymmetry)
 - $-x \subseteq x$ (reflexivity)
- F satisfies transfer function conditions
 - $-\lambda x.\emptyset \cup (x-\emptyset) = \lambda x.x \in F$ (identity)
 - Will show $f(x \cup y) = f(x) \cup f(y)$ (distributivity)

$$\begin{split} f(x) \cup f(y) &= (a \cup (x-b)) \cup (a \cup (y-b)) \\ &= a \cup (x-b) \cup (y-b) \\ &= a \cup ((x \cup y)-b) \end{split}$$

 $= f(x \cup y)$

ostis Sagonas 41

Spring 2006

Does Reaching Definitions Framework Satisfy Properties?

What about composition?

- Given $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$
- Must show $f_1(f_2(x))$ can be expressed as a \cup (x b)

$$f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$$

 $= a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))$

 $= (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))$

 $= (a_1 \cup (a_2 - b_1)) \cup (x - (b_2 \cup b_1))$

- Let $a = (a_1 \cup (a_2 b_1))$ and $b = b_2 \cup b_1$
- Then $f_1(f_2(x)) = a \cup (x b)$

Kostis Sagonas

42

General Result

All GEN/KILL transfer function frameworks satisfy the properties:

- Identity
- Distributivity
- Compositionality

Kostis Sagonas 43 Spring 2006

Available Expressions Framework

- P = powerset of set of all expressions in program (all subsets of set of expressions)
- $\vee = \cap$ (order is \supseteq)
- $\perp = P$ (but $in_{n0} = \emptyset$)
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- · Another GEN/KILL analysis

ostis Sagonas 44 Spring 2006

Concept of Conservatism

- Reaching definitions use ∪ as join
 - Optimizations must take into account all definitions that reach along ANY path
- Available expressions use ∩ as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must <u>conservatively</u> take all possible executions into account.
- Structure of analysis varies according to the way the results of the analysis are to be used.

Costis Sagonas 45 Spring

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, we have
 - in_n value at program point before n
 - out_n value at program point after n
 - f_n transfer function for n (given out_n, computes in_n)
- · Require that solutions satisfy
 - $\forall n. in_n = f_n(out_n)$
 - $\forall n \notin N_{\text{final}}$ out_n = $\vee \{ in_m \mid m \text{ in succ}(n) \}$
 - $\forall n \in N_{final} = out_n = \bot$

onas 46 Spring 200

Worklist Algorithm for Solving Backward Dataflow Equations

$$\begin{split} &\text{for each } n \text{ do } in_n := f_n(\bot) \\ &\text{worklist} := N \\ &\text{while worklist} \neq \varnothing \text{ do} \\ &\text{remove a node n from worklist} \\ &\text{out}_n := \vee \left\{ \begin{array}{l} in_m \mid m \text{ in succ}(n) \end{array} \right\} \\ &\text{in}_n := f_n(\text{out}_n) \\ &\text{if } in_n \text{ changed then} \\ &\text{worklist} := \text{worklist} \cup \text{pred}(n) \end{split}$$

Kostis Sagonas 47 Spring 20

Live Variables Analysis Framework

- P = powerset of set of all variables in program (all subsets of set of variables in program)
- $\vee = \cup$ (order is \subseteq)
- ⊥ = Ø
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of variables that the node kills
 - a is set of variables that the node reads

ostis Sagonas 48 Spring 2006

Meaning of Dataflow Results

- Connection between executions of program and dataflow analysis results
- Each execution generates a trajectory of states:
 - $-s_0; s_1; ...; s_k$, where each $s_i \in ST$
- Map current state s_k to
 - Program point n where execution located
 - Value x in dataflow lattice
- Require $x \le in_n$

Kostis Sagonas

49

nring 2006

Abstraction Function for Forward Dataflow Analysis

- Meaning of analysis results is given by an abstraction function AF:ST→P
- Require that for all states s

 $AF(s) \le in_n$

where n is program point where the execution is located in state s, and in_n is the abstract value before that point.

Kostis Sagona

50

Spring 2006

Sign Analysis Example

Sign analysis - compute sign of each variable v

• Base Lattice: flat lattice on {-,zero,+}

- Actual lattice records a value for each variable
 - Example element: $[a\rightarrow+, b\rightarrow zero, c\rightarrow-]$

Kostis Sagona

51

Spring 2006

Interpretation of Lattice Values

If value of v in lattice is:

- BOT: no information about the sign of v
- -: variable v is negative
- zero: variable v is 0
- +: variable v is positive
- TOP: v may be positive or negative or 0

Kostis Sagon

52

Spring 2006

Operation ⊗ on Lattice

8	BOT	-	zero	+	TOP
BOT	BOT	-	zero	+	TOP
-	-	+	zero	-	TOP
zero	zero	zero	zero	zero	zero
+	+	-	zero	+	TOP
TOP	TOP	TOP	zero	TOP	TOP

Kostis Sagonas

53

ring 2006

Transfer Functions

Defined by structural induction on the shape of nodes:

- If n of the form v = c
 - $f_n(x) = x[v \rightarrow +]$ if c is positive
 - $f_n(x) = x[v \rightarrow zero]$ if c is 0
 - $f_n(x) = x[v \rightarrow -]$ if c is negative
- If n of the form $v_1 = v_2 * v_3$
 - $\bullet \ f_n(x) = x[v_1 {\rightarrow} x[v_2] \otimes x[v_3]]$

Kostis Sagonas

54

Abstraction Function

- AF(s)[v] = sign of v
 - AF([a \rightarrow 5, b \rightarrow 0, c \rightarrow -2]) = [a \rightarrow +, b \rightarrow zero, c \rightarrow -]
- Establishes meaning of the analysis results
 - If analysis says a variable v has a given sign
 - then v always has that sign in actual execution.
- Two sources of imprecision
 - Abstraction Imprecision concrete values (integers) abstracted as lattice values (-,zero, and +)
 - Control Flow Imprecision one lattice value for all different possible flow of control possibilities

stis Sagonas 55 Sprin

Imprecision Example

General Sources of Imprecision

- Abstraction Imprecision
 - Lattice values less precise than execution values
 - Abstraction function throws away information
- · Control Flow Imprecision
 - Analysis result has a single lattice value to summarize results of multiple concrete executions
 - Join operation ∨ moves up in lattice to combine values from different execution paths
 - Typically if $x \le y$, then x is more precise than y

Kostis Sagonas 57 Spring 20

Why Have Imprecision?

ANSWER: To make analysis tractable

- Conceptually infinite sets of values in execution
 - Typically abstracted by finite set of lattice values
- Execution may visit infinite set of states
 - Abstracted by computing joins of different paths

Kostis Sagonas 58 Spring 2006

Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
 - Reaching definitions: states are augmented with the definition that created each value
 - Available expressions: states are augmented with expression for each value

Kostis Sagonas 59 Spring 2006

Meet Over All Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path $p = n_0, n_1, ..., n_k, n$ to a node n (note that for all $i, n_i \in pred(n_{i+1})$)
- The solution must take this path into account: $f_p\left(\bot\right)=(f_{nk}f_{nk\cdot 1}(\dots f_{n1}(f_{n0}(\bot))\dots))\leq in_n$
- So the solution must have the property that $\lor \{f_p \left(\bot\right) \mid p \text{ is a path to } n\} \le in_n$ and ideally

 $\vee \{f_n(\bot) \mid p \text{ is a path to } n\} = in_n$

tis Sagonas 60 Spring 2

Soundness Proof of Analysis Algorithm

Property to prove:

For all paths p to n, $f_p(\bot) \le in_n$

- Proof is by induction on the length of p
 - Uses monotonicity of transfer functions
 - Uses following lemma

Lemma:

The worklist algorithm produces a solution such that if $n \in pred(m)$ then $out_n \le in_m$

Kostis Sagonas 61

Proof

- Base case: p is of length 0
 - Then $p = n_0$ and $f_p(\perp) = \perp = in_{n0}$
- Induction step:
 - Assume theorem for all paths of length k
 - Show for an arbitrary path p of length k+1.

Kostis Sagona

62

Spring 2006

Induction Step Proof

- $p = n_0, ..., n_k, n$
- Must show $(f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$
 - By induction, $(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_{nk}$
 - Apply f_k to both sides.

By monotonicity, we get:

$$(f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le f_k(in_{nk}) = out_{nk}$$

- By lemma, $out_{nk} \le in_n$
- By transitivity, $(f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$

Kostis Sagona

63

Spring 200

Distributivity

- · Distributivity preserves precision
- If framework is distributive, then the worklist algorithm produces the meet over paths solution
 - For all n:

 $\vee \{f_p(\bot) \mid p \text{ is a path to } n\} = in_n$

s Sagonas 64 Spring

Lack of Distributivity Example

Integer Constant Propagation (ICP)

• Flat lattice on integers

- Actual lattice records a value for each variable
 - Example element: $[a\rightarrow 3, b\rightarrow 2, c\rightarrow 5]$

Kostis Sagona

65

oring 2006

Transfer Functions

- If n of the form v = c
 - $-\operatorname{f}_{\operatorname{n}}(x)=x[v{\rightarrow}c]$
- If n of the form $v_1 = v_2 + v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]$
- · Lack of distributivity of ICP
 - Consider transfer function f for c = a + b
 - $-\text{ }f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow TOP, b \rightarrow TOP, c \rightarrow 5]$
 - $-f([a\rightarrow 3,b\rightarrow 2]\vee[a\rightarrow 2,b\rightarrow 3])=f([a\rightarrow TOP,b\rightarrow TOP])=\\[a\rightarrow TOP,b\rightarrow TOP,c\rightarrow TOP]$

Kostis Sagonas

66

Summary

- Formal dataflow analysis framework
 - Lattices, partial orders
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions
- · Connection with program
 - Abstraction function AF: $S \rightarrow P$
 - For any state s and program point n, $AF(s) \le in_n$
 - Meet over paths solutions, distributivity

onas 68 Spring 2006