Foundations of Dataflow Analysis

Control Flow Graph:
- Nodes \(N \) – statements of program
- Edges \(E \) – flow of control
 - \(\text{pred}(n) \) = set of all immediate predecessors of \(n \)
 - \(\text{succ}(n) \) = set of all immediate successors of \(n \)
- Start node \(n_0 \)
- Set of final nodes \(N_{\text{final}} \)

Terminology: Control-Flow Graph

Extended Basic Block (EBB): A sequence of basic blocks \(B_1, \ldots, B_n \) where all \(B_i \) \(i > 1 \) have a unique predecessor from the set \(B_1, \ldots, B_{i-1} \).

Terminology: Program Points

- One program point before each node
- One program point after each node
- Join point – program point with multiple predecessors
- Split point – program point with multiple successors

Dataflow Analysis

Compile-Time Reasoning About Run-Time Values of Variables or Expressions at Different Program Points
- Which assignment statements produced the value of the variables at this point?
- Which variables contain values that are no longer used after this program point?
- What is the range of possible values of a variable at this program point?
Dataflow Analysis: Basic Idea

- Information about a program represented using values from an algebraic structure called lattice
- Analysis produces a lattice value for each program point
- Two flavors of analyses
 - Forward dataflow analyses
 - Backward dataflow analyses

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function \(f \)
 - Input – value at program point before node
 - Output – new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function \(f \)
 - Input – value at program point after node
 - Output – new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables

Partial Orders

- Set \(P \)
- Partial order \(\leq \) such that \(\forall x, y, z \in P \)
 - \(x \leq x \) (reflexive)
 - \(x \leq y \) and \(y \leq x \) implies \(x = y \) (asymmetric)
 - \(x \leq y \) and \(y \leq z \) implies \(x \leq z \) (transitive)

Upper Bounds

- If \(S \subseteq P \) then
 - \(x \in P \) is an upper bound of \(S \) if \(\forall y \in S, y \leq x \)
 - \(x \in P \) is the least upper bound of \(S \) if
 - \(x \) is an upper bound of \(S \), and
 - \(x \leq y \) for all upper bounds \(y \) of \(S \)
 - \(\lor \) - join, least upper bound (lub), supremum (sup)
 - \(\lor S \) is the least upper bound of \(S \)
 - \(x \lor y \) is the least upper bound of \(\{x, y\} \)

Lower Bounds

- If \(S \subseteq P \) then
 - \(x \in P \) is a lower bound of \(S \) if \(\forall y \in S, x \leq y \)
 - \(x \in P \) is the greatest lower bound of \(S \) if
 - \(x \) is a lower bound of \(S \), and
 - \(y \leq x \) for all lower bounds \(y \) of \(S \)
 - \(\land \) - meet, greatest lower bound (glb), infimum (inf)
 - \(\land S \) is the greatest lower bound of \(S \)
 - \(x \land y \) is the greatest lower bound of \(\{x, y\} \)
Coverings

- Notation: \(x < y \) if \(x \leq y \) and \(x \neq y \)

- \(x \) is covered by \(y \) (\(y \) covers \(x \)) if
 - \(x < y \), and
 - \(x \leq z < y \) implies \(x = z \)

- Conceptually, \(y \) covers \(x \) if there are no elements between \(x \) and \(y \)

Example

- \(P = \{000, 001, 010, 011, 100, 101, 110, 111\} \)
 (standard boolean lattice, also called hypercube)
- \(x \leq y \) if \((x \text{ bitwise}_y) = x \)

We can visualize a partial order with a Hasse Diagram

- If \(y \) covers \(x \)
 - Line from \(y \) to \(x \)
 - \(y \) is above \(x \) in diagram

Lattices

- If \(x \land y \) and \(x \lor y \) exist (i.e., are in \(P \)) for all \(x,y \in P \),
 then \(P \) is a lattice.

- If \(\land S \) and \(\lor S \) exist for all \(S \subseteq P \),
 then \(P \) is a complete lattice.

- Theorem: All finite lattices are complete

- Example of a lattice that is not complete
 - Integers \(Z \)
 - For any \(x, y \in Z \), \(x \lor y = \max(x,y), x \land y = \min(x,y) \)
 - But \(\lor Z \) and \(\land Z \) do not exist
 - \(Z \cup \{+\infty,-\infty\} \) is a complete lattice

Top and Bottom

- Greatest element of \(P \) (if it exists) is top (\(\top \))
- Least element of \(P \) (if it exists) is bottom (\(\bot \))

Connection between \(\leq, \land, \lor \)

The following 3 properties are equivalent:

- \(x \leq y \)
- \(x \lor y = y \)
- \(x \land y = x \)

- Will prove:
 - \(x \leq y \) implies \(x \lor y = y \) and \(x \land y = x \)
 - \(x \lor y = y \) implies \(x \leq y \)
 - \(x \land y = x \) implies \(x \leq y \)

- By Transitivity,
 - \(x \lor y = y \) implies \(x \land y = x \)
 - \(x \land y = x \) implies \(x \lor y = y \)

Connecting Lemma Proofs (1)

- Proof of \(x \leq y \) implies \(x \lor y = y \)
 - \(x \leq y \) implies \(y \) is an upper bound of \(\{x,y\} \).
 - Any upper bound \(z \) of \(\{x,y\} \) must satisfy \(y \leq z \).
 - So \(y \) is least upper bound of \(\{x,y\} \) and \(x \lor y = y \)

- Proof of \(x \leq y \) implies \(x \land y = x \)
 - \(x \leq y \) implies \(x \) is a lower bound of \(\{x,y\} \).
 - Any lower bound \(z \) of \(\{x,y\} \) must satisfy \(z \leq x \).
 - So \(x \) is greatest lower bound of \(\{x,y\} \) and \(x \land y = x \)
Connecting Lemma Proofs (2)

- Proof of \(x \lor y = y \) implies \(x \leq y \)
 - \(y \) is an upper bound of \(\{x, y\} \) implies \(x \leq y \)
- Proof of \(x \land y = x \) implies \(x \leq y \)
 - \(x \) is a lower bound of \(\{x, y\} \) implies \(x \leq y \)

Lattices as Algebraic Structures

- Have defined \(\lor \) and \(\land \) in terms of \(\leq \)
- Will now define \(\leq \) in terms of \(\lor \) and \(\land \)
 - Start with \(\lor \) and \(\land \) as arbitrary algebraic operations
 - That satisfy associative, commutative, idempotence, and absorption laws
 - Will define \(\leq \) using \(\lor \) and \(\land \)
 - Will show that \(\leq \) is a partial order

Algebraic Properties of Lattices

Assume arbitrary operations \(\lor \) and \(\land \) such that

- \((x \lor y) \lor z = x \lor (y \lor z)\) (associativity of \(\lor \))
- \((x \land y) \land z = x \land (y \land z)\) (associativity of \(\land \))
- \(x \lor y = y \lor x\) (commutativity of \(\lor \))
- \(x \land y = y \land x\) (commutativity of \(\land \))
- \(x \land x = x\) (idempotence of \(\land \))
- \(x \lor (x \land y) = x\) (absorption of \(\lor \) over \(\land \))
- \(x \land (x \lor y) = x\) (absorption of \(\land \) over \(\lor \))

Connection Between \(\land \) and \(\lor \)

Theorem: \(x \lor y = y \) if and only if \(x \land y = x \)

- Proof of \(x \lor y = y \) implies \(x = x \land y \)
 \[x = x \land (x \lor y)\] (by absorption)
 \[= x \land y\] (by assumption)
- Proof of \(x \land y = x \) implies \(y = x \lor y \)
 \[y = y \lor (y \land x)\] (by absorption)
 \[= y \lor (x \land y)\] (by commutativity)
 \[= y \lor x\] (by assumption)
 \[= x \lor y\] (by commutativity)

Properties of \(\leq \)

- Define \(x \leq y \) if \(x \lor y = y \)
- Proof of transitive property. Must show that
 \[x \lor y = y \text{ and } y \lor z = z \text{ implies } x \lor z = z\]
 \[x \lor z = x \lor (y \lor z)\] (by assumption)
 \[= (x \lor y) \lor z\] (by associativity)
 \[= y \lor z\] (by assumption)
 \[= z\] (by assumption)

Properties of \(\leq \)

- Proof of asymmetry property. Must show that
 \[x \lor y = y \text{ and } y \lor x = x \text{ implies } x = y\]
 \[x = y \lor x\] (by assumption)
 \[= x \lor y\] (by commutativity)
 \[= y\] (by assumption)
- Proof of reflexivity property. Must show that
 \[x \lor x = x\]
 \[x \lor x = x\] (by idempotence)
Properties of \leq

- Induced operation \leq agrees with original definitions of \lor and \land, i.e.,
 - $x \lor y = \sup \{x, y\}$
 - $x \land y = \inf \{x, y\}$

Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \leq u$, i.e., $(x \lor y) \lor u = u$
 - $u = x \lor u$ (by assumption)
 - $= x \lor (y \lor u)$ (by assumption)
 - $= (x \lor y) \lor u$ (by associativity)

Proof of $x \land y = \inf \{x, y\}$

- Consider any lower bound l for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $1 \leq x \land y$, i.e., $(x \land y) \land 1 = 1$
 - $1 = x \land 1$ (by assumption)
 - $= x \land (y \land l)$ (by assumption)
 - $= (x \land y) \land 1$ (by associativity)

Chains

- A set S is a chain if $\forall x,y \in S. y \leq x$ or $x \leq y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$

Transfer Functions

- Assume a lattice of abstract values P
- Transfer function $f: P \rightarrow P$ for each node in control flow graph
- f models effect of the node on the program information

Properties of Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: P \rightarrow P$
- Identity function $i \in F$
- F must be closed under composition: $\forall f,g \in F$, the function $h = \lambda x, f(g(x)) \in F$
- Each $f \in F$ must be monotone: $x \leq y$ implies $f(x) \leq f(y)$
- Sometimes all $f \in F$ are distributive: $f(x \lor y) = f(x) \lor f(y)$
- Distributivity implies monotonicity
Distributivity Implies Monotonicity

Proof:
• Assume \(f(x \lor y) = f(x) \lor f(y) \)
• Must show: \(x \lor y = y \) implies \(f(x) \lor f(y) = f(y) \)
 \[f(y) = f(x \lor y) \quad \text{(by assumption)} \]
 \[= f(x) \lor f(y) \quad \text{(by distributivity)} \]

Forward Dataflow Analysis

• Simulates execution of program forward with flow of control
• For each node \(n \), have
 – \(\text{in}_n \) – value at program point before \(n \)
 – \(\text{out}_n \) – value at program point after \(n \)
 – \(f_n \) – transfer function for \(n \) (given \(\text{in}_n \) computes \(\text{out}_n \))
• Require that solutions satisfy
 – \(\forall n, \text{out}_n = f_n(\text{in}_n) \)
 – \(\forall n \neq n_0, \text{in}_n = \lor \{ \text{out}_m | m \in \text{pred}(n) \} \)
 – \(\text{in}_{n_0} = \bot \)

Dataflow Equations

• Result is a set of dataflow equations
 \[\text{out}_n := f_n(\text{in}_n) \]
 \[\text{in}_n := \lor \{ \text{out}_m | m \in \text{pred}(n) \} \]
• Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

for each \(n \) do \(\text{out}_n := f_n(\bot) \)
worklist := \(N \)
while worklist \(\neq \emptyset \) do
remove a node \(n \) from worklist
\(\text{in}_n := \lor \{ \text{out}_m | m \in \text{pred}(n) \} \)
\(\text{out}_n := f_n(\text{in}_n) \)
if out\(_n\) changed then
worklist := worklist \(\cup \) \(\text{succ}(n) \)

Correctness Argument

Why result satisfies dataflow equations?
• Whenever we process a node \(n \), set \(\text{out}_n := f_n(\text{in}_n) \)
 Algorithm ensures that \(\text{out}_n = f_n(\text{in}_n) \)
• Whenever \(\text{out}_n \) changes, put \(\text{succ}(m) \) on worklist.
 Consider any node \(n \in \text{succ}(m) \).
 It will eventually come off the worklist and the algorithm will set
 \(\text{in}_n := \lor \{ \text{out}_m | m \in \text{pred}(n) \} \)
 to ensure that \(\text{in}_n = \lor \{ \text{out}_m | m \in \text{pred}(n) \} \)

Termination Argument

Why does the algorithm terminate?
• Sequence of values taken on by \(\text{in}_n \) or \(\text{out}_n \) is a chain. If values stop increasing, the worklist empties and the algorithm terminates.
• If the lattice has the ascending chain property, the algorithm terminates
 – Algorithm terminates for finite lattices
 – For lattices without the ascending chain property,
 we must use a widening operator
Widening Operators

- Detect lattice values that may be part of an infinitely ascending chain
- Artificially raise value to least upper bound of the chain
- Example:
 - Lattice is set of all subsets of integers
 - Widening operator might raise all sets of size n or greater to TOP
 - Could be used to collect possible values taken on by a variable during execution of the program

Reaching Definitions

- Concept of definition and use
 - \(z = x + y \)
 - is a definition of \(z \)
 - is a use of \(x \) and \(y \)
- A definition reaches a use if
 - the value written by definition
 - may be read by the use.

Reaching Definitions Framework

- \(P = \text{powerset of set of all definitions in program} \) (all subsets of set of definitions in program)
- \(\cup = \text{(order is } \subseteq) \)
- \(\bot = \emptyset \)
- \(F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b) \)
 - \(b \) is set of definitions that node kills
 - \(a \) is set of definitions that node generates
- General pattern for many transfer functions
 - \(f(x) = \text{GEN} \cup (x-\text{KILL}) \)

Does Reaching Definitions Satisfy Properties?

\(\subseteq \) satisfies conditions for \(\leq \)
- \(x \leq y \) and \(y \leq z \) implies \(x \leq z \) (transitivity)
- \(x \leq y \) and \(y \leq x \) implies \(y = x \) (asymmetry)
- \(x \leq x \) (reflexivity)

\(F \) satisfies transfer function conditions
- \(\lambda x. \emptyset \cup (x-\emptyset) = \lambda x. x \in F \) (identity)
- Will show \(f(x \cup y) = f(x) \cup f(y) \) (distributivity)
 \[
 f(x \cup y) = (a \cup (x-b)) \cup (a \cup (y-b))
 = a \cup (x-b) \cup (y-b)
 = a \cup ((x \cup y) - b)
 = f(x \cup y)
 \]

Does Reaching Definitions Framework Satisfy Properties?

What about composition?
- Given \(f_1(x) = a_1 \cup (x-b_1) \) and \(f_2(x) = a_2 \cup (x-b_2) \)
- Must show \(f_1(f_2(x)) \) can be expressed as \(a \cup (x-b) \)
 \[
 f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) \cup b_1)
 = a_1 \cup ((a_2 \cup b_1) \cup ((x-b_2) \cup b_1))
 = (a_1 \cup (a_2 \cup b_1)) \cup ((x-b_2) \cup b_1))
 = (a_1 \cup (a_2 \cup b_1)) \cup (x-b_2 \cup b_1))
 \]
- Let \(a = (a_1 \cup (a_2 - b_1)) \) and \(b = b_2 \cup b_1 \)
- Then \(f_1(f_2(x)) = a \cup (x-b) \)
General Result

All GEN/KILL transfer function frameworks satisfy the properties:
– Identity
– Distributivity
– Compositionality

Available Expressions Framework

• \(P = \text{powerset of set of all expressions in program (all subsets of set of expressions)} \)
• \(\cup = \cap \) (order is \(\subseteq \))
• \(\bot = P \) (but \(\text{in}_{\text{in}} = \emptyset \))
• \(F = \text{all functions } f \text{ of the form } f(x) = a \cup (x - b) \)
 – \(b \) is set of expressions that node kills
 – \(a \) is set of expressions that node generates
• Another GEN/KILL analysis

Concept of Conservatism

• Reaching definitions use \(\cup \) as join
 – Optimizations must take into account all definitions that reach along ANY path
• Available expressions use \(\cap \) as join
 – Optimization requires expression to reach along ALL paths
• Optimizations must conservatively take all possible executions into account.
• Structure of analysis varies according to the way the results of the analysis are to be used.

Backward Dataflow Analysis

• Simulates execution of program backward against the flow of control
• For each node \(n \), we have
 – \(\text{in}_n \) – value at program point before \(n \)
 – \(\text{out}_n \) – value at program point after \(n \)
 – \(f_n \) – transfer function for \(n \) (given \(\text{out}_n \), computes \(\text{in}_n \))
• Require that solutions satisfy
 – \(\forall n. \text{in}_n = f_n(\text{out}_n) \)
 – \(\forall n \not\in N_{\text{final}}. \text{out}_n = \cup \{ \text{in}_m | m \in \text{succ}(n) \} \)
 – \(\forall n \in N_{\text{final}}. \text{out}_n = \bot \)

Worklist Algorithm for Solving Backward Dataflow Equations

for each \(n \) do
\(\text{in}_n := f_n(\bot) \)
worklist := \(N \)
while worklist \(\neq \emptyset \) do
remove a node \(n \) from worklist
\(\text{out}_n := \cup \{ \text{in}_m | m \in \text{succ}(n) \} \)
\(\text{in}_n := f_n(\text{out}_n) \)
if \(\text{in}_n \) changed then
worklist := worklist \cup \text{pred}(n)

Live Variables Analysis Framework

• \(P = \text{powerset of set of all variables in program (all subsets of set of variables in program)} \)
• \(\cup = \cup \) (order is \(\subseteq \))
• \(\bot = \emptyset \)
• \(F = \text{all functions } f \text{ of the form } f(x) = a \cup (x - b) \)
 – \(b \) is set of variables that the node kills
 – \(a \) is set of variables that the node reads
Meaning of Dataflow Results

• Connection between executions of program and dataflow analysis results
• Each execution generates a trajectory of states:
 – \(s_0; s_1; \ldots; s_k \), where each \(s_i \in ST \)
• Map current state \(s_k \) to
 – Program point \(n \) where execution located
 – Value \(x \) in dataflow lattice
• Require \(x \leq i_n \)

Abstraction Function for Forward Dataflow Analysis

• Meaning of analysis results is given by an abstraction function \(AF: ST \rightarrow P \)
• Require that for all states \(s \)
 \(AF(s) \leq i_n \)
 where \(n \) is program point where the execution is located in state \(s \), and \(i_n \) is the abstract value before that point.

Sign Analysis Example

Sign analysis - compute sign of each variable \(v \)
• Base Lattice: flat lattice on \{-, zero, +\}
 \[
 \text{TOP} \quad \begin{array}{c}
 \text{zero} \\
 \text{+}
 \end{array} \\
 \text{BOT}
 \]
• Actual lattice records a value for each variable
 – Example element: \([a\rightarrow+, b\rightarrow\text{zero}, c\rightarrow-]\)

Interpretation of Lattice Values

If value of \(v \) in lattice is:
 – BOT: no information about the sign of \(v \)
 – -: variable \(v \) is negative
 – zero: variable \(v \) is 0
 – +: variable \(v \) is positive
 – TOP: \(v \) may be positive or negative or 0

Operation \(\otimes \) on Lattice

<table>
<thead>
<tr>
<th>(\otimes)</th>
<th>BOT</th>
<th>zero</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>-</td>
<td>zero</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>zero</td>
<td>-</td>
</tr>
<tr>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>zero</td>
<td>+</td>
</tr>
<tr>
<td>TOP</td>
<td>TOP</td>
<td>TOP</td>
<td>zero</td>
<td>TOP</td>
</tr>
</tbody>
</table>

Transfer Functions

Defined by structural induction on the shape of nodes:
 – If \(n \) of the form \(v = c \)
 • \(f_v(x) = x[v \rightarrow +] \) if \(c \) is positive
 • \(f_v(x) = x[v \rightarrow \text{zero}] \) if \(c \) is 0
 • \(f_v(x) = x[v \rightarrow -] \) if \(c \) is negative
 – If \(n \) of the form \(v_1 = v_2 \times v_3 \)
 • \(f_v(x) = x[v_1 \rightarrow x[v_2 \otimes x[v_3]]] \)
Abstraction Function

- AF(s)[v] = sign of v
 - AF([a→5, b→0, c→2]) = [a→++, b→zero, c→-]
- Establishes meaning of the analysis results
 - If analysis says a variable v has a given sign
 - then v always has that sign in actual execution.
- Two sources of imprecision
 - Abstraction Imprecision – concrete values (integers) abstracted as lattice values (-, zero, and +)
 - Control Flow Imprecision – one lattice value for all different possible flow of control possibilities

Imprecision Example

Abstraction Imprecision:
[a→1] abstracted as [a→++]

```
[ a→++ ]
    
[ a→++, b→ ]
    
[ a→++, b→TOP ]
```

```
[ b→TOP ]
```

Control Flow Imprecision:
[b→TOP] summarizes results of all executions.
In any execution state s, AF(s)[b]=TOP

General Sources of Imprecision

- Abstraction Imprecision
 - Lattice values less precise than execution values
 - Abstraction function throws away information
- Control Flow Imprecision
 - Analysis result has a single lattice value to summarize results of multiple concrete executions
 - Join operation ∨ moves up in lattice to combine values from different execution paths
 - Typically if x ≤ y, then x is more precise than y

Why Have Imprecision?

ANSWER: To make analysis tractable

- Conceptually infinite sets of values in execution
 - Typically abstracted by finite set of lattice values
- Execution may visit infinite set of states
 - Abstracted by computing joins of different paths

Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
 - Reaching definitions: states are augmented with the definition that created each value
 - Available expressions: states are augmented with expression for each value

Meet Over All Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
 - Consider a path p = n₀, n₁, ..., nₖ to a node n (note that for all i, nᵢ ∈ pred(nᵢ₊₁))
 - The solution must take this path into account:
 \[f_p(\bot) = t_{n_0}(t_{n_1}(...t_{n_k}(f_{n_k}(\bot))...)) \leq i_n \]
 - The solution must have the property that
 \[\forall \{f_p(\bot) \mid p \text{ is a path to } n\} \leq i_n \]
 - And ideally
 \[\forall \{f_p(\bot) \mid p \text{ is a path to } n\} = i_n \]
Soundness Proof of Analysis Algorithm

Property to prove:
For all paths p to n, \(f_p(\cdot) \leq \text{in}_n \)
- Proof is by induction on the length of p
 - Uses monotonicity of transfer functions
 - Uses following lemma

Lemma:
The worklist algorithm produces a solution such that
if \(n \in \text{pred}(m) \) then \(\text{out}_n \leq \text{in}_m \)

Proof
- Base case: p is of length 0
 - Then p = \(n_0 \) and \(f_{n_0}(\cdot) = \bot = \text{in}_{n_0} \)
- Induction step:
 - Assume theorem for all paths of length k
 - Show for an arbitrary path p of length k+1.

Induction Step Proof
- p = \(n_{i_0}, \ldots, n_k, n \)
- Must show \((f_k(f_{k-1}(\ldots f_1(f_0(\bot)) \ldots)) \leq \text{in}_n \)
 - By induction, \((f_{k-1}(\ldots f_1(f_0(\bot)) \ldots)) \leq \text{in}_{n_k} \)
 - Apply \(f_k \) to both sides.
 By monotonicity, we get:
 \((f_k(f_{k-1}(\ldots f_1(f_0(\bot)) \ldots)) = \text{out}_{n_k} \)
 - By lemma, \(\text{out}_{n_k} \leq \text{in}_n \)
 - By transitivity, \((f_k(f_{k-1}(\ldots f_1(f_0(\bot)) \ldots)) \leq \text{in}_n \)

Distributivity
- Distributivity preserves precision
- If framework is distributive, then the worklist algorithm produces the meet over paths solution
 - For all n:
 \(\forall \{f_p(\bot) \mid p \text{ is a path to } n\} = \text{in}_n \)

Lack of Distributivity Example
Integer Constant Propagation (ICP)
- Flat lattice on integers
 \[
 \begin{array}{c}
 \text{TOP} \\
 \vdots \\
 -2 \\
 -1 \\
 0 \\
 1 \\
 2 \\
 \ldots \\
 \text{BOT}
 \end{array}
 \]
 - Actual lattice records a value for each variable
 - Example element: \([a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]\)

Transfer Functions
- If n of the form \(v = c \)
 - \(f_c(x) = x[v \rightarrow c] \)
- If n of the form \(v_1 = v_2 + v_3 \)
 - \(f_c(x) = x[v_1 \rightarrow x[v_2] + x[v_3]] \)
- Lack of distributivity of ICP
 - Consider transfer function f for \(c = a + b \)
 - \(f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5] \)
 - \(f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow \text{TOP}, b \rightarrow \text{TOP}]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}] \)
Lack of Distributivity Anomaly

\[
\begin{align*}
\text{a} &= 2 \\
\text{b} &= 3 \\
\text{a} &= 3 \\
\text{b} &= 2 \\
\text{c} &= \text{a} + \text{b}
\end{align*}
\]

\[
\begin{align*}
[a \rightarrow 2, b \rightarrow 3] & \rightarrow [a \rightarrow 3, b \rightarrow 2] \\
[a \rightarrow \text{TOP}, b \rightarrow \text{TOP}] & \rightarrow [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}]
\end{align*}
\]

Lack of Distributivity Imprecision:
\[
[a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}] \text{ more precise}
\]

Summary

- Formal dataflow analysis framework
 - Lattices, partial orders
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions
- Connection with program
 - Abstraction function \(AF: S \rightarrow P \)
 - For any state \(s \) and program point \(n \), \(AF(s) \leq in_n \)
 - Meet over paths solutions, distributivity