Foundations of

 Dataflow Analysis
Terminology: Program Representation

Control Flow Graph:

- Nodes N - statements of program
- Edges E - flow of control
- $\operatorname{pred}(\mathrm{n})=$ set of all immediate predecessors of n
- $\operatorname{succ}(n)=$ set of all immediate successors of n
- Start node n_{0}
- Set of final nodes $\mathrm{N}_{\text {final }}$

Terminology: Program Points

- One program point before each node
- One program point after each node
- Join point - program point with multiple predecessors
- Split point - program point with multiple successors

Dataflow Analysis

Compile-Time Reasoning About
Run-Time Values of Variables or Expressions at Different Program Points

- Which assignment statements produced the value of the variables at this point?
- Which variables contain values that are no longer used after this program point?
- What is the range of possible values of a variable at this program point?

Dataflow Analysis: Basic Idea

- Information about a program represented using values from an algebraic structure called lattice
- Analysis produces a lattice value for each program point
- Two flavors of analyses
- Forward dataflow analyses
- Backward dataflow analyses

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
- Each node has a transfer function f
- Input - value at program point before node
- Output - new value at program point after node
- Values flow from program points after predecessor nodes to program points before successor nodes
- At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions
\qquad

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
- Each node has a transfer function f
- Input - value at program point after node
- Output - new value at program point before node
- Values flow from program points before successor nodes to program points after predecessor nodes
- At split points, values are combined using a merge function
- Canonical Example: Live Variables

Kostis Sagonas Spring 2006

Partial Orders

- Set P
- Partial order \leq such that $\forall x, y, z \in P$

$$
-\mathrm{x} \leq \mathrm{x}
$$

(reflexive)
$-\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$ implies $\mathrm{x}=\mathrm{y} \quad$ (asymmetric)
$-\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$ implies $\mathrm{x} \leq \mathrm{z} \quad$ (transitive)

Upper Bounds

- If $\mathrm{S} \subseteq \mathrm{P}$ then
$-\mathrm{x} \in \mathrm{P}$ is an upper bound of S if $\forall \mathrm{y} \in \mathrm{S}, \mathrm{y} \leq \mathrm{x}$
$-\mathrm{x} \in \mathrm{P}$ is the least upper bound of S if
- x is an upper bound of S, and
- $x \leq y$ for all upper bounds y of S
$-\vee-$ join, least upper bound (lub), supremum (sup)
- $\vee S$ is the least upper bound of S
- $x \vee y$ is the least upper bound of $\{x, y\}$

Lower Bounds

- If $\mathrm{S} \subseteq \mathrm{P}$ then
$-\mathrm{x} \in \mathrm{P}$ is a lower bound of S if $\forall \mathrm{y} \in \mathrm{S}, \mathrm{x} \leq \mathrm{y}$
$-\mathrm{x} \in \mathrm{P}$ is the greatest lower bound of S if
- x is a lower bound of S, and
- $y \leq x$ for all lower bounds y of S
$-\wedge$ - meet, greatest lower bound (glb), infimum (inf)
- $\wedge S$ is the greatest lower bound of S
- $x \wedge y$ is the greatest lower bound of $\{x, y\}$

Kostis Sagonas	12

Coverings

- Notation: $\mathrm{x}<\mathrm{y}$ if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{x} \neq \mathrm{y}$
- x is covered by $\mathrm{y}(\mathrm{y}$ covers x$)$ if
$-x<y$, and
- $\mathrm{x} \leq \mathrm{z}<\mathrm{y}$ implies $\mathrm{x}=\mathrm{z}$
- Conceptually, y covers x if there are no elements between x and y

Kostis Sagonas
13

Example

- $P=\{000,001,010,011,100,101,110,111\}$
(standard boolean lattice, also called hypercube)
- $x \leq y$ if $(x$ bitwise_and $y)=x$

Lattices

- If $x \wedge y$ and $x \vee y$ exist (i.e., are in P) for all $x, y \in P$, then P is a lattice.
- If $\wedge S$ and $\vee S$ exist for all $S \subseteq P$, then P is a complete lattice.
- Theorem: All finite lattices are complete
- Example of a lattice that is not complete
- Integers Z
- For any $x, y \in Z, x \vee y=\max (x, y), x \wedge y=\min (x, y)$
- But $\vee Z$ and $\wedge Z$ do not exist
$-\mathrm{Z} \cup\{+\infty,-\infty\}$ is a complete lattice

Kostis Sagonas 15 Spring 2006

Top and Bottom

- Greatest element of P (if it exists) is top (T)
- Least element of P (if it exists) is bottom (\perp)
\qquad
\qquad

Connection between \leq, \wedge, and \vee

Connecting Lemma Proofs (1)

- Proof of $x \leq y$ implies $x \vee y=y$
$-x \leq y$ implies y is an upper bound of $\{x, y\}$.
- Any upper bound z of $\{x, y\}$ must satisfy $y \leq z$.
- So y is least upper bound of $\{x, y\}$ and $x \vee y=y$
- Proof of $x \leq y$ implies $x \wedge y=x$
$-x \leq y$ implies x is a lower bound of $\{x, y\}$.
- Any lower bound z of $\{\mathrm{x}, \mathrm{y}\}$ must satisfy $\mathrm{z} \leq \mathrm{x}$.
- So x is greatest lower bound of $\{x, y\}$ and $x \wedge y=x$
$-x \vee y=y$ implies $x \wedge y=x$
$-x \wedge y=x$ implies $x \vee y=y$

Connecting Lemma Proofs (2)

- Proof of $x \vee y=y$ implies $x \leq y$
$-y$ is an upper bound of $\{x, y\}$ implies $x \leq y$
- Proof of $x \wedge y=x$ implies $x \leq y$
$-x$ is a lower bound of $\{x, y\}$ implies $x \leq y$

Algebraic Properties of Lattices

Assume arbitrary operations \vee and \wedge such that
$-(x \vee y) \vee z=x \vee(y \vee z) \quad$ (associativity of $\vee)$
$-(x \wedge y) \wedge z=x \wedge(y \wedge z) \quad$ (associativity of $\wedge)$
$-x \vee y=y \vee x \quad$ (commutativity of \vee)
$-x \wedge y=y \wedge x \quad$ (commutativity of \wedge)
$-x \vee x=x \quad$ (idempotence of \vee)
$-x \wedge x=x \quad$ (idempotence of \wedge)
$-x \vee(x \wedge y)=x \quad($ absorption of \vee over $\wedge)$
$-x \wedge(x \vee y)=x \quad($ absorption of \wedge over $\vee)$

Kostis Sagonas
21 Spring 2006

Properties of \leq

- Define $x \leq y$ if $x \vee y=y$
- Proof of transitive property. Must show that
$x \vee y=y$ and $y \vee z=z$ implies $x \vee z=z$ $x \vee z=x \vee(y \vee z)$ (by assumption)
$=(x \vee y) \vee z$ (by associativity)
$=y \vee z \quad$ (by assumption)
$=\mathrm{z} \quad$ (by assumption)

Connection Between \wedge and \vee

Theorem: $x \vee y=y$ if and only if $x \wedge y=x$

- Proof of $x \vee y=y$ implies $x=x \wedge y$

$$
\begin{aligned}
x & =x \wedge(x \vee y) & & \text { (by absorption) } \\
& =x \wedge y & & \text { (by assumption) }
\end{aligned}
$$

- Proof of $x \wedge y=x$ implies $y=x \vee y$

$$
y=y \vee(y \wedge x) \quad \text { (by absorption) }
$$

$=y \vee(x \wedge y) \quad$ (by commutativity)
$=y \vee x \quad$ (by assumption)
$=\mathrm{x} \vee \mathrm{y} \quad$ (by commutativity)
Kostis Sagonas \qquad

Properties of \leq

- Proof of asymmetry property. Must show that
$x \vee y=y$ and $y \vee x=x$ implies $x=y$

$$
\begin{aligned}
x & =y \vee x & & \text { (by assumption) } \\
& =x \vee y & & \text { (by commutativity) } \\
& =y & & \text { (by assumption) }
\end{aligned}
$$

- Proof of reflexivity property. Must show that
$x \vee x=x$
$\mathrm{x} \vee \mathrm{x}=\mathrm{x} \quad$ (by idempotence)

Kostis Sagonas
24

Properties of \leq

- Induced operation \leq agrees with original definitions of \vee and \wedge, i.e.,

$$
\begin{aligned}
& -x \vee y=\sup \{x, y\} \\
& -x \wedge y=\inf \{x, y\}
\end{aligned}
$$

Proof of $x \wedge y=\inf \{x, y\}$

- Consider any lower bound 1 for x and y .
- Given $\mathrm{x} \wedge 1=1$ and $\mathrm{y} \wedge 1=1$, must show $1 \leq x \wedge y$, i.e., $(x \wedge y) \wedge 1=1$

1	$=x \wedge 1$	(by assumption)
	$=x \wedge(y \wedge 1)$	(by assumption)
	$=(x \wedge y) \wedge 1$	(by associativity)

Kostis Sagonas

Chains

- A set S is a chain if $\forall x, y \in S . y \leq x$ or $x \leq y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_{1} \leq x_{2} \leq \ldots$ there exists n such that $\mathrm{X}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}+1}=\ldots$

Transfer Functions

- Assume a lattice of abstract values P
- Transfer function $\mathrm{f}: \mathrm{P} \rightarrow \mathrm{P}$ for each node in control flow graph
- f models effect of the node on the program information

Properties of Transfer Functions

Each dataflow analysis problem has a set F of transfer functions f: $\mathrm{P} \rightarrow \mathrm{P}$

- Identity function $i \in F$
- F must be closed under composition: $\forall f, g \in F$, the function $h=\lambda x . f(g(x)) \in F$
- Each $\mathrm{f} \in \mathrm{F}$ must be monotone:

$$
\mathrm{x} \leq \mathrm{y} \text { implies } \mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{y})
$$

- Sometimes all $\mathrm{f} \in \mathrm{F}$ are distributive:

$$
f(x \vee y)=f(x) \vee f(y)
$$

- Distributivity implies monotonicity

Distributivity Implies Monotonicity

Proof:

- Assume $f(x \vee y)=f(x) \vee f(y)$
- Must show: $x \vee y=y$ implies $f(x) \vee f(y)=f(y)$

$$
\begin{aligned}
\mathrm{f}(\mathrm{y}) & =\mathrm{f}(\mathrm{x} \vee \mathrm{y}) & & \text { (by assumption) } \\
& =\mathrm{f}(\mathrm{x}) \vee \mathrm{f}(\mathrm{y}) & & (\text { by distributivity })
\end{aligned}
$$

Kostis Sagonas \qquad

Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
$-\mathrm{in}_{\mathrm{n}}$ - value at program point before n
- out ${ }_{n}$ - value at program point after n
$-f_{n}$ - transfer function for $n\left(\right.$ given in_{n}, computes out $_{\mathrm{n}}$)
- Require that solutions satisfy
$-\forall \mathrm{n}$, out $_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right)$
$-\forall \mathrm{n} \neq \mathrm{n}_{0}, \mathrm{in}_{\mathrm{n}}=\vee\left\{\right.$ out $_{\mathrm{m}} \mid \mathrm{m}$ in $\left.\operatorname{pred}(\mathrm{n})\right\}$
$-\mathrm{in}_{\mathrm{n} 0}=\perp$
Kostis Sagonas $\quad 32 \quad$ Spring 2006

Dataflow Equations

- Result is a set of dataflow equations

$$
\begin{aligned}
& \text { out }_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right) \\
& \mathrm{in}_{\mathrm{n}}:=\vee\left\{\text { out }_{\mathrm{m}} \mid \mathrm{m} \text { in } \operatorname{pred}(\mathrm{n})\right\}
\end{aligned}
$$

- Conceptually separates analysis problem from program

Correctness Argument

Why result satisfies dataflow equations?

- Whenever we process a node n, set out ${ }_{n}:=f_{n}\left(\mathrm{in}_{\mathrm{n}}\right)$ Algorithm ensures that out ${ }_{n}=f_{n}\left(\mathrm{in}_{\mathrm{n}}\right)$
- Whenever out ${ }_{m}$ changes, put succ(m) on worklist. Consider any node $\mathrm{n} \in \operatorname{succ}(\mathrm{m})$.
It will eventually come off the worklist and the algorithm will set

$$
\mathrm{in}_{\mathrm{n}}:=\vee\left\{\text { out }_{\mathrm{m}} \mid \mathrm{m} \text { in } \operatorname{pred}(\mathrm{n})\right\}
$$

to ensure that $\mathrm{in}_{\mathrm{n}}=\vee\left\{\right.$ out $_{\mathrm{m}} \mid \mathrm{m}$ in $\left.\operatorname{pred}(\mathrm{n})\right\}$

Termination Argument

Why does the algorithm terminate?

- Sequence of values taken on by in_{n} or out t_{n} is a chain. If values stop increasing, the worklist empties and the algorithm terminates.
- If the lattice has the ascending chain property, the algorithm terminates
- Algorithm terminates for finite lattices
- For lattices without the ascending chain property, we must use a widening operator

Widening Operators

- Detect lattice values that may be part of an infinitely ascending chain
- Artificially raise value to least upper bound of the chain
- Example:
- Lattice is set of all subsets of integers
- Widening operator might raise all sets of size n or greater to TOP
- Could be used to collect possible values taken on by a variable during execution of the program
\qquad Spring 2006

Reaching Definitions

- Concept of definition and use
$-\mathrm{z}=\mathrm{x}+\mathrm{y}$
- is a definition of z
- is a use of x and y
- A definition reaches a use if
- the value written by definition
- may be read by the use.

Reaching Definitions Framework

- $\mathrm{P}=$ powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\vee=\cup($ order is $\subseteq)$
- $\perp=\varnothing$
- $\mathrm{F}=$ all functions f of the form $\mathrm{f}(\mathrm{x})=\mathrm{a} \cup(\mathrm{x}-\mathrm{b})$
- b is set of definitions that node kills
- a is set of definitions that node generates

General pattern for many transfer functions
$-\mathrm{f}(\mathrm{x})=\mathrm{GEN} \cup(\mathrm{x}$-KILL $)$

Kostis Sagonas Spring 2006

Does Reaching Definitions

 Framework Satisfy Properties?- \subseteq satisfies conditions for \leq
$-\mathrm{x} \subseteq \mathrm{y}$ and $\mathrm{y} \subseteq \mathrm{z}$ implies $\mathrm{x} \subseteq \mathrm{z}$ (transitivity)
$-\mathrm{x} \subseteq \mathrm{y}$ and $\mathrm{y} \subseteq \mathrm{x}$ implies $\mathrm{y}=\mathrm{x}$ (asymmetry)
$-\mathrm{x} \subseteq \mathrm{x}$ (reflexivity)
- F satisfies transfer function conditions
$-\lambda \mathrm{x} . \varnothing \cup(\mathrm{x}-\varnothing)=\lambda \mathrm{x} . \mathrm{x} \in \mathrm{F}$ (identity)
- Will show $f(x \cup y)=f(x) \cup f(y)$ (distributivity)

$$
f(x) \cup f(y)=(a \cup(x-b)) \cup(a \cup(y-b))
$$

$=a \cup(x-b) \cup(y-b)$
$=a \cup((x \cup y)-b)$
$=f(x \cup y)$
Kostis Sagonas
41

Does Reaching Definitions
 Framework Satisfy Properties?

What about composition?

- Given $f_{1}(x)=a_{1} \cup\left(x-b_{1}\right)$ and $f_{2}(x)=a_{2} \cup\left(x-b_{2}\right)$
- Must show $f_{1}\left(f_{2}(x)\right)$ can be expressed as $a \cup(x-b)$

$$
\mathrm{f}_{1}\left(\mathrm{f}_{2}(\mathrm{x})\right)=\mathrm{a}_{1} \cup\left(\left(\mathrm{a}_{2} \cup\left(\mathrm{x}-\mathrm{b}_{2}\right)\right)-\mathrm{b}_{1}\right)
$$

$=a_{1} \cup\left(\left(a_{2}-b_{1}\right) \cup\left(\left(x-b_{2}\right)-b_{1}\right)\right)$
$\left.=\left(\mathrm{a}_{1} \cup\left(\mathrm{a}_{2}-\mathrm{b}_{1}\right)\right) \cup\left(\left(\mathrm{x}-\mathrm{b}_{2}\right)-\mathrm{b}_{1}\right)\right)$
$=\left(a_{1} \cup\left(a_{2}-b_{1}\right)\right) \cup\left(x-\left(b_{2} \cup b_{1}\right)\right)$

- Let $\mathrm{a}=\left(\mathrm{a}_{1} \cup\left(\mathrm{a}_{2}-\mathrm{b}_{1}\right)\right)$ and $\mathrm{b}=\mathrm{b}_{2} \cup \mathrm{~b}_{1}$
- Then $\mathrm{f}_{1}\left(\mathrm{f}_{2}(\mathrm{x})\right)=\mathrm{a} \cup(\mathrm{x}-\mathrm{b})$

General Result

All GEN/KILL transfer function frameworks satisfy the properties:

- Identity
- Distributivity
- Compositionality

Concept of Conservatism

- Reaching definitions use \cup as join
- Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
- Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account.
- Structure of analysis varies according to the way the results of the analysis are to be used.

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, we have
$-\mathrm{in}_{\mathrm{n}}$ - value at program point before n
- out $_{n}$ - value at program point after n
$-\mathrm{f}_{\mathrm{n}}$ - transfer function for n (given out ${ }_{n}$, computes in_{n})
- Require that solutions satisfy
$-\forall \mathrm{n} . \mathrm{in}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}\left(\right.$ out $\left._{\mathrm{n}}\right)$
$-\forall \mathrm{n} \notin \mathrm{N}_{\text {final }}$. out $_{\mathrm{n}}=\vee\left\{\mathrm{in}_{\mathrm{m}} \mid \mathrm{m}\right.$ in $\left.\operatorname{succ}(\mathrm{n})\right\}$
$-\forall \mathrm{n} \in \mathrm{N}_{\text {final }}=$ out $_{\mathrm{n}}=\perp$
Kostis Sagonas 46

Worklist Algorithm for Solving Backward Dataflow Equations

```
for each n do in }\mp@subsup{\textrm{n}}{\textrm{n}}{}:=\mp@subsup{\textrm{f}}{\textrm{n}}{}(\perp
worklist := N
while worklist }=\varnothing\mathrm{ do
    remove a node n from worklist
    out 
    in 
    if in }\mp@subsup{n}{n}{}\mathrm{ changed then
        worklist := worklist }\cup\mathrm{ pred(n)

\section*{Live Variables Analysis Framework}
- \(\mathrm{P}=\) powerset of set of all variables in program (all subsets of set of variables in program)
- \(\vee=\cup(\) order is \(\subseteq)\)
- \(\perp=\varnothing\)
- \(\mathrm{F}=\) all functions f of the form \(\mathrm{f}(\mathrm{x})=\mathrm{a} \cup(\mathrm{x}-\mathrm{b})\)
- \(b\) is set of variables that the node kills
- \(a\) is set of variables that the node reads
\(\qquad\)

\section*{Meaning of Dataflow Results}
- Connection between executions of program and dataflow analysis results
- Each execution generates a trajectory of states:
\(-\mathrm{s}_{0} ; \mathrm{s}_{1} ; \ldots ; \mathrm{s}_{\mathrm{k}}\), where each \(\mathrm{s}_{\mathrm{i}} \in\) ST
- Map current state \(\mathrm{s}_{\mathrm{k}}\) to
- Program point \(n\) where execution located
- Value \(x\) in dataflow lattice
- Require \(\mathrm{x} \leq \mathrm{in}_{\mathrm{n}}\)
\(\qquad\) Spring 2006

\section*{Abstraction Function for Forward Dataflow Analysis}
- Meaning of analysis results is given by an abstraction function AF:ST \(\rightarrow \mathrm{P}\)
- Require that for all states s
\[
\mathrm{AF}(\mathrm{~s}) \leq \mathrm{in}_{\mathrm{n}}
\]
where n is program point where the execution is located in state s , and \(\mathrm{in}_{\mathrm{n}}\) is the abstract value before that point.

\section*{Sign Analysis Example}

Sign analysis - compute sign of each variable \(v\)
- Base Lattice: flat lattice on \(\{-\),zero, +\(\}\)

- Actual lattice records a value for each variable
- Example element: \([\mathrm{a} \rightarrow+, \mathrm{b} \rightarrow\) zero, \(\mathrm{c} \rightarrow-\) ]

\section*{Interpretation of Lattice Values}

If value of \(v\) in lattice is:
- BOT: no information about the sign of \(v\)
- -: variable \(v\) is negative
- zero: variable v is 0
-+ : variable \(v\) is positive
- TOP: v may be positive or negative or 0

\section*{Operation \(\otimes\) on Lattice}
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(\otimes\) & BOT & - & zero & + & TOP \\
\hline BOT & BOT & - & zero & + & TOP \\
\hline- & - & + & zero & - & TOP \\
\hline zero & zero & zero & zero & zero & zero \\
\hline+ & + & - & zero & + & TOP \\
\hline TOP & TOP & TOP & zero & TOP & TOP \\
\hline
\end{tabular}

\section*{Transfer Functions}

Defined by structural induction on the shape of nodes:
- If \(n\) of the form \(v=c\)
- \(\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow+]\) if c is positive
- \(\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow\) zero \(]\) if c is 0
- \(\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow-]\) if c is negative
- If \(n\) of the form \(v_{1}=v_{2} * v_{3}\)
- \(\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}\left[\mathrm{v}_{1} \rightarrow \mathrm{x}\left[\mathrm{v}_{2}\right] \otimes \mathrm{x}\left[\mathrm{v}_{3}\right]\right]\)

\section*{Abstraction Function}
- \(\operatorname{AF}(\mathrm{s})[\mathrm{v}]=\) sign of v
\(-\mathrm{AF}([\mathrm{a} \rightarrow 5, \mathrm{~b} \rightarrow 0, \mathrm{c} \rightarrow-2])=[\mathrm{a} \rightarrow+, \mathrm{b} \rightarrow\) zero, \(\mathrm{c} \rightarrow-]\)
- Establishes meaning of the analysis results
- If analysis says a variable \(v\) has a given sign
- then v always has that sign in actual execution.
- Two sources of imprecision
- Abstraction Imprecision - concrete values (integers) abstracted as lattice values (-,zero, and +)
- Control Flow Imprecision - one lattice value for all different possible flow of control possibilities

Kostis Sagonas
55 Spring 2006

\section*{General Sources of Imprecision}
- Abstraction Imprecision
- Lattice values less precise than execution values
- Abstraction function throws away information
- Control Flow Imprecision
- Analysis result has a single lattice value to summarize results of multiple concrete executions
- Join operation \(\vee\) moves up in lattice to combine values from different execution paths
- Typically if \(x \leq y\), then \(x\) is more precise than \(y\)

Kostis Sagonas
57
Spring 2006

\section*{Why Have Imprecision?}

ANSWER: To make analysis tractable
- Conceptually infinite sets of values in execution
- Typically abstracted by finite set of lattice values
- Execution may visit infinite set of states
- Abstracted by computing joins of different paths

Kostis Sagonas
. Spring 2006

\section*{Meet Over All Paths Solution}
- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path \(\mathrm{p}=\mathrm{n}_{0}, \mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}, \mathrm{n}\) to a node n (note that for all \(\mathrm{i}, \mathrm{n}_{\mathrm{i}} \in \operatorname{pred}\left(\mathrm{n}_{\mathrm{i}+1}\right)\) )
- The solution must take this path into account:
\[
\mathrm{f}_{\mathrm{p}}(\perp)=\left(\mathrm{f}_{\mathrm{nk}}\left(\mathrm{f}_{\mathrm{nk}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{n}}\right.
\]
- So the solution must have the property that
\[
\vee\left\{\mathrm{f}_{\mathrm{p}}(\perp) \mid \mathrm{p} \text { is a path to } \mathrm{n}\right\} \leq \mathrm{in}_{\mathrm{n}}
\] and ideally
\[
\vee\left\{\mathrm{f}_{\mathrm{p}}(\perp) \mid \mathrm{p} \text { is a path to } \mathrm{n}\right\}=\mathrm{in}_{\mathrm{n}}
\]

\section*{Soundness Proof of Analysis Algorithm}

Property to prove:
For all paths p to \(\mathrm{n}, \mathrm{f}_{\mathrm{p}}(\perp) \leq \mathrm{in}_{\mathrm{n}}\)
- Proof is by induction on the length of \(p\)
- Uses monotonicity of transfer functions
- Uses following lemma

\section*{Lemma:}

The worklist algorithm produces a solution such that if \(\mathrm{n} \in \operatorname{pred}(\mathrm{m})\) then out \({ }_{\mathrm{n}} \leq \mathrm{in}_{\mathrm{m}}\)

Kostis Sagonas

\section*{Induction Step Proof}
- \(\mathrm{p}=\mathrm{n}_{0}, \ldots, \mathrm{n}_{\mathrm{k}}, \mathrm{n}\)
- Must show \(\left(\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{n}}\right.\)
- By induction, \(\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{nk}}\)
- Apply \(f_{k}\) to both sides.

By monotonicity, we get:
\[
\left(\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{f}_{\mathrm{k}}\left(\mathrm{in}_{\mathrm{nk}}\right)=\operatorname{out}_{\mathrm{nk}}\right.
\]
- By lemma, out \({ }_{n k} \leq \mathrm{in}_{\mathrm{n}}\)
- By transitivity, \(\left(\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{n}}\right.\)

Kostis Sagonas

\section*{Lack of Distributivity Example}

Integer Constant Propagation (ICP)
- Flat lattice on integers

- Actual lattice records a value for each variable
- Example element: \([\mathrm{a} \rightarrow 3, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 5\) ]

\section*{Transfer Functions}
- If n of the form \(\mathrm{v}=\mathrm{c}\)
\(-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow \mathrm{c}]\)
- If \(n\) of the form \(v_{1}=v_{2}+v_{3}\)
\(-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}\left[\mathrm{v}_{1} \rightarrow \mathrm{x}\left[\mathrm{v}_{2}\right]+\mathrm{x}\left[\mathrm{v}_{3}\right]\right]\)
- Lack of distributivity of ICP
- Consider transfer function \(f\) for \(c=a+b\)
\(-\mathrm{f}([\mathrm{a} \rightarrow 3, \mathrm{~b} \rightarrow 2]) \vee \mathrm{f}([\mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 3])=[\mathrm{a} \rightarrow \mathrm{TOP}, \mathrm{b} \rightarrow\) TOP, \(\mathrm{c} \rightarrow 5]\)
\(-\mathrm{f}([\mathrm{a} \rightarrow 3, \mathrm{~b} \rightarrow 2] \vee[\mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 3])=\mathrm{f}([\mathrm{a} \rightarrow\) TOP, \(\mathrm{b} \rightarrow\) TOP \(])=\) \([\mathrm{a} \rightarrow \mathrm{TOP}, \mathrm{b} \rightarrow \mathrm{TOP}, \mathrm{c} \rightarrow \mathrm{TOP}]\)

\section*{Distributivity}
- Distributivity preserves precision
- If framework is distributive, then the worklist algorithm produces the meet over paths solution - For all n:
\[
\vee\left\{\mathrm{f}_{\mathrm{p}}(\perp) \mid \mathrm{p} \text { is a path to } \mathrm{n}\right\}=\mathrm{in}_{\mathrm{n}}
\]


\section*{Summary}
- Formal dataflow analysis framework
- Lattices, partial orders
- Transfer functions, joins and splits
- Dataflow equations and fixed point solutions
- Connection with program
- Abstraction function AF: \(\mathrm{S} \rightarrow \mathrm{P}\)
- For any state \(s\) and program point \(n, \operatorname{AF}(\mathrm{~s}) \leq \mathrm{in}_{\mathrm{n}}\)
- Meet over paths solutions, distributivity

Kostis Sagonas```

