
# **Global Register Allocation**

#### Lecture Outline

- Memory Hierarchy Management
- Register Allocation via Graph Coloring
  - Register interference graph
  - Graph coloring heuristics
  - Spilling
- Cache Management

# The Memory Hierarchy



### Managing the Memory Hierarchy

- Programs are written as if there are only two kinds of memory: main memory and disk
- Programmer is responsible for moving data from disk to memory (e.g., file I/O)
- Hardware is responsible for moving data between memory and caches
- Compiler is responsible for moving data between memory and registers

#### **Current Trends**

- Power usage limits
  - Size and speed of registers/caches
  - Speed of processors
    - Improves faster than memory speed (and disk speed)
    - The cost of a cache miss is growing
    - The widening gap between processors and memory is bridged with more levels of caches
- It is very important to:
  - Manage registers properly
  - Manage caches properly
- Compilers are good at managing registers

#### The Register Allocation Problem

- Recall that intermediate code uses as many temporaries as necessary
  - This complicates final translation to assembly
  - But simplifies code generation and optimization
  - Typical intermediate code uses too many temporaries
- The register allocation problem:
  - Rewrite the intermediate code to use at most as many temporaries as there are machine registers
  - Method: Assign multiple temporaries to a register
    - But without changing the program behavior

### History

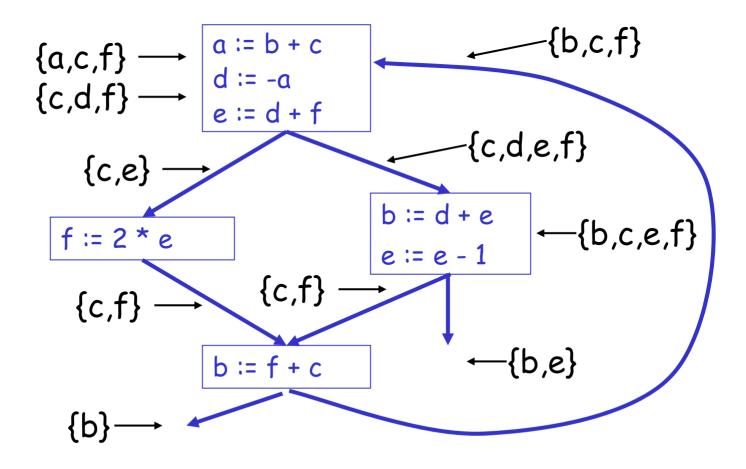
- Register allocation is as old as intermediate code
  - Register allocation was used in the original FORTRAN compiler in the '50s
  - Very crude algorithms
- A breakthrough was not achieved until 1980
  - Register allocation scheme based on graph coloring
  - Relatively simple, global, and works well in practice

### An Example

Consider the program

 a := c + d
 e := a + b
 f := e - 1

with the assumption that a and e die after use

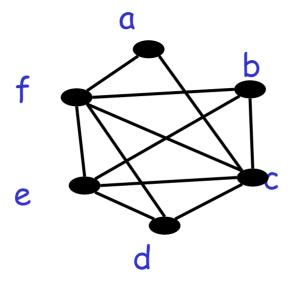

- Temporary a can be "reused" after "a + b"
- Same with temporary e after "e 1"
- Can allocate a, e, and f all to one register (r<sub>1</sub>):

```
r_1 := r_2 + r_3
r_1 := r_1 + r_4
r_1 := r_1 - 1
```

#### **Basic Register Allocation Idea**

- The value in a dead temporary is not needed for the rest of the computation
  - A dead temporary can be reused
- Basic rule:

Temporaries  $t_1$  and  $t_2$  can share the same register if at all points in the program at <u>most one</u> of  $t_1$  or  $t_2$  is live ! Compute live variables for each program point:




#### The Register Interference Graph

- Two temporaries that are live simultaneously cannot be allocated in the same register
- We construct an undirected graph with
  - A node for each temporary
  - An edge between  $t_1$  and  $t_2$  if they are live simultaneously at some point in the program
- This is the register interference graph (RIG)
  - Two temporaries can be allocated to the same register if there is no edge connecting them

### Register Interference Graph: Example

• For our example:

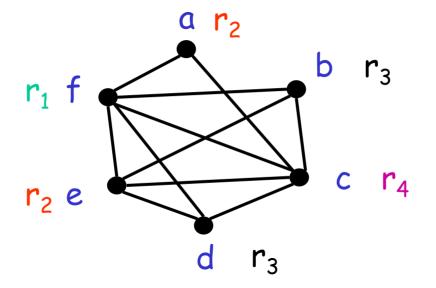


- E.g., b and c cannot be in the same register
- E.g., b and d can be in the same register

#### **Register Interference Graph: Properties**

- It extracts exactly the information needed to characterize legal register assignments
- It gives a global (i.e., over the entire flow graph) picture of the register requirements
- After RIG construction, the register allocation algorithm is architecture independent

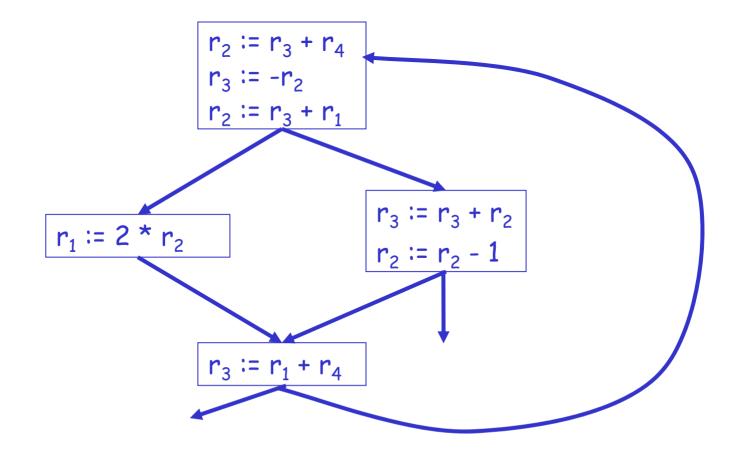
### **Graph Coloring: Definitions**


- A <u>coloring of a graph</u> is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is <u>k-colorable</u> if it has a coloring with k colors

### Register Allocation Through Graph Coloring

- In our problem, colors = registers
  - We need to assign colors (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

# Graph Coloring: Example


• Consider the example RIG



- There is no coloring with less than 4 colors
- There are various 4-colorings of this graph

### Graph Coloring: Example

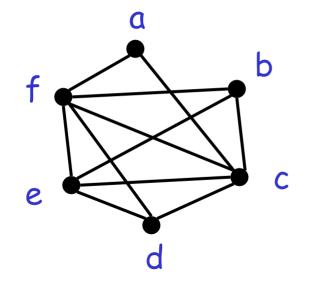
• Under this coloring the code becomes:



### **Computing Graph Colorings**

- The remaining problem is how to compute a coloring for the interference graph
- But:
  - (1) Computationally this problem is NP-hard:
    - No efficient algorithms are known
  - (2) A coloring might not exist for a given number of registers
- The solution to (1) is to use heuristics
- We will consider the other problem later

### Graph Coloring Heuristic

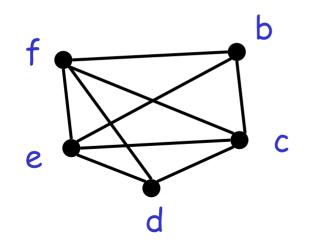

- Observation:
  - Pick a node t with fewer than k neighbors in RIG
  - Eliminate t and its edges from RIG
  - If the resulting graph has a k-coloring then so does the original graph
- Why:
  - Let c<sub>1</sub>,...,c<sub>n</sub> be the colors assigned to the neighbors of t in the reduced graph
  - Since n < k we can pick some color for t that is different from those of its neighbors

### Graph Coloring Simplification Heuristic

- The following works well in practice:
  - Pick a node t with fewer than k neighbors
  - Put t on a stack and remove it from the RIG
  - Repeat until the graph has one node
- Then start assigning colors to nodes on the stack (starting with the last node added)
  - At each step pick a color different from those assigned to already colored neighbors

# Graph Coloring Example (1)

• Start with the RIG and with k = 4:

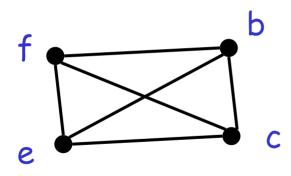



Stack: {}

• Remove a

# Graph Coloring Example (2)

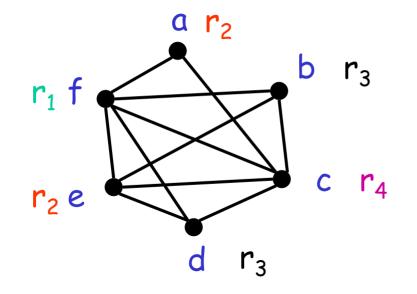
• Start with the RIG and with k = 4:



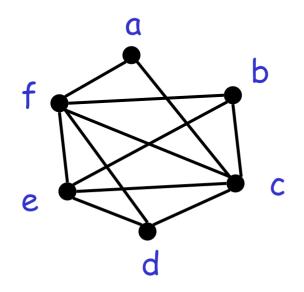

Stack: {a}

• Remove d

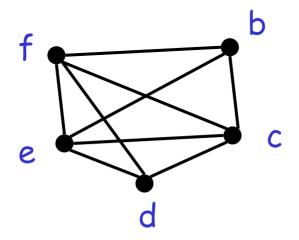
### Graph Coloring Example (3)


 Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f

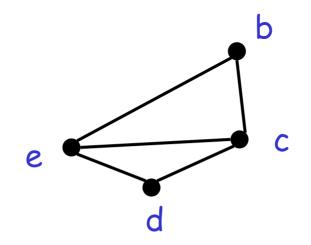



Stack: {d, a}

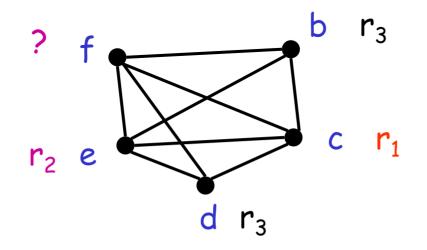
### Graph Coloring Example (4)


• Start assigning colors to: f, e, b, c, d, a




- What if during simplification we get to a state where all nodes have k or more neighbors?
- Example: try to find a 3-coloring of the RIG:



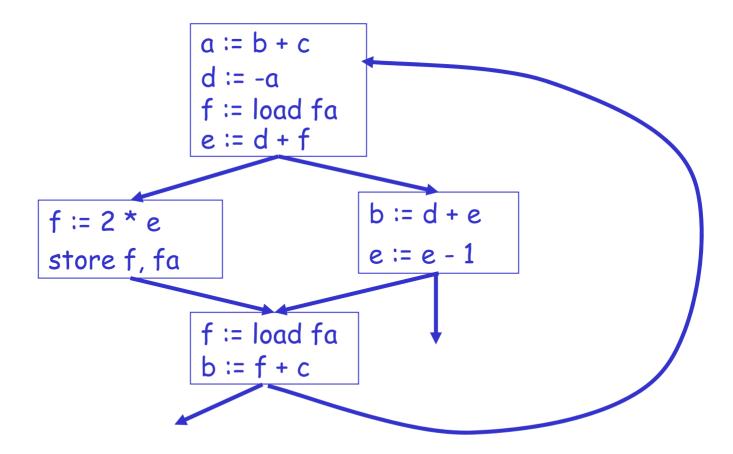

- Remove a and get stuck (as shown below)
- Pick a node as a possible candidate for spilling
  - A spilled temporary "lives" is memory
  - Assume that f is picked as a candidate



- Remove f and continue the simplification
  - Simplification now succeeds: b, d, e, c

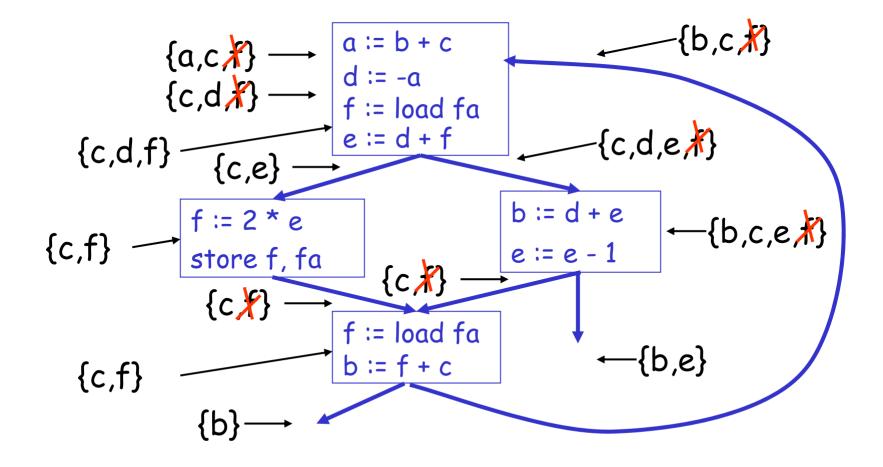


- On the assignment phase we get to the point when we have to assign a color to f
- We hope that among the 4 neighbors of f we used less than 3 colors  $\Rightarrow$  <u>optimistic coloring</u>




# Spilling

- Since optimistic coloring failed, we must spill temporary f (actual spill)
- We must allocate a memory location as the "home" of f
  - Typically this is in the current stack frame
  - Call this address fa
- Before each operation that uses f, insert
   f := load fa
- After each operation that defines f, insert store f, fa

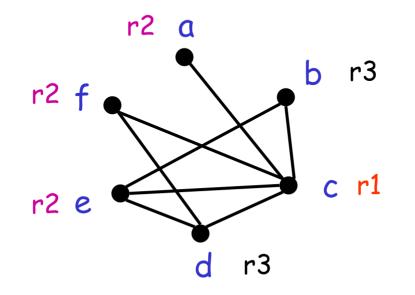

# Spilling: Example

• This is the new code after spilling f



#### **Recomputing Liveness Information**

The new liveness information after spilling:




### **Recomputing Liveness Information**

- New liveness information is almost as before
- f is live only
  - Between a f := load fa and the next instruction
  - Between a store f, fa and the preceding instruction
- Spilling reduces the live range of f
  - And thus reduces its interferences
  - Which results in fewer RIG neighbors for f

#### **Recompute RIG After Spilling**

- The only changes are in removing some of the edges of the spilled node
- In our case f now interferes only with c and d
- And now the resulting RIG is 3-colorable



# Spilling Notes

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- Possible heuristics:
  - Spill temporaries with most conflicts
  - Spill temporaries with few definitions and uses
  - Avoid spilling in inner loops
- Any heuristic is correct

#### Precolored Nodes

- Precolored nodes are nodes which are a priori bound to actual machine registers
- These nodes are usually used for some specific (time-critical) purpose, e.g.:
  - for the frame pointer
  - for the first N arguments (N=2,3,4,5)

### Precolored Nodes (Cont.)

- For each color, there should be only one precolored node with that color; all precolored nodes usually interfere with each other
- We can give an ordinary temporary the same color as a precolored node as long as it does not interfere with it
- However, we cannot simplify or spill precolored nodes; we thus treat them as having "infinite" degree

### Effects of Global Register Allocation

#### Reduction in % for MIPS C Compiler

|          |        | total        | scalar       |
|----------|--------|--------------|--------------|
| Program  | cycles | loads/stores | loads/stores |
| boyer    | 37.6   | 76.9         | 96.2         |
| diff     | 40.6   | 69.4         | 92.5         |
| yacc     | 31.2   | 67.9         | 84.4         |
| nroff    | 16.3   | 49.0         | 54.7         |
| ccom     | 25.0   | 53.1         | 67.2         |
| upas     | 25.3   | 48.2         | 70.9         |
| as1      | 30.5   | 54.6         | 70.8         |
| Geo Mean | 28.4   | 59.0         | 75.4         |

# Managing Caches

- Compilers are very good at managing registers
  - Much better than a programmer could be
- Compilers are not good at managing caches
  - This problem is still left to programmers
  - It is still an open question whether a compiler can do anything general to improve performance
- Compilers can, and a few do, perform some simple cache optimization

#### **Cache Optimization**

Consider the loop
 for (j = 1; j < 10; j++)
 for (i = 1; i < 1000; i++)
 a[i] \*= b[i]</pre>

This program has terrible cache performance
 Why?

### Cache Optimization (Cont.)

- Consider now the program:
   for (i = 1; i < 1000; i++)</li>
   for (j = 1; j < 10; j++)</li>
   a[i] \*= b[i]
  - Computes the same thing
  - But with much better cache behavior
  - Might actually be more than 10x faster
- A compiler can perform this optimization
  - called *loop interchange*

#### Conclusions

- Register allocation is a "must have" optimization in most compilers:
  - Because intermediate code uses too many temporaries
  - Because it makes a big difference in performance
- Graph coloring is a powerful register allocation scheme (with many variations on the heuristics)
- Register allocation is more complicated for CISC machines