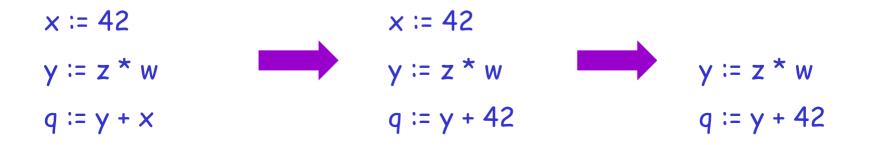
Lecture Outline

- Global flow analysis
- Global constant propagation
- Liveness analysis

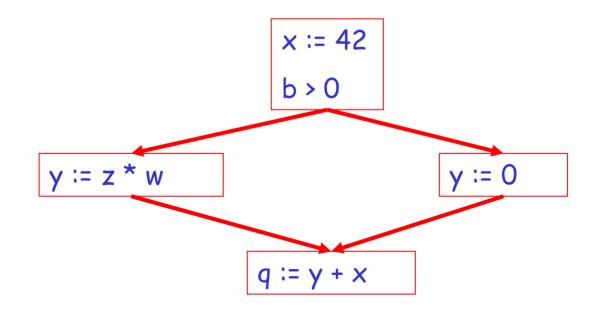
Local Optimization

Recall the simple basic-block optimizations

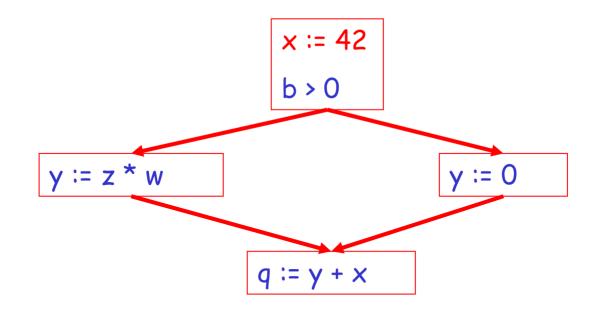
- Constant propagation
- Dead code elimination



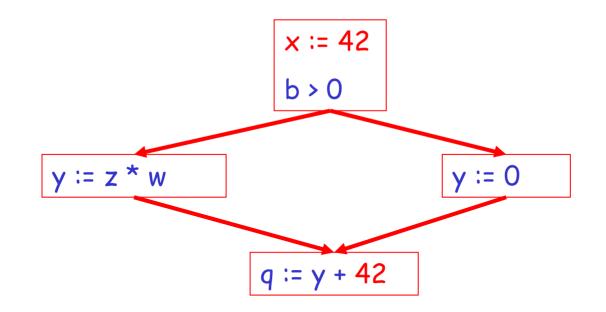
These optimizations can be extended to an entire control-flow graph



These optimizations can be extended to an entire control-flow graph

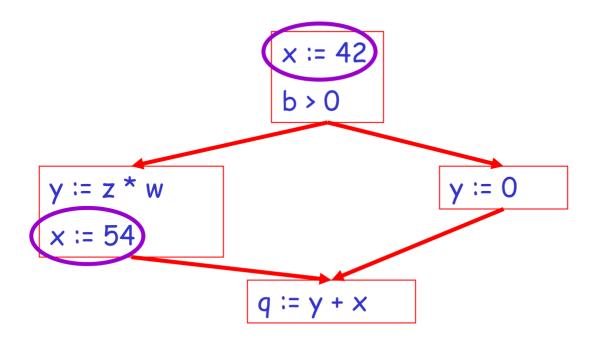


These optimizations can be extended to an entire control-flow graph



Correctness

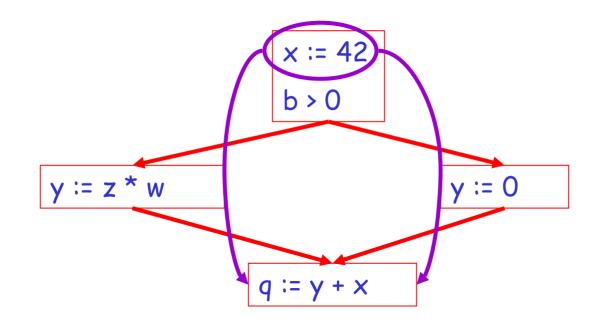
- How do we know whether it is OK to globally propagate constants?
- There are situations where it is incorrect:



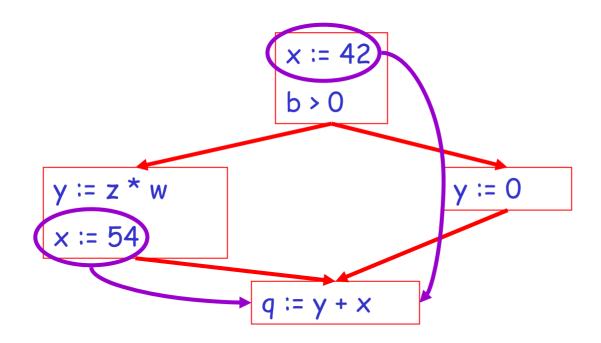
To replace a use of x by a constant k we must know that the following property ** holds:

> On every path to the use of x, the last assignment to x is x := k **

Example 1 Revisited



Example 2 Revisited



Discussion

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
 - An analysis that determines how data flows over the entire control-flow graph

Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property P at a particular point in program execution
- Proving P at any point requires knowledge of the entire function body
- It is OK to be <u>conservative</u>: If the optimization requires P to be true, then want to know either
 - that P is definitely true, or
 - that we don't know whether P is true
- It is always safe to say "don't know"

- Global dataflow analysis is a standard technique for solving problems with these characteristics
- Global constant propagation is one example of an optimization that requires global dataflow analysis

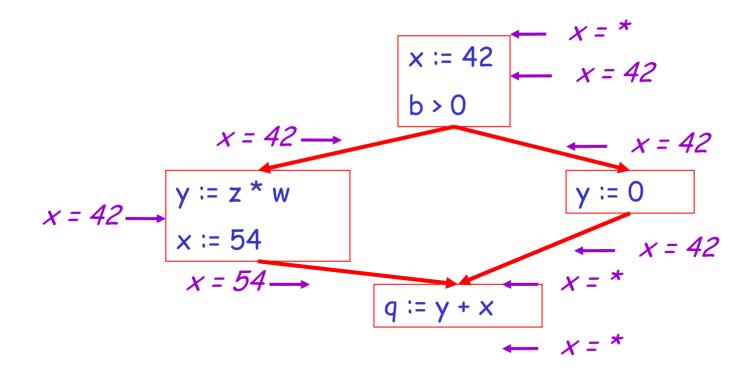
Global Constant Propagation

- Global constant propagation can be performed at any point where property ** holds
- Consider the case of computing ** for a single variable x at all program points

Global Constant Propagation (Cont.)

 To make the problem precise, we associate one of the following values with x at every program point

value	interpretation
#	This statement never executes
С	× = constant c
*	Don't know whether \mathbf{x} is a constant



Using the Information

- Given global constant information, it is easy to perform the optimization
 - Simply inspect the x = ? associated with a statement using x
 - If x is constant at that point replace that use of x by the constant
- But how do we compute the properties x = ?

The analysis of a (complicated) program can be expressed as a combination of simple rules relating the change in information between adjacent statements

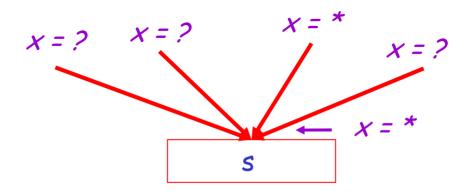
Explanation

- The idea is to "push" or "transfer" information from one statement to the next
- For each statement s, we compute information about the value of x immediately before and after s

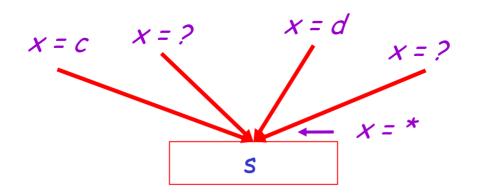
$$C_{in}(x,s)$$
 = value of x before s
 $C_{out}(x,s)$ = value of x after s

Transfer Functions

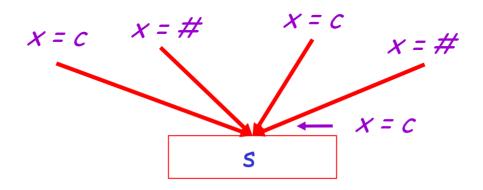
- Define a <u>transfer function</u> that transfers information from one statement to another
- In the following rules, let statement s have as immediate predecessors statements p₁,...,p_n



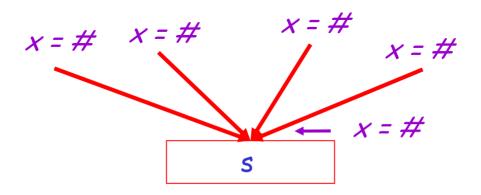
if $C_{out}(x, p_i) = *$ for any i, then $C_{in}(x, s) = *$



If $C_{out}(x, p_i) = c$ and $C_{out}(x, p_j) = d$ and $d \neq c$ then $C_{in}(x, s) = *$



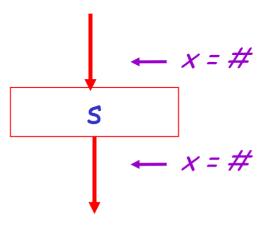
if
$$C_{out}(x, p_i) = c$$
 or # for all i,
then $C_{in}(x, s) = c$



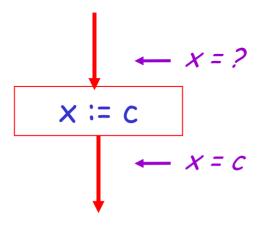
if
$$C_{out}(x, p_i) = #$$
 for all i,
then $C_{in}(x, s) = #$

The Other Half

- Rules 1-4 relate the *out* of one statement to the *in* of the successor statement
- We also need rules relating the *in* of a statement to the *out* of the same statement



$$C_{out}(x, s) = #$$
 if $C_{in}(x, s) = #$



$C_{out}(x, x \coloneqq c) = c$ if c is a constant

$$\leftarrow x = ?$$

$$x := f(...)$$

$$\leftarrow x = *$$

$$C_{out}(x, x := f(...)) = *$$

This rule says that we do not perform inter-procedural analysis (i.e. we do not look at what other functions do)

$$x = a$$

$$y := \dots$$

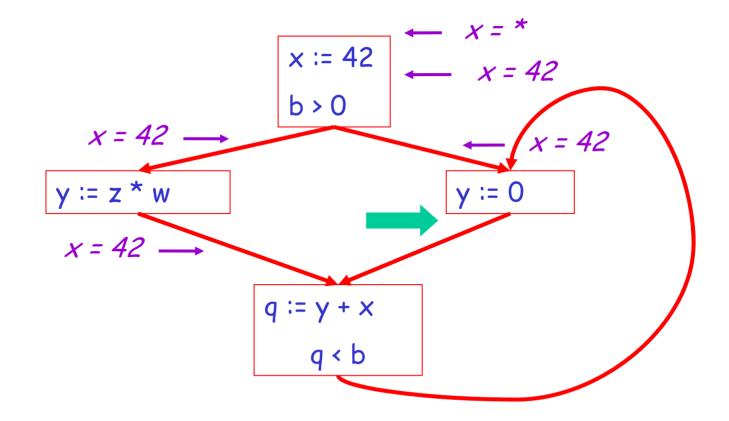
$$x = a$$

$$C_{out}(x, y := ...) = C_{in}(x, y := ...)$$
 if $x \neq y$

An Algorithm

- For every entry s to the function, set C_{in}(x, s) = *
- 2. Set $C_{in}(x, s) = C_{out}(x, s) = #$ everywhere else
- 3. Repeat until all points satisfy 1-8: Pick s not satisfying 1-8 and update using the appropriate rule

To understand why we need #, look at a loop

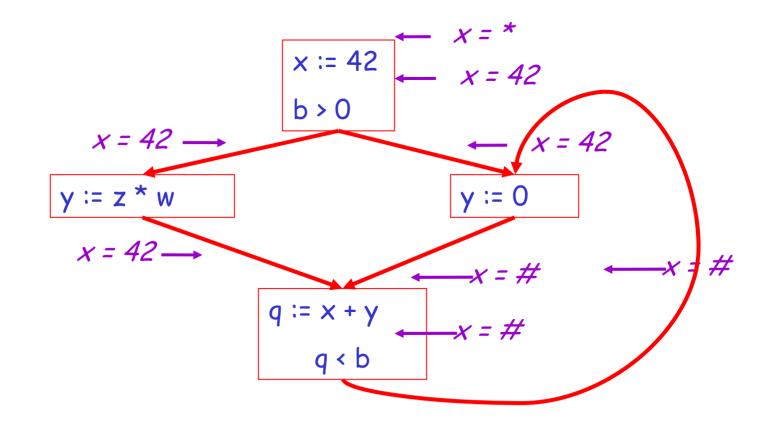


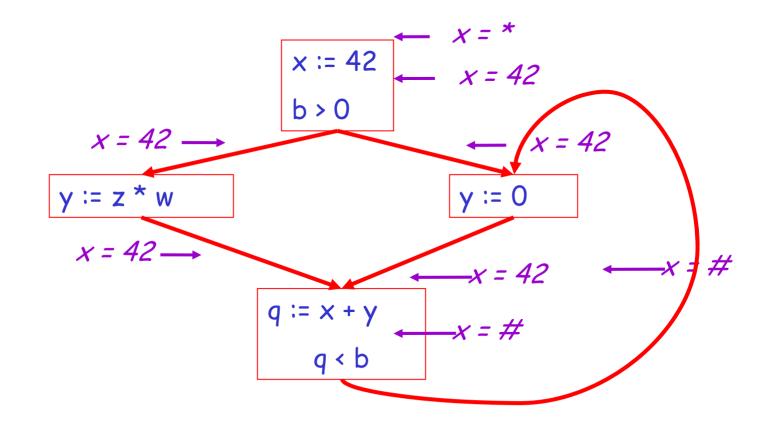
Discussion

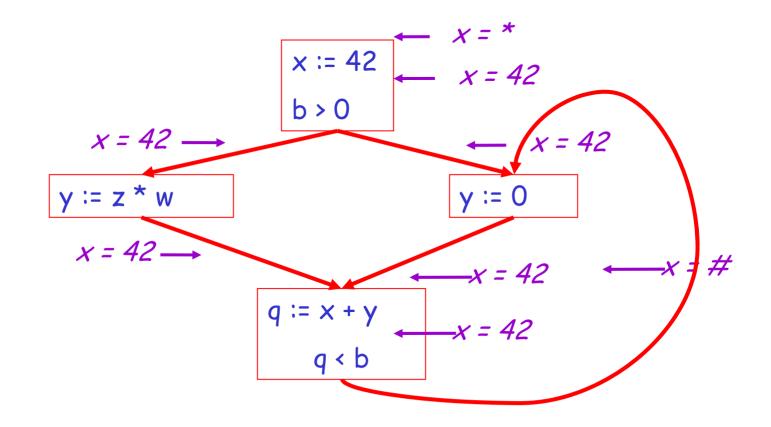
- Consider the statement y := 0
- To compute whether x is constant at this point, we need to know whether x is constant at the two predecessors
 - x := 42
 - q := y + x
- But information for q := y + x depends on its predecessors, including y := 0!

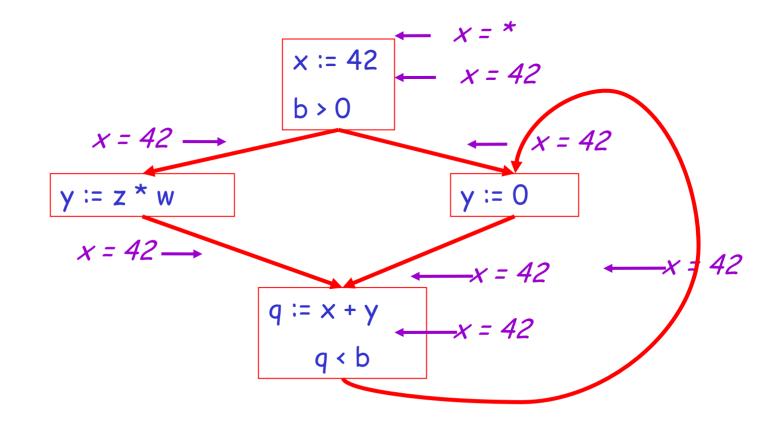
The Value # (Cont.)

- Because of cycles, all points must have values at all times
- Intuitively, assigning some initial value allows the analysis to break cycles
- The initial value # means "So far as we know, control never reaches this point"





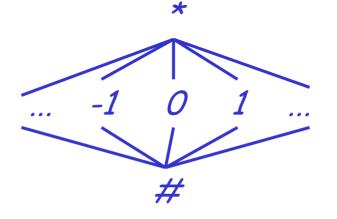




 We can simplify the presentation of the analysis by ordering the values

 Drawing a picture with "lower" values drawn lower, we get

< c < *



Orderings (Cont.)

- * is the greatest value, # is the least
 - All constants are in between and incomparable
- Let <u>lub</u> be the least-upper bound in this ordering
- Rules 1-4 can be written using lub:
 C_{in}(x, s) = lub { C_{out}(x, p) | p is a predecessor of s }

Termination

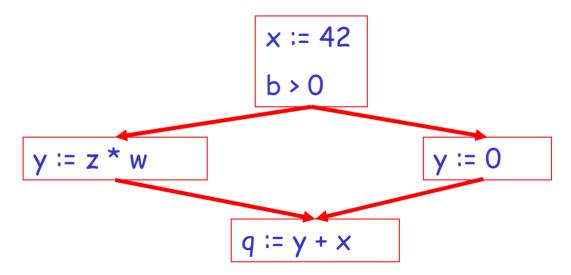
- Simply saying "repeat until nothing changes" doesn't guarantee that eventually we reach a point where nothing changes
- The use of lub explains why the algorithm terminates
 - Values start as # and only *increase*
 - # can change to a constant, and a constant to *
 - Thus, $C_{(x, s)}$ can change at most twice

Thus the algorithm is linear in program size

Number of steps = Number of C_(....) values computed * 2 = Number of program statements * 4

Liveness Analysis

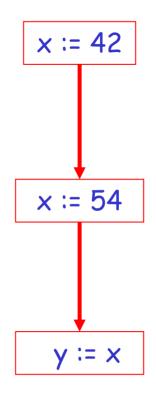
Once constants have been globally propagated, we would like to eliminate dead code



After constant propagation, x := 42 is dead (assuming x is not used elsewhere)

Live and Dead Variables

- The first value of x is dead (never used)
- The second value of x is live (may be used)
- Liveness is an important concept for the compiler



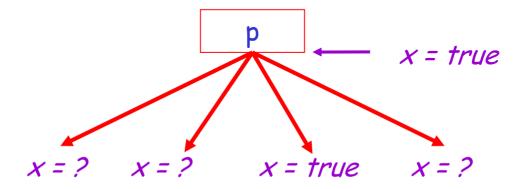
A variable x is live at statement s if

- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x

Global Dead Code Elimination

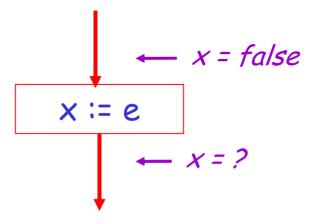
- A statement x := ... is dead code if x is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

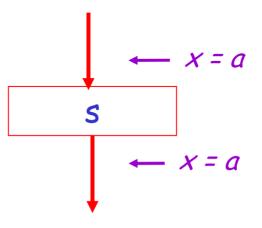


 $L_{out}(x, p) = \bigvee \{ L_{in}(x, s) \mid s \text{ a successor of } p \}$

 $L_{in}(x, s) = true$ if s refers to x on the RHS



 $L_{in}(x, x := e) = false$ if e does not refer to x



 $L_{in}(x, s) = L_{out}(x, s)$ if s does not refer to x

- 1. Let all L_(...) = false initially
- Repeat until all statements s satisfy rules 1-4
 Pick s where one of 1-4 does not hold and update using the appropriate rule

Termination

- A value can change from false to true, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis information is computed, it is simple to eliminate dead code

We have seen two kinds of analysis:

- An analysis that enables constant propagation:
 - this is a *forwards* analysis: information is pushed from inputs to outputs
- An analysis that calculates variable liveness:
 - this is a *backwards* analysis: information is pushed from outputs back towards inputs

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points