
Intermediate Code &
 Local Optimizations

2

Lecture Outline

•

Intermediate code

•

Local optimizations

3

Code Generation Summary

•

We have so far discussed
–

Runtime organization

–

Simple stack machine code generation
–

Improvements to stack machine code generation

•

Our compiler goes directly from the abstract
syntax tree (AST) to assembly language...
–

... and does not perform optimizations

–

(optimization is the last compiler phase, which is by
far the largest and most complex these days)

•

Most real compilers use intermediate
languages

4

Why Intermediate Languages?

ISSUE:ISSUE:

When to perform optimizations
–

On abstract syntax trees

•

Pro: Machine independent
•

Con: Too high level

–

On assembly language
•

Pro: Exposes most optimization opportunities

•

Con: Machine dependent
•

Con: Must re-implement optimizations when re-targeting

–

On an intermediate language
•

Pro: Exposes optimization opportunities

•

Pro: Machine independent

5

Why Intermediate Languages?

•

Have many front-ends into a single back-end
–

gcc

can handle C, C++, Java, Fortran, Ada, ...

–

each front-end translates source to the same
generic language (called GENERIC)

•

Have many back-ends from a single front-end
–

Do most optimization on intermediate representation
before emitting code targeted at a single machine

6

Kinds of Intermediate Languages

High-level intermediate representations:
–

closer to the source language; e.g., syntax trees

–

easy to generate from the input program
–

code optimizations may not be straightforward

Low-level intermediate representations:
–

closer to target machine; e.g., P-Code, U-Code (used
in PA-RISC and MIPS), GCC’s

RTL, 3-address code

–

easy to generate code from
–

generation from input program may require effort

“Mid”-level intermediate representations:
–

Java bytecode, Microsoft CIL, LLVM IR, ...

7

Intermediate Code Languages: Design Issues

•

Designing a good ICode

language is not trivial
•

The set of operators in ICode

must be rich

enough to allow the implementation of source
language operations

•

ICode

operations that are closely tied to a
particular machine or architecture, make
retargeting harder

•

A small set of operations
–

may lead to long instruction sequences for some
source language constructs,

–

but on the other hand makes retargeting easier

8

Intermediate Languages

•

Each compiler uses its own intermediate
language
–

IL design is still an active area of research

•

Nowadays, usually an intermediate language is
a high-level assembly language
–

Uses register names, but has an unlimited number

–

Uses control structures like assembly language
–

Uses opcodes

but some are higher level

•

E.g., push

translates to several assembly instructions
•

Most opcodes

correspond directly to assembly opcodes

9

Architecture of gcc

10

Three-Address Intermediate Code

•

Each instruction is of the form
x := y op z

–

y

and z can only be registers or constants
–

Just like assembly

•

Common form of intermediate code
•

The expression x + y * z

gets translated as

t1

:= y * z
t2

:= x + t1
–

temporary names are made up for internal nodes

–

each sub-expression has a “home”

11

Generating Intermediate Code

•

Similar to assembly code generation
•

Major difference
–

Use any number of IL registers to hold
intermediate results

Example: if (x + 2 > 3 * (y - 1) + 42) then z := 0;
t1 := x + 2
t2 := y -

1

t3 := 3 * t2
t4 := t3 + 42
if t1 =< t4 goto

L

z := 0
L:

12

Generating Intermediate Code (Cont.)

•

igen(e, t)

function generates code to compute
the value of e

in register t

•

Example:
igen(e1

+ e2

, t) =
igen(e1

, t1

) (t1

is a fresh register)
igen(e2

, t2

) (t2

is a fresh register)
t := t1

+ t2

•

Unlimited number of registers
⇒ simple code generation

13

An Intermediate Language

P → S P | ε
S →

id := id op id

| id := op id
| id := id
| push id
| id := pop
| if id relop

id goto

L

| L:
| goto

L

•

id’s are register names
•

Constants can replace id’s

•

Typical operators: +, -, *
•

Typical relops: =, >, >=

14

From 3-address Code to Machine Code

This is almost a macro expansion process
3-address code MIPS assembly code
x := A[i] load i into r1

la r2, A
add r2, r2, r1
lw r2, (r2)
sw r2, x

x := y + z load y into r1
load z into r2
add r3, r1, r2
sw r3, x

if x >= y goto L load x into r1
load y into r2
bge r1, r2, L

15

Basic Blocks

•

A basic block is a maximal sequence of
instructions with:
–

no labels (except at the first instruction), and

–

no jumps (except in the last instruction)

•

Idea:
–

Cannot jump into a basic block (except at beginning)

–

Cannot jump out of a basic block (except at end)
–

Each instruction in a basic block is executed after
all the preceding instructions have been executed

16

Basic Block Example

Consider the basic block
L: (1)

t := 2 * x

(2)
w := t + x

(3)

if w > 0 goto

L’

(4)

•

No way for (3) to be executed without (2)
having been executed right before
–

We can change (3) to w := 3 * x

–

Can we eliminate (2) as well?

17

Identifying Basic Blocks

•

Determine the set of leaders, i.e., the first
instruction of each basic block:
–

The first instruction of a function is a leader

–

Any instruction that is a target of a branch is a
leader

–

Any instruction immediately following a (conditional
or unconditional) branch is a leader

•

For each leader, its basic block consists of
itself and all instructions up to, but not
including, the next leader (or end of function)

18

Control-Flow Graphs

A control-flow graph is a directed graph with
–

Basic blocks as nodes

–

An edge from block A to block B if the execution
can flow from the last instruction in A to the first
instruction in B

E.g., the last instruction in A is goto

LB

E.g., the execution can fall-through from block A to block B

Frequently abbreviated as CFGs

19

Control-Flow Graphs: Example

•

The body of a function
(or procedure) can be
represented as a control-

 flow graph

•

There is one initial node

•

All “return”

nodes are
terminal

x := 1
i := 1

L:
x := x * x
i := i + 1
if i < 42 goto

L

20

Constructing the Control Flow Graph

•

Identify the basic blocks of the function
•

There is a directed edge between block B1

to
block B2

if
–

there is a (conditional or unconditional) jump from
the last instruction of B1 to the first instruction of
B2

or
–

B2 immediately follows B1 in the textual order of
the program, and B1 does not end in an unconditional
jump.

21

Optimization Overview

•

Optimization seeks to improve a program’s
utilization of some resource
–

Execution time (most often)

–

Code size
–

Network messages sent

–

(Battery) power used, etc.

•

Optimization should not alter what the program
computes
–

The answer must still be the same

–

Observable behavior must be the same
•

this typically also includes termination behavior

22

A Classification of Optimizations

For languages like C there are three granularities
of optimizations
(1) Local optimizations

•

Apply to a basic block in isolation
(2) Global optimizations

•

Apply to a control-flow graph (function body) in isolation
(3) Inter-procedural optimizations

•

Apply across method boundaries

Most compilers do (1), many do (2) and very few do (3)

23

Cost of Optimizations

•

In practice, a conscious decision is made not
 to implement the fanciest optimization known

•

Why?
–

Some optimizations are hard to implement

–

Some optimizations are costly in terms of
compilation time

–

Some optimizations have low benefit
–

Many fancy optimizations are all three above!

•

Goal: maximum benefit for minimum cost

24

Local Optimizations

•

The simplest form of optimizations
•

No need to analyze the whole procedure body
–

Just the basic block in question

•

Example: algebraic simplification

25

Algebraic Simplification

•

Some statements can be deleted
x := x + 0
x := x * 1

•

Some statements can be simplified
x := x * 0

⇒

x := 0

y := y ** 2

⇒

y := y * y

x := x * 8

⇒

x := x << 3

x := x * 15

⇒

t := x << 4; x := t -

x

(on some machines <<

is faster than *; but not on all!)

26

Constant Folding

•

Operations on constants can be computed at
compile time

•

In general, if there is a statement
x := y op z

–

And y

and z

are constants
–

Then y op z can be computed at compile time

•

Example: x := 2 + 2

⇒

x := 4
•

Example:

if 2 < 0 goto

L can be deleted

•

When might constant folding be dangerous?

27

Flow of Control Optimizations

•

Eliminating unreachable code:
–

Code that is unreachable in the control-flow graph

–

Basic blocks that are not the target of any jump or
“fall through”

from a conditional

–

Such basic blocks can be eliminated

•

Why would such basic blocks occur?

•

Removing unreachable code makes the
program smaller
–

And sometimes also faster

•

Due to memory cache effects (increased spatial locality)

28

Single Assignment Form

•

Some optimizations are simplified if each
register occurs only once on the left-hand
side of an assignment

•

Intermediate code can be rewritten to be in
single assignment form

x := z + y b

:= z + y
a := x ⇒

a := b

x := 2 * x x := 2 * b
(b

is a fresh temporary)

•

More complicated in general, due to control
flow (e.g. loops)

29

Common Subexpression

Elimination

•

Assume
–

A basic block is in single assignment form

–

A definition x :=

is the first use of x

in a block
•

All assignments with same RHS compute the
same value

•

Example:
x := y + z x := y + z
…

⇒

…

w := y + z w := x
(the values of x,

y, and

z

do not change in the

…

code)

30

Copy Propagation

•

If w := x

appears in a block, all subsequent
uses of w

can be replaced with uses of x

•

Example:
b := z + y b := z + y
a := b ⇒

a := b

x := 2 * a x := 2 * b

•

This does not make the program smaller or
faster but might enable other optimizations
–

Constant folding

–

Dead code elimination

31

Copy Propagation and Constant Folding

•

Example:
a := 5 a := 5
x := 2 * a ⇒

x := 10

y := x + 6 y := 16
t := x * y t := x << 4

32

Copy Propagation and Dead Code Elimination

If
w := RHS

appears in a basic block

w

does not appear anywhere else in the program
Then

the statement w := RHS

is dead and can be eliminated
–

Dead

= does not contribute to the program’s result

Example: (a

is not used anywhere else)
x := z + y b := z + y b := z + y
a := x ⇒

a := b ⇒

x := 2 * b

x := 2 * x x := 2 * b

33

Applying Local Optimizations

•

Each local optimization does very little by
itself

•

Typically optimizations interact
–

Performing one optimization enables another

•

Optimizing compilers repeatedly perform
optimizations until no improvement is possible
–

The optimizer can also be stopped at any time to
limit the compilation time

34

An Example

Initial code:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

assume that only f

and g

are used in the rest of program

35

An Example

Algebraic simplification:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

36

An Example

Algebraic simplification:
a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f

37

An Example

Copy and constant propagation:
a := x * x
b := 3
c := x
d := c

* c

e := b

<< 1
f := a + d
g := e * f

38

An Example

Copy and constant propagation:
a := x * x
b := 3
c := x
d := x

* x

e := 3

<< 1
f := a + d
g := e * f

39

An Example

Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f

40

An Example

Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

41

An Example

Common subexpression

elimination:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

42

An Example

Common subexpression

elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f

43

An Example

Copy and constant propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e

* f

44

An Example

Copy and constant propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6

* f

45

An Example

Dead code elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

46

An Example

Dead code elimination:
a := x * x

f := a + a
g := 6 * f

This is the final form

47

Peephole Optimizations on Assembly Code

•

The optimizations presented before work on
intermediate code
–

They are target independent

–

But they can be applied on assembly language also

Peephole optimization is an effective technique
for improving assembly code
–

The “peephole”

is a short sequence of (usually

contiguous) instructions
–

The optimizer replaces the sequence with another
equivalent one (but faster)

48

Implementing Peephole Optimizations

•

Write peephole optimizations as replacement
rules

i1

, …, in

→ j1

, …, jm
where the RHS is the improved version of the LHS

•

Example:
move $a $b, move $b $a

→

move $a $b

–

Works if move $b $a

is not the target of a jump
•

Another example:

addiu

$a $a i, addiu

$a $a j

→ addiu

$a $a i+j

49

Peephole Optimizations

•

Redundant instruction elimination, e.g.:
.
goto

L ⇒

L:

L: . . .
. . .

•

Flow of control optimizations, e.g.:
.
goto

L1 ⇒

goto

L2

.
L1: goto

L2 L1: goto

L2

.

50

Peephole Optimizations (Cont.)

•

Many (but not all) of the basic block
optimizations can be cast as peephole
optimizations
–

Example: addiu

$a $b 0

→ move $a $b

–

Example: move $a $a

→
–

These two together eliminate addiu

$a $a 0

•

Just like for local optimizations, peephole
optimizations need to be applied repeatedly to
get maximum effect

51

Local Optimizations: Concluding Remarks

•

Intermediate code is helpful for many
optimizations

•

Many simple optimizations can still be applied
on assembly language

•

“Program optimization”

is grossly misnamed
–

Code produced by “optimizers”

is not optimal in any

reasonable sense
–

“Program improvement”

is a more appropriate term

•

Next time: global optimizations

	Intermediate Code &�Local Optimizations
	Lecture Outline
	Code Generation Summary
	Why Intermediate Languages?
	Why Intermediate Languages?
	Kinds of Intermediate Languages
	Intermediate Code Languages: Design Issues
	Intermediate Languages
	Architecture of gcc
	Three-Address Intermediate Code
	Generating Intermediate Code
	Generating Intermediate Code (Cont.)
	An Intermediate Language
	From 3-address Code to Machine Code
	Basic Blocks
	Basic Block Example
	Identifying Basic Blocks
	Control-Flow Graphs
	Control-Flow Graphs: Example
	Constructing the Control Flow Graph
	Optimization Overview
	A Classification of Optimizations
	Cost of Optimizations
	Local Optimizations
	Algebraic Simplification
	Constant Folding
	Flow of Control Optimizations
	Single Assignment Form
	Common Subexpression Elimination
	Copy Propagation
	Copy Propagation and Constant Folding
	Copy Propagation and Dead Code Elimination
	Applying Local Optimizations
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	Peephole Optimizations on Assembly Code
	Implementing Peephole Optimizations
	Peephole Optimizations
	Peephole Optimizations (Cont.)
	Local Optimizations: Concluding Remarks

