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Lecture Outline

•
 

Intermediate code

•
 

Local optimizations



3

Code Generation Summary

•
 

We have so far discussed
–

 
Runtime organization

–
 

Simple stack machine code generation
–

 
Improvements to stack machine code generation

•
 

Our compiler goes directly from the abstract 
syntax tree (AST) to assembly language...
–

 
... and does not perform optimizations

–
 

(optimization is the last compiler phase, which is by 
far the largest and most complex these days)

•
 

Most real compilers use intermediate 
languages
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Why Intermediate Languages?

ISSUE:ISSUE:
 

When to perform optimizations
–

 
On abstract syntax trees

•
 

Pro: Machine independent
•

 
Con: Too high level

–
 

On assembly language
•

 
Pro: Exposes most optimization opportunities

•
 

Con: Machine dependent
•

 
Con: Must re-implement optimizations when re-targeting

–
 

On an intermediate language
•

 
Pro: Exposes optimization opportunities 

•
 

Pro: Machine independent
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Why Intermediate Languages?

•
 

Have many front-ends into a single back-end
–

 
gcc

 
can handle C, C++, Java, Fortran, Ada, ...

–
 

each front-end translates source to the same 
generic language (called GENERIC)

•
 

Have many back-ends from a single front-end
–

 
Do most optimization on intermediate representation 
before emitting code targeted at a single machine
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Kinds of Intermediate Languages

High-level intermediate representations:
–

 
closer to the source language; e.g., syntax trees

–
 

easy to generate from the input program
–

 
code optimizations may not be straightforward

Low-level intermediate representations:
–

 
closer to target machine; e.g., P-Code, U-Code (used 
in PA-RISC and MIPS), GCC’s

 
RTL, 3-address code

–
 

easy to generate code from
–

 
generation from input program may require effort

“Mid”-level intermediate representations:
–

 
Java bytecode, Microsoft CIL, LLVM IR, ...



7

Intermediate Code Languages: Design Issues

•
 

Designing a good ICode
 

language is not trivial
•

 
The set of operators in ICode

 
must be rich 

enough to allow the implementation of source 
language operations

•
 

ICode
 

operations that are closely tied to a 
particular machine or architecture, make 
retargeting harder

•
 

A small set of operations
–

 
may lead to long instruction sequences for some 
source language constructs,

–
 

but on the other hand makes retargeting easier
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Intermediate Languages

•
 

Each compiler uses its own intermediate 
language
–

 
IL design is still an active area of research

•
 

Nowadays, usually an intermediate language is 
a high-level assembly language
–

 
Uses register names, but has an unlimited number

–
 

Uses control structures like assembly language
–

 
Uses opcodes

 
but some are higher level

•
 

E.g., push
 

translates to several assembly instructions
•

 
Most opcodes

 
correspond directly to assembly opcodes
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Architecture of gcc
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Three-Address Intermediate Code

•
 

Each instruction is of the form
x := y op z

–
 

y
 

and z can only be registers or constants
–

 
Just like assembly 

•
 

Common form of intermediate code
•

 
The expression  x + y * z

 
gets translated as

t1
 

:= y * z
t2

 

:= x + t1
–

 
temporary names are made up for internal nodes

–
 

each sub-expression has a “home”
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Generating Intermediate Code

•
 

Similar to assembly code generation
•

 
Major difference
–

 
Use any number of IL registers to hold 
intermediate results

Example: if (x + 2 > 3 * (y - 1) + 42) then z := 0;
t1 := x + 2
t2 := y -

 
1

t3 := 3 * t2
t4 := t3 + 42
if t1 =< t4  goto

 
L

z := 0
L:
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Generating Intermediate Code (Cont.)

•
 

igen(e, t)
 

function generates code to compute 
the value of e

 
in register t

•
 

Example:
igen(e1

 

+ e2
 

, t) = 
igen(e1

 

, t1
 

)             (t1
 

is a fresh register)
igen(e2

 

, t2
 

)            (t2
 

is a fresh register)
t := t1

 

+ t2

•
 

Unlimited number of registers
⇒ simple code generation
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An Intermediate Language

P → S P | ε
S →

 
id := id op id

| id := op id
| id := id
| push id
| id := pop
| if id relop

 
id goto

 
L

| L:
| goto

 
L

•
 

id’s are register names
•

 
Constants can replace id’s

•
 

Typical operators: +, -, *
•

 
Typical relops: =, >, >=
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From 3-address Code to Machine Code

This is almost a macro expansion process
3-address code MIPS assembly code 
x := A[i] load i into r1 

la r2, A 
add r2, r2, r1 
lw r2, (r2) 
sw r2, x 

x := y + z load y into r1 
load z into r2 
add r3, r1, r2 
sw r3, x 

if x >= y goto L load x into r1 
load y into r2 
bge r1, r2, L 
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Basic Blocks

•
 

A basic block is a maximal sequence of 
instructions with: 
–

 
no labels (except at the first instruction), and 

–
 

no jumps (except in the last instruction)

•
 

Idea:
–

 
Cannot jump into a basic block (except at beginning)

–
 

Cannot jump out of a basic block (except at end)
–

 
Each instruction in a basic block is executed after 
all the preceding instructions have been executed
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Basic Block Example

Consider the basic block
L: (1)

t := 2 * x
 

(2)
w := t + x

 
(3)

if w > 0 goto
 

L’
 

(4)

•
 

No way for (3) to be executed without (2) 
having been executed right before
–

 
We can change (3) to w := 3 * x

–
 

Can we eliminate (2) as well?
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Identifying Basic Blocks

•
 

Determine the set of leaders, i.e., the first 
instruction of each basic block:
–

 
The first instruction of a function is a leader

–
 

Any instruction that is a target of a branch is a 
leader

–
 

Any instruction immediately following a (conditional 
or unconditional) branch is a leader

•
 

For each leader, its basic block consists of 
itself and all instructions up to, but not 
including, the next leader (or end of function)
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Control-Flow Graphs

A control-flow graph is a directed graph with
–

 
Basic blocks as nodes

–
 

An edge from block A to block B if the execution 
can flow from the last instruction in A to the first 
instruction in B

E.g., the last instruction in A is goto
 

LB

E.g., the execution can fall-through from block A to block B

Frequently abbreviated as CFGs
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Control-Flow Graphs: Example

•
 

The body of a function 
(or procedure) can be 
represented as a control-

 flow graph

•
 

There is one initial node

•
 

All “return”
 

nodes are 
terminal

x := 1
i := 1

L:
x := x * x
i := i + 1
if i < 42 goto

 
L
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Constructing the Control Flow Graph

•
 

Identify the basic blocks of the function
•

 
There is a directed edge between block B1

 

to 
block B2

 

if
–

 
there is a (conditional or unconditional) jump from 
the last instruction of B1 to the first instruction of 
B2

 

or
–

 
B2 immediately follows B1 in the textual order of 
the program, and B1 does not end in an unconditional 
jump.
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Optimization Overview

•
 

Optimization seeks to improve a program’s 
utilization of some resource
–

 
Execution time (most often)

–
 

Code size
–

 
Network messages sent

–
 

(Battery) power used, etc.

•
 

Optimization should not alter what the program 
computes
–

 
The answer must still be the same

–
 

Observable behavior must be the same
•

 
this typically also includes termination behavior 
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A Classification of Optimizations

For languages like C there are three granularities 
of optimizations
(1) Local optimizations

•
 

Apply to a basic block in isolation
(2) Global optimizations

•
 

Apply to a control-flow graph (function body) in isolation
(3) Inter-procedural optimizations

•
 

Apply across method boundaries

Most compilers do (1), many do (2) and very few do (3)
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Cost of Optimizations

•
 

In practice, a conscious decision is made not
 to implement the fanciest optimization known

•
 

Why?
–

 
Some optimizations are hard to implement

–
 

Some optimizations are costly in terms of 
compilation time

–
 

Some optimizations have low benefit
–

 
Many fancy optimizations are all three above!

•
 

Goal: maximum benefit for minimum cost
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Local Optimizations

•
 

The simplest form of optimizations
•

 
No need to analyze the whole procedure body
–

 
Just the basic block in question

•
 

Example: algebraic simplification
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Algebraic Simplification

•
 

Some statements can be deleted
x := x + 0
x := x * 1

•
 

Some statements can be simplified
x := x * 0

 
⇒

 
x := 0

y := y ** 2
 
⇒

 
y := y * y

x := x * 8
 
⇒

 
x := x << 3

x := x * 15
 
⇒

 
t := x << 4; x := t -

 
x

(on some machines <<
 

is faster than *; but not on all!)



26

Constant Folding

•
 

Operations on constants can be computed at 
compile time

•
 

In general, if there is a statement
x := y op z

–
 

And y
 

and z
 

are constants
–

 
Then y op z can be computed at compile time

•
 

Example: x := 2 + 2
 

⇒
 

x := 4
•

 
Example:

 
if 2 < 0 goto

 
L can be deleted

•
 

When might constant folding be dangerous?
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Flow of Control Optimizations

•
 

Eliminating unreachable code:
–

 
Code that is unreachable in the control-flow graph

–
 

Basic blocks that are not the target of any jump or 
“fall through”

 
from a conditional

–
 

Such basic blocks can be eliminated

•
 

Why would such basic blocks occur?

•
 

Removing unreachable code makes the 
program smaller
–

 
And sometimes also faster

•
 

Due to memory cache effects (increased spatial locality)
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Single Assignment Form

•
 

Some optimizations are simplified if each 
register occurs only once on the left-hand 
side of an assignment

•
 

Intermediate code can be rewritten to be in 
single assignment form

x := z + y                        b
 

:= z + y
a := x               ⇒

 
a := b

x := 2 * x                       x := 2 * b
(b

 
is a fresh temporary)

•
 

More complicated in general, due to control 
flow (e.g. loops)
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Common Subexpression
 

Elimination

•
 

Assume
–

 
A basic block is in single assignment form

–
 

A definition x :=
 

is the first use of x
 

in a block
•

 
All assignments with same RHS compute the 
same value

•
 

Example:
x := y + z               x := y + z
…

 
⇒

 
…

w := y + z               w := x
(the values of x,

 
y, and

 
z

 
do not change in the

 
…

 
code)
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Copy Propagation

•
 

If w := x
 

appears in a block, all subsequent 
uses of w

 
can be replaced with uses of x

•
 

Example:
b := z + y                 b := z + y
a := b                   ⇒

 
a := b

x := 2 * a                x := 2 * b

•
 

This does not make the program smaller or 
faster but might enable other optimizations
–

 
Constant folding

–
 

Dead code elimination
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Copy Propagation and Constant Folding

•
 

Example:
a := 5                  a := 5
x := 2 * a         ⇒

 
x := 10

y := x + 6            y := 16
t := x * y             t := x << 4
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Copy Propagation and Dead Code Elimination

If 
w := RHS

 
appears in a basic block

w
 

does not appear anywhere else in the program
Then 

the statement w := RHS
 

is dead and can be eliminated
–

 
Dead

 
= does not contribute to the program’s result

Example:  (a
 

is not used anywhere else)
x := z + y        b := z + y           b := z + y
a := x          ⇒

 
a := b            ⇒

 
x := 2 * b

x := 2 * x       x := 2 * b
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Applying Local Optimizations

•
 

Each local optimization does very little by 
itself

•
 

Typically optimizations interact
–

 
Performing one optimization enables another

•
 

Optimizing compilers repeatedly perform 
optimizations until no improvement is possible
–

 
The optimizer can also be stopped at any time to 
limit the compilation time
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An Example

Initial code:
a := x ** 2 
b := 3
c := x
d := c * c
e := b * 2 
f := a + d
g := e * f

assume that only f
 

and g
 

are used in the rest of program
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An Example

Algebraic simplification:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
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An Example

Algebraic simplification:
a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f
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An Example

Copy and constant propagation:
a := x * x 
b := 3
c := x
d := c

 
* c

e := b
 

<< 1 
f := a + d
g := e * f
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An Example

Copy and constant propagation:
a := x * x 
b := 3
c := x
d := x

 
* x

e := 3
 

<< 1 
f := a + d
g := e * f
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An Example

Constant folding:
a := x * x 
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f
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An Example

Constant folding:
a := x * x 
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f
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An Example

Common subexpression
 

elimination:
a := x * x
b := 3
c := x
d := x * x
e := 6 
f := a + d
g := e * f
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An Example

Common subexpression
 

elimination:
a := x * x
b := 3
c := x
d := a
e := 6 
f := a + d
g := e * f
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An Example

Copy and constant propagation:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + d
g := e

 
* f
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An Example

Copy and constant propagation:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a
g := 6

 
* f
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An Example

Dead code elimination:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f
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An Example

Dead code elimination:
a := x * x 

f := a + a
g := 6 * f

This is the final form
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Peephole Optimizations on Assembly Code

•
 

The optimizations presented before work on 
intermediate code
–

 
They are target independent

–
 

But they can be applied on assembly language also

Peephole optimization is an effective technique 
for improving assembly code
–

 
The “peephole”

 
is a short sequence of (usually 

contiguous) instructions
–

 
The optimizer replaces the sequence with another 
equivalent one (but faster)
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Implementing Peephole Optimizations

•
 

Write peephole optimizations as replacement 
rules

i1
 

, …, in
 

→ j1
 

, …, jm
where the RHS is the improved version of the LHS

•
 

Example:
move $a $b, move $b $a

 
→

 
move $a $b

–
 

Works if move $b $a
 

is not the target of a jump
•

 
Another example:

addiu
 

$a $a i, addiu
 

$a $a j
 

→ addiu
 

$a $a i+j
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Peephole Optimizations

•
 

Redundant instruction elimination, e.g.:
. . .                           . . .
goto

 
L       ⇒

 
L:

L:                                 . . .
. . .

•
 

Flow of control optimizations, e.g.:
. . .                           . . .
goto

 
L1       ⇒

 
goto

 
L2

. . .                           . . .
L1: goto

 
L2             L1: goto

 
L2

. . .                          . . .
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Peephole Optimizations (Cont.)

•
 

Many (but not all) of the basic block 
optimizations can be cast as peephole 
optimizations
–

 
Example: addiu

 
$a $b 0

 
→ move $a $b

–
 

Example: move $a $a
 

→
–

 
These two together eliminate addiu

 
$a $a 0

•
 

Just like for local optimizations, peephole 
optimizations need to be applied repeatedly to 
get maximum effect
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Local Optimizations: Concluding Remarks

•
 

Intermediate code is helpful for many 
optimizations

•
 

Many simple optimizations can still be applied 
on assembly language

•
 

“Program optimization”
 

is grossly misnamed
–

 
Code produced by “optimizers”

 
is not optimal in any 

reasonable sense
–

 
“Program improvement”

 
is a more appropriate term

•
 

Next time: global optimizations
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