LR Parsing
LALR Parser Generators
Outline

• Review of bottom-up parsing

• Computing the parsing DFA

• Using parser generators
Bottom-up Parsing (Review)

- A bottom-up parser rewrites the input string to the start symbol
- The state of the parser is described as
 \[\alpha \mid \gamma \]
 - \(\alpha \) is a stack of terminals and non-terminals
 - \(\gamma \) is the string of terminals not yet examined
- Initially: \(\text{l } x_1 x_2 \ldots x_n \)
The Shift and Reduce Actions (Review)

• Recall the CFG: \(E \rightarrow \text{int} \mid E + (E) \)

• A bottom-up parser uses two kinds of actions:

 • **Shift** pushes a terminal from input on the stack
 \[
 E + (\text{int}) \rightarrow E + (\text{int})
 \]

 • **Reduce** pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)
 \[
 E + (E + (E) \text{int}) \rightarrow E + (E \text{int})
 \]
Key Issue: When to Shift or Reduce?

- Idea: use a deterministic finite automaton (DFA) to decide when to shift or reduce
 - The input is the stack
 - The language consists of terminals and non-terminals

- We run the DFA on the stack and we examine the resulting state X and the token tok after I
 - If X has a transition labeled tok then shift
 - If X is labeled with “$A \rightarrow \beta$ on tok” then reduce
LR(1) Parsing: An Example

E → int on $, +

I int + (int) + (int)$ shift
int I + (int) + (int)$ E → int
E + (int) + (int)$ shift (x3)
E + (E) + (int)$ E → int
E + (int)$ shift
E + (int)$ E → int
E + (E)$ shift
E + (E)$ shift
E + (E)$ accept

E → E + (E)

E → E + (E)
Representing the DFA

• Parsers represent the DFA as a 2D table
 - Recall table-driven lexical analysis
• Lines correspond to DFA states
• Columns correspond to terminals and non-terminals
• Typically columns are split into:
 - Those for terminals: the action table
 - Those for non-terminals: the goto table
Representing the DFA: Example

The table for a fragment of our DFA:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>+</th>
<th>(</th>
<th></th>
<th>$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s4</td>
<td>g6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>r_E \rightarrow \text{int}</td>
<td>r_E \rightarrow \text{int}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>s8</td>
<td>s7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>r_E \rightarrow E+(E)</td>
<td>r_E \rightarrow E+(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **State 3:** (E → int on), +
- **State 4:** int
- **State 5:** (E → int on), +
- **State 6:** E → E + (E)
- **State 7:** E → E + (E)

Key:
- sk is shift and goto state k
- r_X \rightarrow \alpha is reduce
- gk is goto state k
The LR Parsing Algorithm

• After a shift or reduce action we rerun the DFA on the entire stack
 - This is wasteful, since most of the work is repeated

• Remember for each stack element on which state it brings the DFA

• LR parser maintains a stack
 \[
 \langle \text{sym}_1, \text{state}_1 \rangle \ldots \langle \text{sym}_n, \text{state}_n \rangle
 \]

 \text{state}_k \text{ is the final state of the DFA on } \text{sym}_1 \ldots \text{sym}_k
The LR Parsing Algorithm

let I = w$ be initial input
let j = 0
let DFA state 0 be the start state
let stack = ⟨ dummy, 0 ⟩
 repeat
 case action[top_state(stack), I[j]] of
 shift k: push ⟨ I[j++], k ⟩
 reduce X → A:
 pop |A| pairs,
 push ⟨ X, goto[top_state(stack), X] ⟩
 accept: halt normally
 error: halt and report error
Key Issue: How is the DFA Constructed?

- The stack describes the context of the parse
 - What non-terminal we are looking for
 - What production RHS we are looking for
 - What we have seen so far from the RHS

- Each DFA state describes several such contexts
 - E.g., when we are looking for non-terminal E, we might be looking either for an int or an E + (E) RHS
LR(0) Items

• An LR(0) item is a production with a “i” somewhere on the RHS

• The items for $T \rightarrow (E)$ are
 $T \rightarrow I \ (E)$
 $T \rightarrow (I \ E)$
 $T \rightarrow (E \ I)$
 $T \rightarrow (E) \ I$

• The only item for $X \rightarrow \varepsilon$ is $X \rightarrow I$
LR(0) Items: Intuition

• An item \([X \rightarrow \alpha \mid \beta]\) says that
 - the parser is looking for an \(X\)
 - it has an \(\alpha\) on top of the stack
 - Expects to find a string derived from \(\beta\) next in the input

• Notes:
 - \([X \rightarrow \alpha \mid a\beta]\) means that \(a\) should follow. Then we can shift it and still have a viable prefix
 - \([X \rightarrow \alpha \mid \lambda]\) means that we could reduce \(X\)
 • But this is not always a good idea!
LR(1) Items

- An LR(1) item is a pair:
 \[X \rightarrow \alpha \mid \beta, \ a \]
 - \(X \rightarrow \alpha \beta \) is a production
 - \(a \) is a terminal (the lookahead terminal)
 - LR(1) means 1 lookahead terminal
- \([X \rightarrow \alpha \mid \beta, a]\) describes a context of the parser
 - We are trying to find an \(X \) followed by an \(a \), and
 - We have (at least) \(\alpha \) already on top of the stack
 - Thus we need to see next a prefix derived from \(\beta a \)
Note

• The symbol $|$ was used before to separate the stack from the rest of input
 - $\alpha | \gamma$, where α is the stack and γ is the remaining string of terminals

• In items $|$ is used to mark a prefix of a production RHS:
 \[X \rightarrow \alpha | \beta, \quad \alpha \]
 - Here β might contain terminals as well

• In both case the stack is on the left of $|$
Convention

• We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
 - Where E is the old start symbol

• The initial parsing context contains:

 \[S \rightarrow _ E _ , $ \]

 - Trying to find an S as a string derived from $E$$_$
 - The stack is empty
LR(1) Items (Cont.)

• In context containing
 \[E \rightarrow E + \cdot (E), + \]
 - If (follows then we can perform a shift to context containing
 \[E \rightarrow E + (\cdot E), + \]

• In context containing
 \[E \rightarrow E + (E)\cdot, + \]
 - We can perform a reduction with \(E \rightarrow E + (E) \)
 - But only if a + follows
• Consider the item
 \[E \rightarrow E + (_E) , + \]
• We expect a string derived from \(E) + \)
• There are two productions for \(E \)
 \[E \rightarrow \text{int} \quad \text{and} \quad E \rightarrow E + (E) \]
• We describe this by extending the context with two more items:
 \[E \rightarrow _\text{int} \quad ,) \]
 \[E \rightarrow _E + (E) ,) \]
The Closure Operation

- The operation of extending the context with items is called the closure operation

\[\text{Closure}(\text{Items}) = \]
\[\text{repeat} \]
\[\text{for each } [X \rightarrow \alpha | Y \beta, a] \text{ in Items} \]
\[\text{for each production } Y \rightarrow \gamma \]
\[\text{for each } b \text{ in } \text{First}(\beta a) \]
\[\text{add } [Y \rightarrow I \gamma, b] \text{ to Items} \]
\[\text{until Items is unchanged} \]
Constructing the Parsing DFA (1)

- Construct the start context:

 Closure({\textit{S} → \textit{I} \textit{E}, \$})

\[
\begin{align*}
\textit{S} & \rightarrow \textit{I} \textit{E} \quad , \$ \\
\textit{E} & \rightarrow \textit{I} \textit{E}+(\textit{E}), \$ \\
\textit{E} & \rightarrow \textit{I} \text{int} \quad , \$ \\
\textit{E} & \rightarrow \textit{I} \textit{E}+(\textit{E}), + \\
\textit{E} & \rightarrow \textit{I} \text{int} \quad , + \\
\end{align*}
\]

- We abbreviate as:

\[
\begin{align*}
\textit{S} & \rightarrow \textit{I} \textit{E} \quad , \$ \\
\textit{E} & \rightarrow \textit{I} \textit{E}+(\textit{E}) \quad , $/+$ \\
\textit{E} & \rightarrow \textit{I} \text{int} \quad , $/+$ \\
\end{align*}
\]

\[
\textit{E} \rightarrow \textit{E}+(\textit{E}) \mid \text{int}
\]
Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items

- The start state contains $[S \rightarrow I\ E\ ,\]$

- A state that contains $[X \rightarrow \alpha\ I\ ,\ b]$ is labelled with "reduce with $X \rightarrow \alpha$ on b"

- And now the transitions ...
The DFA Transitions

- A state “State” that contains \([X \rightarrow \alpha | y\beta, b]\) has a transition labeled \(y\) to a state that contains the items “\(\text{Transition(State, y)}\)”
 - \(y\) can be a terminal or a non-terminal

\[
\text{Transition(State, y)}
\]
\[
\text{Items} = \emptyset
\]
\[
\text{for each } [X \rightarrow \alpha | y\beta, b] \text{ in State}
\]
\[
\text{add } [X \rightarrow \alpha y | \beta, b] \text{ to Items}
\]
\[
\text{return Closure(Items)}
\]
Constructing the Parsing DFA: Example

\[
S \to 1 E , $ \\
E \to 1 E+(E), $/+ \\
E \to 1 int , $/+ \\
\]

\[
E \to 1 \text{int } 1, $/+ \\
E \to 1 \text{int } 1(E), $/+ \\
E \to 1 \text{int } 1(E)+(E), $/+ \\
E \to 1 \text{int } 1(E)+,)/+ \\
\]

\[
S \to E 1 , $ \\
E \to E 1+(E), $/+ \\
\]

\[
E \to E+(E 1), $/+ \\
E \to E+(E 1)+(E), $/+ \\
E \to E+(E 1)+,)/+ \\
E \to E+(E 1)+,)/+ \\
\]

\[
E \to int 1,)/+ \\
E \to int 1(E), $/+ \\
E \to int 1(E)+(E), $/+ \\
E \to int 1(E)+,)/+ \\
\]

and so on…

accept on $
LR Parsing Tables: Notes

• Parsing tables (i.e., the DFA) can be constructed automatically for a CFG

• But we still need to understand the construction to work with parser generators
 - E.g., they report errors in terms of sets of items

• What kind of errors can we expect?
Shift/Reduce Conflicts

- If a DFA state contains both
 \([X \rightarrow \alpha \mid a\beta, b]\) and \([Y \rightarrow \gamma \mid, a]\)

- Then on input “a” we could either
 - Shift into state \([X \rightarrow \alpha a \mid \beta, b]\), or
 - Reduce with \(Y \rightarrow \gamma\)

- This is called a shift-reduce conflict
Shift/Reduce Conflicts

• Typically due to ambiguities in the grammar
• Classic example: the dangling else
 \[S \rightarrow \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S \mid \text{OTHER} \]
• Will have DFA state containing
 \[[S \rightarrow \text{if } E \text{ then } S \mid \text{else}], \quad [S \rightarrow \text{if } E \text{ then } S \mid \text{else } S, \quad x] \]
• If else follows then we can shift or reduce
• Default (yacc, ML-yacc, etc.) is to shift
 - Default behavior is as needed in this case
More Shift/Reduce Conflicts

- Consider the ambiguous grammar
 \[E \rightarrow E + E \mid E * E \mid \text{int} \]
- We will have the states containing
 \[[E \rightarrow E * I \ E, +] \quad [E \rightarrow E * E I, +] \]
 \[[E \rightarrow I \ E + E, +] \Rightarrow^E [E \rightarrow E I + E, +] \]

 ...

- Again we have a shift/reduce on input +
 - We need to reduce (* binds more tightly than +)
 - Recall solution: declare the precedence of * and +
More Shift/Reduce Conflicts

• In yacc declare precedence and associativity:
 %left +
 %left *

• Precedence of a rule = that of its last terminal
 See yacc manual for ways to override this default

• Resolve shift/reduce conflict with a shift if:
 - no precedence declared for either rule or terminal
 - input terminal has higher precedence than the rule
 - the precedences are the same and right associative
Using Precedence to Solve S/R Conflicts

• Back to our example:

\[
\begin{align*}
E & \rightarrow E \ast I E, +] \quad E \rightarrow E \ast E I, +] \\
E & \rightarrow I E + E, +] \Rightarrow^E \quad E \rightarrow E I + E, +]
\end{align*}
\]

...

• Will choose reduce because precedence of rule \(E \rightarrow E \ast E \) is higher than of terminal +
Using Precedence to Solve S/R Conflicts

• Same grammar as before
 \[E \rightarrow E + E \mid E \ast E \mid \text{int} \]

• We will also have the states
 \[[E \rightarrow E + I E, \ +] \quad [E \rightarrow E + E I, \ +] \]
 \[[E \rightarrow I E + E, \ +] \quad [E \rightarrow E I + E, \ +] \]
 \[\Rightarrow^E \quad \ldots \quad \ldots \]

• Now we also have a shift/reduce on input +
 - We choose reduce because \[E \rightarrow E + E \] and + have the same precedence and + is left-associative
Using Precedence to Solve S/R Conflicts

• Back to our dangling else example

 \[S \rightarrow \text{if } E \text{ then } S \text{ I, else] } \]

 \[S \rightarrow \text{if } E \text{ then } S \text{ I else } S, \ x] \]

• Can eliminate conflict by declaring else having higher precedence than then

• But this starts to look like “hacking the tables”

• Best to avoid overuse of precedence declarations or we will end with unexpected parse trees
Precedence Declarations Revisited

The term “precedence declaration” is misleading!

These declarations do not define precedence: they define conflict resolutions
I.e., they instruct shift-reduce parsers to resolve conflicts in certain ways
The two are not quite the same thing!
Reduce/Reduce Conflicts

• If a DFA state contains both
 \[X \rightarrow \alpha \ I, a \] and \[Y \rightarrow \beta \ I, a \]
 - Then on input “a” we don’t know which production to reduce

• This is called a reduce/reduce conflict
Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers

\[S \rightarrow \varepsilon \mid \text{id} \mid \text{id} \ S \]

- There are two parse trees for the string \text{id}

\[S \rightarrow \text{id} \]
\[S \rightarrow \text{id} \ S \rightarrow \text{id} \]

- How does this confuse the parser?
More on Reduce/Reduce Conflicts

• Consider the states

\[
\begin{align*}
[S \rightarrow \text{id l, } \$] & \quad [S \rightarrow \text{id l S, } \$] \\
[S' \rightarrow \text{l S, } \$] & \quad [S \rightarrow \text{id l S, } \$] \\
[S \rightarrow \text{l, } \$] & \quad \Rightarrow^{\text{id}} [S \rightarrow \text{l, } \$] \\
[S \rightarrow \text{l id, } \$] & \quad [S \rightarrow \text{l id, } \$] \\
[S \rightarrow \text{l id S, } \$] & \quad [S \rightarrow \text{l id S, } \$]
\end{align*}
\]

• Reduce/reduce conflict on input $$

S' \rightarrow S \rightarrow \text{id}
\]

\[
S' \rightarrow S \rightarrow \text{id S} \rightarrow \text{id}
\]

• Better rewrite the grammar as: \[
S \rightarrow \varepsilon \mid \text{id S}
\]
Using Parser Generators

- Parser generators automatically construct the parsing DFA given a CFG
 - Use precedence declarations and default conventions to resolve conflicts
 - The parser algorithm is the same for all grammars (and is provided as a library function)

- But most parser generators do not construct the DFA as described before
 - Because the LR(1) parsing DFA has 1000s of states even for a simple language
LR(1) Parsing Tables are Big

• But many states are similar, e.g.

\[
\begin{align*}
E & \rightarrow \text{int} \ 1, \ $/+ \\
E & \rightarrow \text{int} \ \text{on} \ $, \ + \\
E & \rightarrow \text{int} \ 1, \)/+ \\
E & \rightarrow \text{int} \ \text{on} \), \ +
\end{align*}
\]

and

\[
\begin{align*}
E & \rightarrow \text{int} \ 1, \ $/+ \\
E & \rightarrow \text{int} \ \text{on} \ $, \ +, \)
\end{align*}
\]

• Idea: merge the DFA states whose items differ only in the lookahead tokens
 - We say that such states have the same core

• We obtain
The Core of a Set of LR Items

Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals

• Example: the core of

\[
\{[X \rightarrow \alpha | \beta, b], [Y \rightarrow \gamma | \delta, d]\}
\]

is

\[
\{X \rightarrow \alpha | \beta, Y \rightarrow \gamma | \delta\}
\]
LALR States

• Consider for example the LR(1) states
 \{[X \rightarrow \alpha I, a], [Y \rightarrow \beta I, c]\}
 \{[X \rightarrow \alpha I, b], [Y \rightarrow \beta I, d]\}
• They have the same core and can be merged
• And the merged state contains:
 \{[X \rightarrow \alpha I, a/b], [Y \rightarrow \beta I, c/d]\}
• These are called LALR(1) states
 - Stands for LookAhead LR
 - Typically 10 times fewer LALR(1) states than LR(1)
A LALR(1) DFA

• Repeat until all states have distinct core
 - Choose two distinct states with same core
 - Merge the states by creating a new one with the union of all the items
 - Point edges from predecessors to new state
 - New state points to all the previous successors
Conversion LR(1) to LALR(1): Example.
The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states

 \{[X \rightarrow \alpha I, a], [Y \rightarrow \beta I, b]\}

 \{[X \rightarrow \alpha I, b], [Y \rightarrow \beta I, a]\}

- And the merged LALR(1) state

 \{[X \rightarrow \alpha I, a/b], [Y \rightarrow \beta I, a/b]\}

- Has a new reduce/reduce conflict

- In practice such cases are rare
LALR vs. LR Parsing: Things to keep in mind

• LALR languages are not natural
 - They are an efficiency hack on LR languages

• Any reasonable programming language has a LALR(1) grammar

• LALR(1) parsing has become a standard for programming languages and for parser generators
A Hierarchy of Grammar Classes

From Andrew Appel, "Modern Compiler Implementation in ML"
Semantic Actions in LR Parsing

• We can now illustrate how semantic actions are implemented for LR parsing
• Keep attributes on the stack

• On shifting a, push attribute for a on stack
• On reduce $X \rightarrow \alpha$
 - pop attributes for α
 - compute attribute for X
 - and push it on the stack
Performing Semantic Actions: Example

Recall the example

\[
E \rightarrow T + E_1 \quad \{ \text{E.val = T.val + E}_1\text{.val} \}
\]

\[
\mid T \quad \{ \text{E.val = T.val} \}
\]

\[
T \rightarrow \text{int} \cdot T_1 \quad \{ \text{T.val = int.val \cdot T}_1\text{.val} \}
\]

\[
\mid \text{int} \quad \{ \text{T.val = int.val} \}
\]

Consider the parsing of the string: \(4 \cdot 9 + 6\)
Performing Semantic Actions: Example

int * int + int	shift		
int₄	* int + int	shift	
int₄	* int + int	shift	
int₄	int₉	+ int	reduce T → int * T
int₄	T₉	+ int	reduce T → int
T₃₆	+ int	shift	
T₃₆ +	int	shift	
T₃₆ + int₆	reduce T → int		
T₃₆ + T₆	reduce E → T		
T₃₆ + E₆	reduce E → T + E		
E₄₂	accept		

4 * 9 + 6
Notes

• The previous example shows how synthesized attributes are computed by LR parsers

• It is also possible to compute inherited attributes in an LR parser
Notes on Parsing

• Parsing
 - A solid foundation: context-free grammars
 - A simple parser: LL(1)
 - A more powerful parser: LR(1)
 - An efficiency hack: LALR(1)
 - LALR(1) parser generators

• Next time we move on to semantic analysis
Supplement to LR Parsing

Strange Reduce/Reduce Conflicts due to LALR Conversion (and how to handle them)
Strange Reduce/Reduce Conflicts

- Consider the grammar

\[
S \rightarrow P \ R \ , \quad NL \rightarrow N \ | \ N \ , \ NL \\
P \rightarrow T \ | \ NL : T \\
R \rightarrow T \ | \ N : T \\
N \rightarrow \text{id} \\
T \rightarrow \text{id}
\]

- **P** - parameters specification
- **R** - result specification
- **N** - a parameter or result name
- **T** - a type name
- **NL** - a list of names
Strange Reduce/Reduce Conflicts

• In P an id is a
 - N when followed by , or :
 - T when followed by id
• In R an id is a
 - N when followed by :
 - T when followed by ,
• This is an LR(1) grammar
• But it is not LALR(1). Why?
 - For obscure reasons
A Few LR(1) States

1. \(P \rightarrow IT \) id
 \(P \rightarrow INL : T \) id
 \(T \rightarrow iid \) id
 \(NL \rightarrow IN : \)
 \(NL \rightarrow IN, NL : \)
 \(N \rightarrow iid : \)
 \(N \rightarrow iid , \)

2. \(R \rightarrow IT , \)
 \(R \rightarrow IN : T , \)
 \(T \rightarrow iid , \)
 \(N \rightarrow iid : \)

3. \(T \rightarrow iid id \)
 \(N \rightarrow iid : \)
 \(N \rightarrow iid , \)

4. \(T \rightarrow iid id /, \)
 \(N \rightarrow iid : /, \)

LALR reduce/reduce conflict on "","
What Happened?

- Two distinct states were confused because they have the same core
- Fix: add dummy productions to distinguish the two confused states
- E.g., add

 \[R \rightarrow \text{id bogus} \]

 - \textit{bogus} is a terminal not used by the lexer
 - This production will never be used during parsing
 - But it distinguishes \(R \) from \(P \)
A Few LR(1) States After Fix

Different cores ⇒ no LALR merging