Abstract Syntax Trees
&
Top-Down Parsing
Review of Parsing

• Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree

• Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes how $s \in L(G)$
 - Ambiguity: more than one parse tree (possible interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?
Abstract Syntax Trees

• So far, a parser traces the derivation of a sequence of tokens
• The rest of the compiler needs a structural representation of the program
• **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Trees (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]
- And the string
 \[5 + (2 + 3) \]
- After lexical analysis (a list of tokens)
 \[\text{int}_5 \ ' + ' \ '(' \ \text{int}_2 \ '+ ' \ \text{int}_3 \ ')' \]
- During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes
Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - more compact and easier to use
- An important data structure in a compiler
Semantic Actions

• This is what we will use to construct ASTs

• Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \) \{ action \}
 - That can refer to or compute symbol attributes
Semantic Actions: An Example

• Consider the grammar

\[E \rightarrow \text{int} \mid E + E \mid (E) \]

• For each symbol \(X \) define an attribute \(X.\text{val} \)

 - For terminals, \(\text{val} \) is the associated lexeme

 - For non-terminals, \(\text{val} \) is the expression’s value
 (which is computed from values of subexpressions)

• We annotate the grammar with actions:

\[
\begin{align*}
E \rightarrow \text{int} & \quad \{ E.\text{val} = \text{int.}\text{val} \} \\
| E_1 + E_2 & \quad \{ E.\text{val} = E_1.\text{val} + E_2.\text{val} \} \\
| (E_1) & \quad \{ E.\text{val} = E_1.\text{val} \}
\end{align*}
\]
Semantic Actions: An Example (Cont.)

- String: $5 + (2 + 3)$
- Tokens: int$_5$ '+' '(' int$_2$ '+' int$_3$ ')'

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E \rightarrow E_1 + E_2$</td>
<td>$E.val = E_1.val + E_2.val$</td>
</tr>
<tr>
<td>$E_1 \rightarrow \text{int}_5$</td>
<td>$E_1.val = \text{int}_5.val = 5$</td>
</tr>
<tr>
<td>$E_2 \rightarrow (E_3)$</td>
<td>$E_2.val = E_3.val$</td>
</tr>
<tr>
<td>$E_3 \rightarrow E_4 + E_5$</td>
<td>$E_3.val = E_4.val + E_5.val$</td>
</tr>
<tr>
<td>$E_4 \rightarrow \text{int}_2$</td>
<td>$E_4.val = \text{int}_2.val = 2$</td>
</tr>
<tr>
<td>$E_5 \rightarrow \text{int}_3$</td>
<td>$E_5.val = \text{int}_3.val = 3$</td>
</tr>
</tbody>
</table>
Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

- Example:
 \[E_3.val = E_4.val + E_5.val \]
 - Must compute \(E_4.val \) and \(E_5.val \) before \(E_3.val \)
 - We say that \(E_3.val \) depends on \(E_4.val \) and \(E_5.val \)

- The parser must find the order of evaluation
Each node labeled with a non-terminal E has one slot for its val attribute

Note the dependencies
Evaluating Attributes

• An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

• Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

- **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree
 - \(E.\text{val} \) is a synthesized attribute
 - Can always be calculated in a bottom-up order

- **Grammars with only synthesized attributes are called S-attributed grammars**
 - Most frequent kinds of grammars
Inherited Attributes

• Another kind of attributes
• Calculated from attributes of the parent node(s) and/or siblings in the parse tree

• Example: a line calculator
A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P \ L \]
Attributes for the Line Calculator

- Each E has a synthesized attribute val
 - Calculated as before
- Each L has a synthesized attribute val

 $L \rightarrow E =$

 $\{ L\text{.val} = E\text{.val} \}$

 $| + E =$

 $\{ L\text{.val} = E\text{.val} + L\text{.prev} \}$

- We need the value of the previous line
- We use an inherited attribute $L\text{.prev}$
Attributes for the Line Calculator (Cont.)

• Each P has a synthesized attribute val
 - The value of its last line

 $P \rightarrow \varepsilon \quad \{ \ P.val = 0 \}$

 $| \ P_1 L \quad \{ \ P.val = L.val; \$

 $L.prev = P_1.val \}$

• Each L has an inherited attribute $prev$
 - $L.prev$ is inherited from sibling $P_1.val$

• Example ...
Example of Inherited Attributes

- \textbf{val} synthesized
- \textbf{prev} inherited
- All can be computed in depth-first order
Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs

- And many other things as well
 - Also used for type checking, code generation, ...

- Process is called *syntax-directed translation*
 - Substantial generalization over CFGs
Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

\[
\text{mkleaf}(n) = \begin{cases}
\text{n}
\end{cases}
\]

\[
\text{mkplus}(\text{T}_1, \text{T}_2) = \begin{cases}
\text{PLUS}
\end{cases}
\]

Diagram:

```
  T1       T2
  |       |
  |       |
  PLUS
  |       |
  T1  T2
```
Constructing a Parse Tree

• We define a synthesized attribute ast
 - Values of ast values are ASTs
 - We assume that int.lexval is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad \{ \ E.\text{ast} = \text{mkleaf}(\text{int}.\text{lexval}) \ \} \\
| \ E_1 + E_2 \quad \{ \ E.\text{ast} = \text{mkplus}(E_1.\text{ast}, E_2.\text{ast}) \ \} \\
| (\ E_1) \quad \{ \ E.\text{ast} = E_1.\text{ast} \ \}
\]
Parse Tree Example

- Consider the string `int_5 + (int_2 + int_3)`
- A bottom-up evaluation of the `ast` attribute:
 \[E.ast = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3))) \]
Review of Abstract Syntax Trees

- We can specify language syntax using CFG
- A parser will answer whether \(s \in L(G) \)
- ... and will build a parse tree
- ... which we convert to an AST
- ... and pass on to the rest of the compiler

Next two & a half lectures:
 - How do we answer \(s \in L(G) \) and build a parse tree?
After that: from AST to assembly language
Second-Half of Lecture 5: Outline

- Implementation of parsers
- Two approaches
 - Top-down
 - Bottom-up
- Today: Top-Down
 - Easier to understand and program manually
- Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:
 \[t_2 \quad t_5 \quad t_6 \quad t_8 \quad t_9 \]

- The parse tree is constructed
 - From the top
 - From left to right
Recursive Descent Parsing

- **Consider the grammar**

 \[
 E \rightarrow T + E \mid T \\
 T \rightarrow \text{int} \mid \text{int} \times T \mid (E)
 \]

- **Token stream is:** \(\text{int}_5 \times \text{int}_2 \)

- **Start with top-level non-terminal** \(E \)

- **Try the rules for** \(E \) **in order**
Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \to T_1 + E_2$
- Then try a rule for $T_1 \to (E_3)$
 - But $($ does not match input token int_5
- Try $T_1 \to int$. Token matches.
 - But $+$ after T_1 does not match input token $*$
- Try $T_1 \to int * T_2$
 - This will match and will consume the two tokens.
 - Try $T_2 \to int$ (matches) but $+$ after T_1 will be unmatched
 - Try $T_2 \to int * T_3$ but $*$ does not match with end-of-input
- Has exhausted the choices for T_1
 - Backtrack to choice for E_0

Token stream: $int_5 * int_2$

$E \to T + E \mid T$
$T \to (E) \mid int \mid int * T$
Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow \text{int}_5 \ast T_2$ and $T_2 \rightarrow \text{int}_2$
 - With the following parse tree

$$
\begin{align*}
E_0 & \quad \mid \\
 & \quad \mid \\
T_1 & \quad \mid \\
 & \quad \mid \\
\text{int}_5 & \ast \quad \mid \\
 \quad \mid \\
T_2 & \quad \mid \\
 \quad \mid \\
\text{int}_2 & \\
\end{align*}
$$

Token stream: \(\text{int}_5 \ast \text{int}_2 \)

$E \rightarrow T + E \mid T$
$T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T$
Recursive Descent Parsing. Notes.

• Easy to implement by hand

• Somewhat inefficient (due to backtracking)

• But does not always work ...
When Recursive Descent Does Not Work

• Consider a production \(S \rightarrow S \ a \)

  ```
  bool S_1() { return S() && term(a); }
  bool S() { return S_1(); }
  ```

• \(S() \) will get into an infinite loop

• A left-recursive grammar has a non-terminal \(S \)

 \[S \rightarrow^* S \alpha \] for some \(\alpha \)

• Recursive descent does not work in such cases
Elimination of Left Recursion

• Consider the left-recursive grammar
 \[S \rightarrow S \alpha \mid \beta \]
• \(S \) generates all strings starting with a \(\beta \) and followed by any number of \(\alpha \)’s

• The grammar can be rewritten using right-recursion
 \[
 S \rightarrow \beta \ S' \\
 S' \rightarrow \alpha \ S' \mid \varepsilon
 \]
More Elimination of Left-Recursion

• In general

\[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

• Rewrite as

\[S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S' \]
\[S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \epsilon \]
General Left Recursion

• The grammar

\[
S \rightarrow A \alpha | \delta \\
A \rightarrow S \beta
\]

is also left-recursive because

\[
S \rightarrow^+ S \beta \alpha
\]

• This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]
Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically

- Unpopular because of backtracking
 - Thought to be too inefficient

- In practice, backtracking is eliminated by restricting the grammar
Predictive Parsers

- Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept **LL(k)** grammars
 - *L* means “left-to-right” scan of input
 - *L* means “leftmost derivation”
 - *k* means “predict based on k tokens of lookahead”
- In practice, **LL(1)** is used
LL(1) Languages

• In recursive-descent, for each non-terminal and input token there may be a choice of production
• LL(1) means that for each non-terminal and token there is only one production
• Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

• Recall the grammar for arithmetic expressions
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

• Hard to predict because
 - For \(T \) two productions start with \text{int}
 - For \(E \) it is not clear how to predict

• A grammar must be left-factored before it is used for predictive parsing
Left-Factoring Example

• Recall the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

• Factor out common prefixes of productions
 \[E \rightarrow TX \]
 \[X \rightarrow +E \mid \epsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow \ast T \mid \epsilon \]
LL(1) Parsing Table Example

Left-factored grammar

\[
\begin{align*}
E & \rightarrow TX \\
T & \rightarrow (E) \mid \text{int } Y \\
X & \rightarrow +E \mid \varepsilon \\
Y & \rightarrow *T \mid \varepsilon
\end{align*}
\]

The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Consider the** $[E, \text{int}]$ **entry**
 - “When current non-terminal is E and next input is int, use production $E \rightarrow T X$"
 - This production can generate an **int** in the first place

• **Consider the** $[Y,+]$ **entry**
 - “When current non-terminal is Y and current token is +, get rid of Y”
 - Y can be followed by + only in a derivation in which $Y \rightarrow \varepsilon$
LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - “There is no way to derive a string starting with * from non-terminal E”
Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at $[S,a]$
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input
LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y₁…Yₙ
 then stack ← <Y₁…Yₙ rest>;
 else error();
 <t, rest> : if t == *next++
 then stack ← <rest>;
 else error();
 until stack == <>
LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>TX</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>+E</td>
<td>ε</td>
<td>ε</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td>(E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* T</td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined

- We want to generate parsing tables from CFG
Constructing Parsing Tables (Cont.)

• If $A \rightarrow \alpha$, where in the line of A we place α?

• In the column of t where t can start a string derived from α
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in \text{First}(\alpha)$

• In the column of t if α is ε and t can follow an A
 - $S \rightarrow^* \beta A t \delta$
 - We say $t \in \text{Follow}(A)$
Computing First Sets

Definition

\[\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \} \]

Algorithm sketch

1. \(\text{First}(t) = \{ t \} \)
2. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow \varepsilon \) is a production
3. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
First Sets: Example

• Recall the grammar

\[\begin{align*}
E & \rightarrow T \, X \\
T & \rightarrow (\, E \,) \mid \text{int} \, Y \\
X & \rightarrow + \, E \mid \varepsilon \\
Y & \rightarrow * \, T \mid \varepsilon
\end{align*} \]

• First sets

\[\begin{align*}
\text{First}(\, (\,) \,) & = \{ \, (\,) \, \} \\
\text{First}(\, + \,) & = \{ \, + \, \} \\
\text{First}(\, \text{int} \,) & = \{ \, \text{int} \, \} \\
\text{First}(\, T \,) & = \{ \, \text{int}, \, (\,) \, \} \\
\text{First}(\, E \,) & = \{ \, \text{int}, \, (\,) \, \} \\
\text{First}(\, X \,) & = \{ \, +, \, \varepsilon \, \} \\
\text{First}(\, Y \,) & = \{ \, *, \, \varepsilon \, \}
\end{align*} \]
Computing Follow Sets

• **Definition**
 \[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta X t \delta \} \]

• **Intuition**
 - If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \)
 and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
 - Also if \(B \rightarrow^* \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
 - If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)
Computing Follow Sets (Cont.)

Algorithm sketch

1. $\$ \in \text{Follow}(S)$
2. $\text{First}(\beta) - \{\varepsilon\} \subseteq \text{Follow}(X)$

 For each production $A \rightarrow \alpha X \beta$
3. $\text{Follow}(A) \subseteq \text{Follow}(X)$

 For each production $A \rightarrow \alpha X \beta$ where $\varepsilon \in \text{First}(\beta)$
Follow Sets: Example

• Recall the grammar

\[
\begin{align*}
E & \rightarrow TX \\
T & \rightarrow (E) \mid \text{int } Y \\
X & \rightarrow +E \mid \varepsilon \\
Y & \rightarrow *T \mid \varepsilon
\end{align*}
\]

• Follow sets

\[
\begin{align*}
\text{Follow}(+) &= \{ \text{int, (} \} \\
\text{Follow}(*) &= \{ \text{int, (} \} \\
\text{Follow}(()) &= \{ \text{int, (} \} \\
\text{Follow}(X) &= \{ \text{int, (} \} \\
\text{Follow}(T) &= \{ \text{int, (} \} \\
\text{Follow}(Y) &= \{ \text{int, (} \} \\
\text{Follow}(\text{int}) &= \{ \text{int, (} \} \\
\text{Follow}(\text{int}) &= \{ \text{int, (} \} \\
\text{Follow}(\text{int}) &= \{ \text{int, (} \} \\
\end{align*}
\]
Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G

- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in \text{First} (\alpha)$ do
 - $T[A, t] = \alpha$
 - If $\epsilon \in \text{First} (\alpha)$, for each $t \in \text{Follow} (A)$ do
 - $T[A, t] = \alpha$
 - If $\epsilon \in \text{First} (\alpha)$ and $\$ \in \text{Follow} (A)$ do
 - $T[A, \$] = \alpha$
Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well

• Most programming language grammars are not LL(1)

• There are tools that build LL(1) tables
Review

• For some grammars there is a simple parsing strategy

 Predictive parsing

• Next time: a more powerful parsing strategy