Abstract Syntax Trees \&

Top-Down Parsing

Review of Parsing

- Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree
- Issues:
- How do we recognize that $s \in L(G)$?
- A parse tree of s describes how $s \in L(G)$
- Ambiguity: more than one parse tree (possible interpretation) for some string s
- Error: no parse tree for some string s
- How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- Abstract syntax trees
- Like parse trees but ignore some details
- Abbreviated as AST

Abstract Syntax Trees (Cont.)

- Consider the grammar

$$
E \rightarrow \operatorname{int}|(E)| E+E
$$

- And the string

$$
5+(2+3)
$$

- After lexical analysis (a list of tokens)
- During parsing we build a parse tree ...

Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
- Parentheses
- Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax \mapsto more compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we will use to construct ANTs
- Each grammar symbol may have attributes
- An attribute is a property of a programming language construct
- For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
- Written as: $X \rightarrow Y_{1} \ldots Y_{n} \quad\{$ action $\}$
- That can refer to or compute symbol attributes

Semantic Actions: An Example

- Consider the grammar

$$
E \rightarrow \operatorname{int}|E+E|(E)
$$

- For each symbol X define an attribute X.val
- For terminals, val is the associated lexeme
- For non-terminals, val is the expression's value (which is computed from values of subexpressions)
- We annotate the grammar with actions:
$\mathrm{E} \rightarrow \mathrm{int}$
\{ E.val = int.val \}
$\mid E_{1}+E_{2}$
$\left\{\right.$ E.val $=E_{1}$, val $+E_{2}$, val $\}$
$\left\{\right.$ E.val $\left.=\mathrm{E}_{1} \cdot \mathrm{val}\right\}$

Semantic Actions: An Example (Cont.)

- String: $5+(2+3)$
- Tokens: int 5 '+' (' $\mathrm{int}_{2}{ }^{\prime}+\mathrm{int}_{3}{ }^{\text {' }}$)'

Productions
$E \rightarrow E_{1}+E_{2}$
$\mathrm{E}_{1} \rightarrow \mathrm{int}_{5}$
$E_{2} \rightarrow\left(E_{3}\right)$
$\mathrm{E}_{3} \rightarrow \mathrm{E}_{4}+\mathrm{E}_{5}$
$\mathrm{E}_{4} \rightarrow \mathrm{int}_{2}$
$\mathrm{E}_{5} \rightarrow \mathrm{int}_{3}$

Equations

$$
\text { E.val }=E_{1} \cdot \mathrm{val}+E_{2} \cdot \mathrm{val}
$$

$$
\mathrm{E}_{1} \cdot \mathrm{val}=\mathrm{int}_{5} \cdot \mathrm{val}=5
$$

$$
E_{2} \cdot \mathrm{val}=E_{3} \cdot \mathrm{val}
$$

$$
E_{3} \cdot \mathrm{val}=E_{4} \cdot \mathrm{val}+E_{5} \cdot \mathrm{val}
$$

$$
\mathrm{E}_{4} \cdot \mathrm{val}=\mathrm{int}_{2} \cdot \mathrm{val}=2
$$

$$
\mathrm{E}_{5} \cdot \mathrm{val}=\mathrm{int}_{3} \cdot \mathrm{val}=3
$$

Semantic Actions: Dependencies

Semantic actions specify a system of equations

- Order of executing the actions is not specified
- Example:

$$
E_{3} \cdot \mathrm{val}=E_{4} \cdot \mathrm{val}+E_{5} \cdot \mathrm{val}
$$

- Must compute E_{4}.val and $E_{5 . v a l}$ before $E_{3 . v a l}$
- We say that $E_{3 . v a l}$ depends on E_{4}.val and $E_{5 . v a l}$
- The parser must find the order of evaluation

Dependency Graph

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
- In the previous example attributes can be computed bottom-up
- Such an order exists when there are no cycles
- Cyclically defined attributes are not legal

Semantic Actions: Notes (Cont.)

- Synthesized attributes
- Calculated from attributes of descendents in the parse tree
- E.val is a synthesized attribute
- Can always be calculated in a bottom-up order
- Grammars with only synthesized attributes are called S-attributed grammars
- Most frequent kinds of grammars

Inherited Attributes

- Another kind of attributes
- Calculated from attributes of the parent node(s) and/or siblings in the parse tree
- Example: a line calculator

A Line Calculator

- Each line contains an expression

$$
E \rightarrow \operatorname{int} \mid E+E
$$

- Each line is terminated with the $=$ sign

$$
L \rightarrow E=1+E=
$$

- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines

$$
P \rightarrow \varepsilon \mid P L
$$

Attributes for the Line Calculator

- Each E has a synthesized attribute val
- Calculated as before
- Each L has a synthesized attribute val

$$
\begin{aligned}
L \rightarrow E= & \{\text { L.val }=E . v a l\} \\
\mid+E= & \{\text { L.val }=E \cdot v a l+L . \text { prev }\}
\end{aligned}
$$

- We need the value of the previous line
- We use an inherited attribute L.prev

Attributes for the Line Calculator (Cont.)

- Each P has a synthesized attribute val
- The value of its last line

$$
\begin{aligned}
P \rightarrow \varepsilon & \{P . \text { val }=0\} \\
\mid P_{1} L & \\
& \{P . \text { val }=L . \text { val; } \\
& \text { L.prev } \left.=P_{1} \cdot \text { val }\right\}
\end{aligned}
$$

- Each L has an inherited attribute prev
- L.prev is inherited from sibling P_{1}.val
- Example ...

Example of Inherited Attributes

- val synthesized

- prev inherited
- All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
- Also used for type checking, code generation, ...
- Process is called syntax-directed translation
- Substantial generalization over CFGs

Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

$$
\text { mkleaf(n) }=\quad \mathrm{n}
$$

mkplus(

Constructing a Parse Tree

- We define a synthesized attribute as \dagger
- Values of ast values are ASTs
- We assume that int.lexval is the value of the integer lexeme
- Computed using semantic actions

$$
\begin{aligned}
E & \rightarrow \text { int } \\
& \mid E_{1}+E_{2} \\
& \mid\left(E_{1}\right)
\end{aligned}
$$

$$
\{\text { E.ast = mkleaf(int.lexval) }\}
$$

$$
\left\{\text { E.ast }=\operatorname{mkplus}\left(\mathrm{E}_{1} \cdot a s t, \mathrm{E}_{2} \cdot a s t\right)\right\}
$$

$$
\left\{\text { E.ast }=\mathrm{E}_{1} \cdot \text { ast }\right\}
$$

Parse Tree Example

- Consider the string int ${ }_{5}$ '+ '('int ${ }_{2}{ }^{\text {' }}$ ' int_{3} ')'
- A bottom-up evaluation of the ast attribute:

```
E.ast = mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))
```


Review of Abstract Syntax Trees

- We can specify language syntax using CFG
- A parser will answer whether $s \in L(G)$
- ... and will build a parse tree
- ... which we convert to an AST
- ... and pass on to the rest of the compiler
- Next two \& a half lectures:
- How do we answer $s \in L(G)$ and build a parse tree?
- After that: from AST to assembly language

Second-Half of Lecture 5: Outline

- Implementation of parsers
- Two approaches
- Top-down
- Bottom-up
- Today: Top-Down
- Easier to understand and program manually
- Then: Bottom-Up
- More powerful and used by most parser generators

Introduction to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:

$$
t_{2} t_{5} t_{6} t_{8} t_{9}
$$

- The parse tree is constructed
- From the top
- From left to right

Recursive Descent Parsing

- Consider the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow \text { int } \mid \text { int * } T \mid(E)
\end{aligned}
$$

- Token stream is: int $_{5}$ * int $_{2}$
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing. Example (Cont.)

- Try $E_{0} \rightarrow T_{1}+E_{2} \quad$ Token stream: int5 * int2
- Then try a rule for $T_{1} \rightarrow\left(E_{3}\right)$
- But (does not match input token int ${ }_{5}$
- Try $\mathrm{T}_{1} \rightarrow$ int . Token matches.
- But + after T_{1} does not match input token *
- Try $\mathrm{T}_{1} \rightarrow$ int ${ }^{*} \mathrm{~T}_{2}$
- This will match and will consume the two tokens.
- Try $T_{2} \rightarrow$ int (matches) but + after T_{1} will be unmatched
- Try $T_{2} \rightarrow$ int * T_{3} but * does not match with end-of-input
- Has exhausted the choices for $\underset{\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E} \mid \mathrm{T}, ~}{-}$
- Backtrack to choice for $\mathrm{E}_{0} \quad \mathrm{~T} \rightarrow$ (E) | int | int * T

Recursive Descent Parsing. Example (Cont.)

- Try $E_{0} \rightarrow T_{1}$
- Follow same steps as before for T_{1}
- And succeed with $T_{1} \rightarrow$ int $_{5}{ }^{*} T_{2}$ and $T_{2} \rightarrow$ int $_{2}$
- With the following parse tree

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow(\mathrm{E}) \mid \text { int } \mid \text { int } * T
\end{aligned}
$$

Recursive Descent Parsing. Notes.

- Easy to implement by hand
- Somewhat inefficient (due to backtracking)
- But does not always work ...

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S$ a
bool $\mathrm{S}_{1}()$ \{ return S() \&\& term(a); \}
bool $S()$ \{return $S_{1}()$; \}
- $S()$ will get into an infinite loop
- A left-recursive grammar has a non-terminal S $S \rightarrow+$ for some α
- Recursive descent does not work in such cases

Elimination of Left Recursion

- Consider the left-recursive grammar

$$
S \rightarrow S \alpha \mid \beta
$$

- S generates all strings starting with a β and followed by any number of α 's
- The grammar can be rewritten using rightrecursion

$$
\begin{aligned}
& S \rightarrow \beta S^{\prime} \\
& S^{\prime} \rightarrow \alpha S^{\prime} \mid \varepsilon
\end{aligned}
$$

More Elimination of Left-Recursion

- In general

$$
S \rightarrow S \alpha_{1}|\ldots| S \alpha_{n}\left|\beta_{1}\right| \ldots \mid \beta_{m}
$$

- All strings derived from S start with one of $\beta_{1}, \ldots, \beta_{m}$ and continue with several instances of $\alpha_{1}, \ldots, \alpha_{n}$
- Rewrite as

$$
\begin{aligned}
& S \rightarrow \beta_{1} S^{\prime}|\ldots| \beta_{m} S^{\prime} \\
& S^{\prime} \rightarrow \alpha_{1} S^{\prime}|\ldots| \alpha_{n} S^{\prime} \mid \varepsilon
\end{aligned}
$$

General Left Recursion

- The grammar

$$
\begin{aligned}
& S \rightarrow A \alpha \mid \delta \\
& A \rightarrow S \beta
\end{aligned}
$$

is also left-recursive because

$$
S \rightarrow^{+} S \beta \alpha
$$

- This left-recursion can also be eliminated
[See a Compilers book for a general algorithm]

Summary of Recursive Descent

- Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically
- Unpopular because of backtracking
- Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
- By looking at the next few tokens
- No backtracking
- Predictive parsers accept LL(k) grammars
- L means "left-to-right" scan of input
- L means "leftmost derivation"
- k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
- One dimension for current non-terminal to expand
- One dimension for next token
- A table entry contains one production

Predictive Parsing and Left Factoring

- Recall the grammar for arithmetic expressions

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow(E) \mid \text { int } \mid \text { int * } T
\end{aligned}
$$

- Hard to predict because
- For T two productions start with int
- For E it is not clear how to predict
- A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow(E)|\mathrm{int}| \mathrm{int} * T
\end{aligned}
$$

- Factor out common prefixes of productions

$$
\begin{aligned}
& E \rightarrow T X \\
& X \rightarrow+E \mid \varepsilon \\
& T \rightarrow(E) \mid \operatorname{int} y \\
& Y \rightarrow T \mid \varepsilon
\end{aligned}
$$

LL(1) Parsing Table Example

- Left-factored grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- The LL(1) parsing table:

	int	$*$	+	$($	$)$	$\$$
E	$T X$			$T X$		
X			$+E$		ε	ε
T	int Y			(E)		
y		$* T$	ε		ε	ε

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
- "When current non-terminal is E and next input is int, use production $E \rightarrow T X$
- This production can generate an int in the first place
- Consider the [$Y,+$] entry
- "When current non-terminal is Y and current token is + , get rid of $\mathrm{Y}^{\prime \prime}$
- Y can be followed by + only in a derivation in which $\mathrm{Y} \rightarrow \varepsilon$

LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
- Consider the [E ,*] entry
- "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
- For each non-terminal S
- We look at the next token a
- And chose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

initialize stack = <S \$> and next repeat
case stack of

$$
<X, \text { rest }>\text { : if } T[X, * \text { next }]=Y_{1} \ldots Y_{n}
$$ then stack $\leftarrow<Y_{1} \ldots Y_{n}$ rest>; else error();

<t, rest> : if $t==$ *next++ then stack \leftarrow <rest>; else error();
until stack == <>

LL(1) Parsing Example

Stack	Input	Action		
E \$	int * int \$	TX		
TX \$	int * int \$	int Y		
int $\mathrm{Y} \times$ \$	int * int \$	terminal		
y \times \$	* int \$	* T		
* X \$	* int \$	terminal		
TX \$	int \$	int y		
int Y X \$	int \$	terminal		
y \times \$	\$	ε		
X \$	\$	ε		
\$	\$	ACCEPT		,
		${ }_{\text {E TX }}$	TX	
		x^{x}	+ E	
			${ }^{(E)}$	

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$, where in the line of A we place α ?
- In the column of t where \dagger can start a string derived from α
- $\alpha \rightarrow^{*} \dagger \beta$
- We say that $\dagger \in$ First (α)
- In the column of \dagger if α is ε and \dagger can follow an A
- $S \rightarrow{ }^{*} \beta A \dagger \delta$
- We say $\dagger \in$ Follow(A)

Computing First Sets

Definition

$$
\text { First }(X)=\left\{\dagger \mid X \rightarrow^{*} \dagger \alpha\right\} \cup\left\{\varepsilon \mid X \rightarrow^{*} \varepsilon\right\}
$$

Algorithm sketch

1. First $(\dagger)=\{\dagger\}$
2. $\varepsilon \in$ First (X) if $X \rightarrow \varepsilon$ is a production
3. $\varepsilon \in$ First (X) if $X \rightarrow A_{1} \ldots A_{n}$
and $\varepsilon \in$ First $\left(A_{i}\right)$ for each $1 \leq i \leq n$
4. First $(\alpha) \subseteq$ First (X) if $X \rightarrow A_{1} \ldots A_{n} \alpha$ and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for each $1 \leq i \leq n$

First Sets: Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T X \\
& T \rightarrow(E) \mid \text { int } Y
\end{aligned}
$$

- First sets

First(() = \{ ($\}$
First(+) $=\{+\}$
First(int) $=\{$ int $\}$
First(T) $=\{$ int, ($\}$
First(E) $=\{$ int, ($\}$
First $(X)=\{+, \varepsilon\}$
First $(Y)=\{*, \varepsilon\}$

$$
\begin{aligned}
& \mathrm{X} \rightarrow+\mathrm{E} \mid \varepsilon \\
& \mathrm{Y} \rightarrow^{*} \mathrm{~T} \mid \varepsilon
\end{aligned}
$$

First(*) $=\{$ * $\}$
$\operatorname{First}())=\{)\}$

Computing Follow Sets

- Definition

$$
\text { Follow }(X)=\left\{\dagger \mid S \rightarrow^{*} \beta X \dagger \delta\right\}
$$

- Intuition
- If $X \rightarrow A B$ then First $(B) \subseteq$ Follow (A) and Follow $(X) \subseteq$ Follow (B)
- Also if $B \rightarrow{ }^{*} \varepsilon$ then $\operatorname{Follow}(X) \subseteq \operatorname{Follow}(A)$
- If S is the start symbol then $\$ \in$ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch

1. $\$ \in$ Follow(S)
2. First $(\beta)-\{\varepsilon\} \subseteq$ Follow (X)

For each production $A \rightarrow \alpha \times \beta$
3. Follow $(A) \subseteq$ Follow (X)

For each production $A \rightarrow \alpha \times \beta$ where $\varepsilon \in$ First (β)

Follow Sets: Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T X \\
& T \rightarrow(E) \mid \text { int } Y
\end{aligned}
$$

$$
\begin{aligned}
& X \rightarrow+E \mid \varepsilon \\
& Y \rightarrow * T \mid \varepsilon
\end{aligned}
$$

- Follow sets

Follow(+) $=\{$ int, ($\}$ Follow(*) $=\{$ int, ($\}$
Follow(() = \{int, ($\} \quad$ Follow (E) $=\{$), \$ \}
Follow $(X)=\{\$)$,$\} \quad Follow (T)=\{+),, \$\}$
Follow()) $=\{+$,), \$ $\}$ Follow (Y) $=\{+),, \$\}$
Follow(int) $=\{$ *, + ,,$\$\}$

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
- For each terminal $\dagger \in$ First(α) do
- $T[A, \dagger]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$, for each $\dagger \in \operatorname{Follow}(A)$ do
- $T[A, \dagger]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$ do
- $T[A, \$]=\alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build $L L(1)$ tables

Review

- For some grammars there is a simple parsing strategy

Predictive parsing

- Next time: a more powerful parsing strategy

