Implementation of Lexical Analysis

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions $RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables$

Notation

 For convenience, we use a variation (allow userdefined abbreviations) in regular expression notation

```
• Union: A + B \equiv A \mid B
• Option: A + \varepsilon \equiv A?
```

• Range: a'+b'+...+z' $\equiv [a-z]$

Excluded range:

complement of $[a-z] \equiv [^a-z]$

Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate $s \in L(R)$
- But a yes/no answer is not enough!
- Instead: partition the input into tokens
- · We will adapt regular expressions to this goal

Regular Expressions \Rightarrow Lexical Spec. (1)

- 1. Select a set of tokens
 - Integer, Keyword, Identifier, OpenPar, ...
- 2. Write a regular expression (pattern) for the lexemes of each token

```
Integer = digit +
```

- Keyword = 'if' + 'else' + ...
- Identifier = letter (letter + digit)*
- OpenPar = '('

•

Regular Expressions \Rightarrow Lexical Spec. (2)

3. Construct R, matching all lexemes for all tokens

$$R = Keyword + Identifier + Integer + ...$$

= $R_1 + R_2 + R_3 + ...$

Facts: If $s \in L(R)$ then s is a lexeme

- Furthermore s ∈ L(R_i) for some "i"
- This "i" determines the token that is reported

Regular Expressions \Rightarrow Lexical Spec. (3)

- 4. Let input be $x_1...x_n$
 - $(x_1 ... x_n \text{ are characters})$
 - For $1 \le i \le n$ check $x_1...x_i \in L(R)$?
- 5. It must be that

$$x_1...x_i \in L(R_j)$$
 for some j
(if there is a choice, pick a smallest such j)

6. Remove $x_1...x_i$ from input and go to previous step

How to Handle Spaces and Comments?

1. We could create a token Whitespace

```
Whitespace = (' ' + '\n' + '\t')+
```

- We could also add comments in there
- An input " \t\n 5555 " is transformed into Whitespace Integer Whitespace
- 2. Lexer skips spaces (preferred)
 - Modify step 5 from before as follows: It must be that $x_k \dots x_i \in L(R_j)$ for some j such that $x_1 \dots x_{k-1} \in L(Whitespace)$
 - Parser is not bothered with spaces

Ambiguities (1)

- There are ambiguities in the algorithm
- · How much input is used? What if
 - $x_1...x_i \in L(R)$ and also
 - $X_1...X_K \in L(R)$
 - Rule: Pick the longest possible substring
 - The "maximal munch"

Ambiguities (2)

- Which token is used? What if
 - $x_1...x_i \in L(R_i)$ and also
 - $X_1...X_i \in L(R_k)$
 - Rule: use rule listed first (j if j < k)
- Example:
 - R_1 = Keyword and R_2 = Identifier
 - "if" matches both
 - Treats "if" as a keyword not an identifier

Error Handling

- What if
 - No rule matches a prefix of input?
- Problem: Can't just get stuck ...
- Solution:
 - Write a rule matching all "bad" strings
 - Put it last
- · Lexer tools allow the writing of:

$$R = R_1 + ... + R_n + Error$$

- Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- · Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)

Regular Languages & Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a *recognizer* for the strings of a regular language

A finite automaton consists of

- A finite input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $F \subseteq S$
- A set of transitions state → input state

Finite Automata

Transition

$$s_1 \rightarrow^a s_2$$

Is read

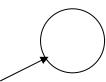
In state s_1 on input "a" go to state s_2

- If end of input (or no transition possible)
 - If in accepting state \Rightarrow accept
 - Otherwise ⇒ reject

Finite Automata State Graphs

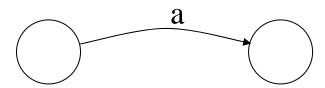
A state

The start state



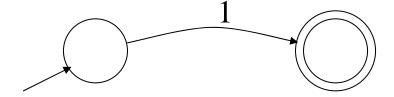
An accepting state

· A transition



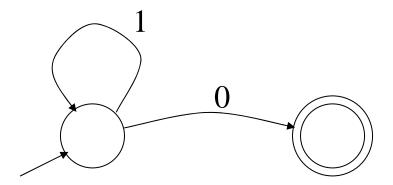
A Simple Example

A finite automaton that accepts only "1"



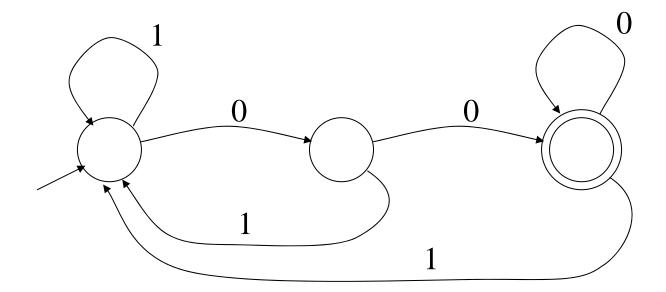
Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}



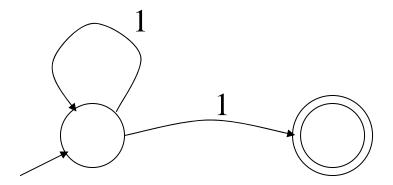
And Another Example

- Alphabet {0,1}
- · What language does this recognize?



And Another Example

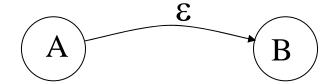
Alphabet still { 0, 1 }



- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves

Another kind of transition: ε-moves



 Machine can move from state A to state B without reading input

Deterministic and Non-Deterministic Automata

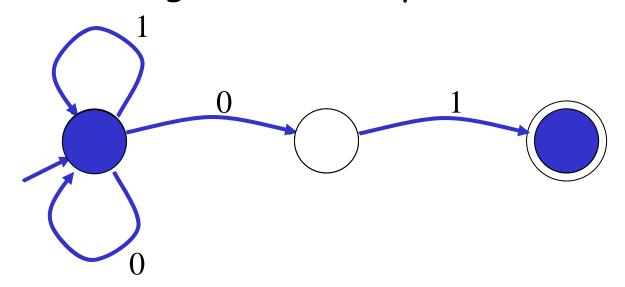
- · Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- · Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε -moves
- Finite automata have finite memory
 - Enough to only encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε -moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

· An NFA can get into multiple states



- Input: 1 0 1
- Rule: NFA accepts an input if it <u>can</u> get in a final state

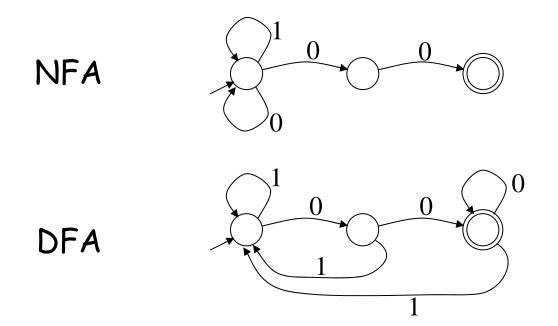
NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- · DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

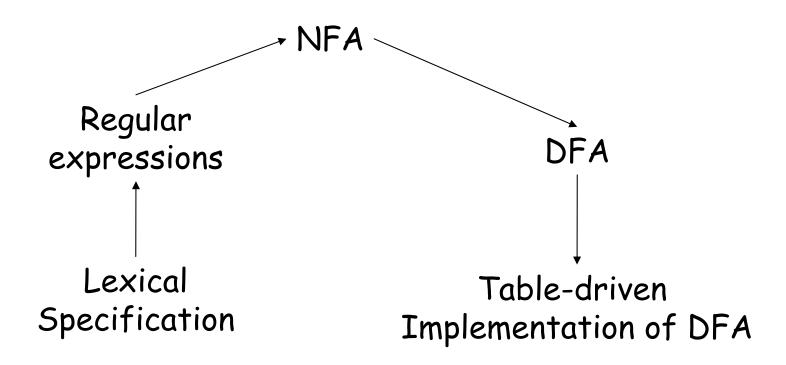
 For a given language the NFA can be simpler than the DFA



DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

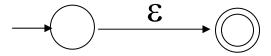
High-level sketch



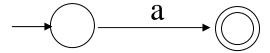
Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M

• For ε

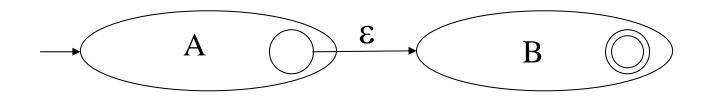


For input a

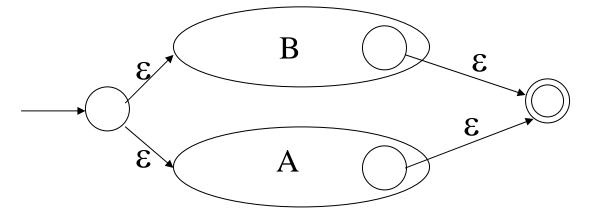


Regular Expressions to NFA (2)

• For AB

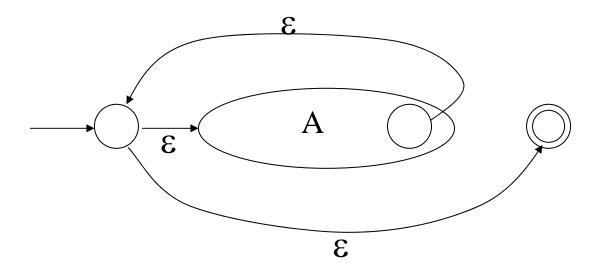


• For *A* + B



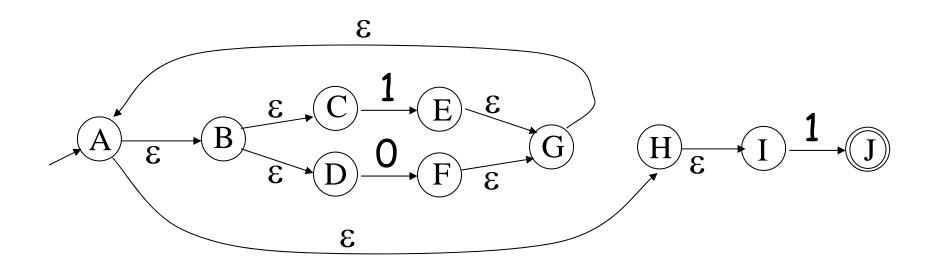
Regular Expressions to NFA (3)

• For A*



Example of Regular Expression -> NFA conversion

- Consider the regular expression (1+0)*1
- · The NFA is



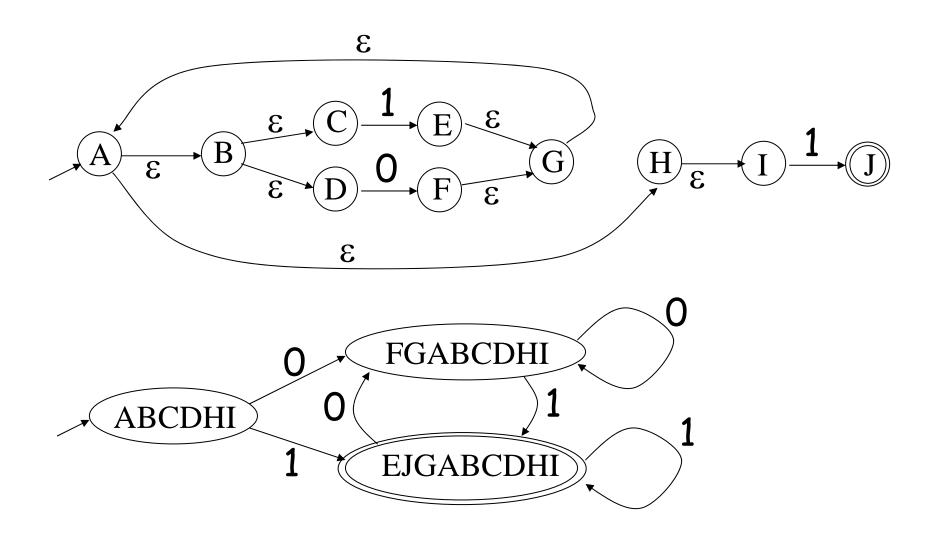
NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ϵ -moves from NFA start state
- Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a
 - considering ϵ -moves as well

NFA to DFA. Remark

- · An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^N 1 = finitely many$

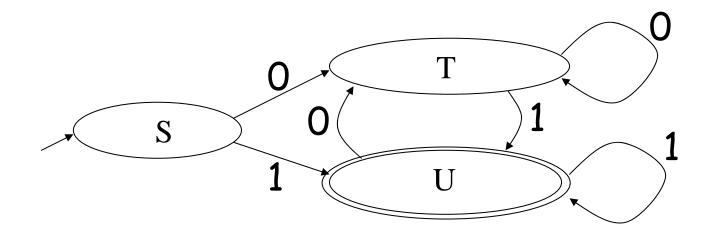
NFA to DFA Example



Implementation

- · A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbols"
 - For every transition $S_i \rightarrow a S_k$ define T[i,a] = k
- · DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA



	0	1
5	۲	U
T	7	U
U	T	U

Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as lex, ML-Lex or flex
- But, DFAs can be huge
- In practice, lex/ML-Lex/flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice

Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.
- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.