
Introduction to Lexical Analysis

2

Outline

• Informal sketch of lexical analysis
– Identifies tokens in input string

• Issues in lexical analysis
– Lookahead
– Ambiguities

• Specifying lexers
– Regular expressions
– Examples of regular expressions

3

Lexical Analysis

• What do we want to do? Example:
if (i == j)
then

z = 0;
else

z = 1;
• The input is just a string of characters:

if (i == j)\nthen\n\tz = 0;\n\telse\n\t\tz = 1;

• Goal: Partition input string into substrings
– Where the substrings are tokens

4

What’s a Token?

• A syntactic category
– In English:

noun, verb, adjective, …

– In a programming language:
Identifier, Integer, Keyword, Whitespace, …

5

Tokens

• Tokens correspond to sets of strings
– these sets depend on the programming language

• Identifier: strings of letters or digits,
starting with a letter

• Integer: a non-empty string of digits
• Keyword: “else” or “if” or “begin” or …
• Whitespace: a non-empty sequence of blanks,

newlines, and tabs

6

What are Tokens used for?

• Classify program substrings according to role

• Output of lexical analysis is a stream of
tokens . . .

• . . . which is input to the parser

• Parser relies on token distinctions
– An identifier is treated differently than a keyword

7

Designing a Lexical Analyzer: Step 1

• Define a finite set of tokens
– Tokens describe all items of interest
– Choice of tokens depends on language, design of

parser
• Recall

if (i == j)\nthen\n\tz = 0;\n\telse\n\t\tz = 1;
• Useful tokens for this expression:

Integer, Keyword, Relation, Identifier, Whitespace,
(,), =, ;

8

Designing a Lexical Analyzer: Step 2

• Describe which strings belong to each token

• Recall:
– Identifier: strings of letters or digits, starting

with a letter
– Integer: a non-empty string of digits
– Keyword: “else” or “if” or “begin” or …
– Whitespace: a non-empty sequence of blanks,

newlines, and tabs

9

Lexical Analyzer: Implementation

An implementation must do two things:

1. Recognize substrings corresponding to tokens

2. Return the value or lexeme of the token
– The lexeme is the substring

10

Example

• Recall:
if (i == j)\nthen\n\tz = 0;\n\telse\n\t\tz = 1;

• Token-lexeme groupings:
– Identifier: i, j, z
– Keyword: if, then, else
– Relation: ==
– Integer: 0, 1
– (,), =, ; single character of the same name

11

Why do Lexical Analysis?

• Dramatically simplify parsing
– The lexer usually discards “uninteresting” tokens

that don’t contribute to parsing
• E.g. Whitespace, Comments

– Converts data early
• Separate out logic to read source files

– Potentially an issue on multiple platforms
– Can optimize reading code independently of parser

12

True Crimes of Lexical Analysis

• Is it as easy as it sounds?

• Not quite!

• Look at some programming language history . . .

13

Lexical Analysis in FORTRAN

• FORTRAN rule: Whitespace is insignificant

• E.g., VAR1 is the same as VA R1

• Footnote: FORTRAN whitespace rule was motivated
by inaccuracy of punch card operators

14

A terrible design! Example

• Consider
– DO 5 I = 1,25
– DO 5 I = 1.25

• The first is DO 5 I = 1 , 25
• The second is DO5I = 1.25

• Reading left-to-right, cannot tell if DO5I is a
variable or DO stmt. until after “,” is reached

15

Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1. The goal is to partition the string. This is

implemented by reading left-to-write, recognizing
one token at a time

2. “Lookahead” may be required to decide where one
token ends and the next token begins

– Even our simple example has lookahead issues
i vs. if
= vs. ==

16

Another Great Moment in Scanning

• PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

can be difficult to determine how to label lexemes

17

More Modern True Crimes in Scanning

• Nested template declarations in C++

vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))

18

Review

• The goal of lexical analysis is to
– Partition the input string into lexemes (the smallest

program units that are individually meaningful)
– Identify the token of each lexeme

• Left-to-right scan ⇒ lookahead sometimes
required

19

Next

• We still need
– A way to describe the lexemes of each token

– A way to resolve ambiguities
• Is if two variables i and f?
• Is == two equal signs = =?

20

Regular Languages

• There are several formalisms for specifying
tokens

• Regular languages are the most popular
– Simple and useful theory
– Easy to understand
– Efficient implementations

21

Languages

Def. Let Σ be a set of characters. A language Λ
over Σ is a set of strings of characters drawn

from Σ
(Σ is called the alphabet of Λ)

22

Examples of Languages

• Alphabet = English
characters

• Language = English
sentences

• Not every string on
English characters is an
English sentence

• Alphabet = ASCII

• Language = C programs

• Note: ASCII character
set is different from
English character set

23

Notation

• Languages are sets of strings

• Need some notation for specifying which sets
of strings we want our language to contain

• The standard notation for regular languages is
regular expressions

24

Atomic Regular Expressions

• Single character

• Epsilon

{ }' ' " "c c=

{ }""ε =

25

Compound Regular Expressions

• Union

• Concatenation

• Iteration

{ }| or A B s s A s B+ = ∈ ∈

{ }| and AB ab a A b B= ∈ ∈

*
0

 where ... times ...i i
i

A A A A i A
≥

= =U

26

Regular Expressions

• Def. The regular expressions over Σ are the
smallest set of expressions including

*

' ' where
where , are rexp over
" " "
where is a rexp over

c c
A B A B
AB
A A

ε
∈∑

+ ∑

∑

27

Syntax vs. Semantics

• To be careful, we should distinguish syntax
and semantics (meaning) of regular expressions

{ }

*
0

() ""
(' ') {" "}
() () ()
() { | () and ()}
() ()i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=
=

+ = ∪
= ∈ ∈
= U

28

Example: Keyword

Keyword: “else” or “if” or “begin” or …

else' + 'if' + 'begi' n' + L

Note: abbrev'else' 'e''l''siates ''e'

29

Example: Integers

Integer: a non-empty string of digits

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation: A AA+ =

30

Example: Identifier

Identifier: strings of letters or digits,
starting with a letter

*

letter = 'A' 'Z' 'a' 'z'
identifier = letter (letter digit)

+ + + + +
+

K K

* *(letter + diIs the sgit) ame?

31

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

()' ' + '\n' + '\t' +

32

Example 1: Phone Numbers

• Regular expressions are all around you!
• Consider +46(0)18-471-1056

Σ = digits ∪ {+,−,(,)}
country = digit digit
city = digit digit
univ = digit digit digit
extension = digit digit digit digit
phone_num = ‘+’country’(’0‘)’city’−’univ’−’extension

33

Example 2: Email Addresses

• Consider kostis@it.uu.se

{ }
+name = letter

address = name '@' name '.'

letters

name '.

'

.,@

name

∑ = ∪

34

Summary

• Regular expressions describe many useful
languages

• Regular languages are a language specification
– We still need an implementation

• Next time: Given a string s and a regular
expression R, is

()?s L R∈

