
Global Register Allocation
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Lecture Outline

•
 

Memory Hierarchy Management

•
 

Register Allocation via Graph Coloring
–

 
Register interference graph

–
 

Graph coloring heuristics

–
 

Spilling

•
 

Cache Management

3

The Memory Hierarchy

Registers       1 cycle          256-8000 bytes

Cache             3 cycles            256k-16M

Main memory   20-100 cycles    512M-64G

Disk                0.5-5M cycles    10G-1T
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Managing the Memory Hierarchy

•
 

Programs are written as if there are only two 
kinds of memory: main memory and disk

•
 

Programmer is responsible for moving data 
from disk to memory (e.g., file I/O)

•
 

Hardware is responsible for moving data 
between memory and caches

•
 

Compiler is responsible for moving data 
between memory and registers



5

Current Trends

•
 

Power usage limits
–

 
Size and speed of registers/caches

–
 

Speed of processors
•

 
Improves faster than memory speed (and disk speed)

•
 

The cost of a cache miss is growing
•

 
The widening gap between processors and memory is 
bridged with more levels of caches

•
 

It is very important to:
–

 
Manage registers properly

–
 

Manage caches properly
•

 
Compilers are good at managing registers
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The Register Allocation Problem

•
 

Recall that intermediate code uses as many 
temporaries as necessary
–

 
This complicates final translation to assembly

–
 

But simplifies code generation and optimization
–

 
Typical intermediate code uses too many temporaries

•
 

The register allocation problem:
–

 
Rewrite the intermediate code to use at most as 
many temporaries as there are machine registers

–
 

Method: Assign multiple temporaries to a register
•

 
But without changing the program behavior
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History

•
 

Register allocation is as old as intermediate 
code
–

 
Register allocation was used in the original 
FORTRAN compiler in the ‘50s

–
 

Very crude algorithms

•
 

A breakthrough was not achieved until 1980
–

 
Register allocation scheme based on graph coloring

–
 

Relatively simple, global, and works well in practice
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An Example

•
 

Consider the program
a := c + d
e := a + b
f := e -

 
1

with the assumption that a and
 

e
 

die after use
•

 
Temporary a

 
can be “reused”

 
after “a + b”

•
 

Same with temporary e after “e -
 

1”

•
 

Can allocate a, e, and f all to one register (r1
 

):
r1

 

:= r2
 

+ r3
r1

 

:= r1
 

+ r4
r1

 

:= r1
 

- 1
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Basic Register Allocation Idea

•
 

The value in a dead temporary is not needed 
for the rest of the computation
–

 
A dead temporary can be reused

•
 

Basic rule: 
Temporaries t1 and t2

 

can share the same 
register if at all points in the program at 

most one of t1 or t2
 

is live !
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Algorithm: Part I

Compute live variables for each program point:

a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e -

 
1

b := f + c

{b}

{c,e}

{b,e}
{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

11

The Register Interference Graph

•
 

Two temporaries that are live simultaneously 
cannot be allocated in the same register

•
 

We construct an undirected graph with
–

 
A node for each temporary

–
 

An edge between t1
 

and t2
 

if they are live 
simultaneously at some point in the program

•
 

This is the register interference graph
 

(RIG)
–

 
Two temporaries can be allocated to the same 
register if there is no edge connecting them
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Register Interference Graph: Example

•
 

For our example:

a

f

e

d

c

b

•
 

E.g., b
 

and c
 

cannot be in the same register
•

 
E.g., b

 
and d

 
can be in the same register
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Register Interference Graph: Properties

•
 

It extracts exactly the information needed to 
characterize legal register assignments

•
 

It gives a global (i.e., over the entire flow 
graph) picture of the register requirements

•
 

After RIG construction, the register allocation 
algorithm is architecture independent
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Graph Coloring: Definitions

•
 

A coloring of a graph
 

is an assignment of 
colors to nodes, such that nodes connected by 
an edge have different colors

•
 

A graph is k-colorable
 

if it has a coloring with 
k colors

15

Register Allocation Through Graph Coloring

•
 

In our problem, colors = registers
–

 
We need to assign colors (registers) to graph nodes 
(temporaries)

•
 

Let k = number of machine registers

•
 

If the RIG is k-colorable then there is a 
register assignment that uses no more than k 
registers
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Graph Coloring: Example

•
 

Consider the example RIG

a

f

e

d

c

b

•
 

There is no coloring with less than 4 colors
•

 
There are various 4-colorings of this graph

r4

r1

r2

r3

r2

r3
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Graph Coloring: Example

•
 

Under this coloring the code becomes:

r2

 

:= r3

 

+ r4
r3

 

:= -r2
r2

 

:= r3

 

+ r1

r1

 

:= 2 * r2
r3

 

:= r3

 

+ r2

r2

 

:= r2 - 1

r3

 

:= r1

 

+ r4
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Computing Graph Colorings

•
 

The remaining problem is how to compute a 
coloring for the interference graph

•
 

But:
(1) Computationally this problem is NP-hard:

•
 

No efficient algorithms are known
(2) A coloring might not exist for a given number of 

registers

•
 

The solution to (1) is to use heuristics
•

 
We will consider the other problem later
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Graph Coloring Heuristic

•
 

Observation:
–

 
Pick a node t

 
with fewer than k neighbors in RIG

–
 

Eliminate t
 

and its edges from RIG
–

 
If the resulting graph has a k-coloring then so does 
the original graph

•
 

Why:
–

 
Let c1

 

,…,cn
 

be the colors assigned to the neighbors 
of t

 
in the reduced graph

–
 

Since n < k we can pick some color for t
 

that is 
different from those of its neighbors
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Graph Coloring Simplification Heuristic

•
 

The following works well in practice:
–

 
Pick a node t

 
with fewer than k neighbors

–
 

Put t
 

on a stack and remove it from the RIG
–

 
Repeat until the graph has one node

•
 

Then start assigning colors to nodes on the 
stack (starting with the last node added)
–

 
At each step pick a color different from those 
assigned to already colored neighbors
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Graph Coloring Example (1)

•
 

Remove a

a

f

e

d

c

b

•
 

Start with the RIG and with k = 4:

Stack: {} 
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Graph Coloring Example (2)

•
 

Remove d

f

e

d

c

b

•
 

Start with the RIG and with k = 4:

Stack: {a} 
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Graph Coloring Example (3)

•
 

Now all nodes have fewer than 4 neighbors 
and can be removed: c, b, e, f

f

e c

b
Stack: {d, a} 
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Graph Coloring Example (4)

•
 

Start assigning colors to: f, e, b, c, d, a

b
a

e c r4

fr1

r2

r3

r2

r3

d
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What if the Heuristic Fails?

•
 

What if during simplification we get to a state 
where all nodes have k or more neighbors ?

•
 

Example: try to find a 3-coloring of the RIG:

a

f

e

d

c

b
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What if the Heuristic Fails?

•
 

Remove a
 

and get stuck (as shown below)

f

e

d

c

b

•
 

Pick a node as a possible candidate for spilling
–

 
A spilled temporary “lives”

 
is memory

–
 

Assume that f
 

is picked as a candidate
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What if the Heuristic Fails?

•
 

Remove f
 

and continue the simplification
–

 
Simplification now succeeds: b, d, e, c

e

d

c

b
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What if the Heuristic Fails?

•
 

On the assignment phase we get to the point 
when we have to assign a color to f

•
 

We hope that among the 4 neighbors of f
 

we 
used less than 3 colors ⇒

 
optimistic coloring

f

e

d

c

b r3

r1r2

r3

?
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Spilling

•
 

Since optimistic coloring failed, we must spill 
temporary f (actual spill)

•
 

We must allocate a memory location as the 
“home”

 
of f

–
 

Typically this is in the current stack frame 
–

 
Call this address fa

•
 

Before each operation that uses f, insert
f := load fa

•
 

After each operation that defines f, insert
store f, fa
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Spilling: Example

•
 

This is the new code after spilling f

a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e -

 
1

f := load fa
b := f + c
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Recomputing Liveness Information

•
 

The new liveness information after spilling:

a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e -

 
1

f := load fa
b := f + c

{b}

{c,e}

{b,e}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f}

{c,f}

{c,f}
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Recomputing Liveness Information

•
 

New liveness information is almost as before

•
 

f
 

is live only
–

 
Between a f := load fa

 
and the next instruction

–
 

Between a store f, fa
 

and the preceding instruction

•
 

Spilling reduces the live range of f
–

 
And thus reduces its interferences

–
 

Which results in fewer RIG neighbors for f
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Recompute
 

RIG After Spilling

•
 

The only changes are in removing some of the 
edges of the spilled node

•
 

In our case f
 

now interferes only with c
 

and d
•

 
And now the resulting RIG is 3-colorable

a

f

e

d

c

b

r1

r3

r3

r2

r2

r2
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Spilling Notes

•
 

Additional spills might be required before a 
coloring is found

•
 

The tricky part is deciding what to spill

•
 

Possible heuristics:
–

 
Spill temporaries with most conflicts

–
 

Spill temporaries with few definitions and uses
–

 
Avoid spilling in inner loops

•
 

Any heuristic is correct
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Precolored
 

Nodes

•
 

Precolored
 

nodes are nodes which are a priori 
bound to actual machine registers

•
 

These nodes are usually used for some 
specific (time-critical) purpose, e.g.:
–

 
for the frame pointer

–
 

for the first N arguments (N=2,3,4,5)
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Precolored
 

Nodes (Cont.)

•
 

For each color, there should be only one 
precolored

 
node with that color; all precolored

 nodes usually interfere with each other

•
 

We can give an ordinary temporary the same 
color as a precolored

 
node as long as it does 

not interfere with it

•
 

However, we cannot simplify or spill 
precolored

 
nodes; we thus treat them as 

having “infinite”
 

degree
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Effects of Global Register Allocation

Reduction in % for MIPS C Compiler

Program cycles
total

loads/stores
scalar

loads/stores
boyer 37.6 76 .9 96 .2
diff 40.6 69 .4 92 .5
yacc 31.2 67 .9 84 .4
nroff 16 .3 49 .0 54 .7
ccom 25.0 53 .1 67 .2
upas 25.3 48 .2 70 .9
as1 30.5 54 .6 70 .8
Geo Mean 28.4 59 .0 75 .4
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Managing Caches

•
 

Compilers are very good at managing registers
–

 
Much better than a programmer could be

•
 

Compilers are not good at managing caches
–

 
This problem is still left to programmers

–
 

It is still an open question whether a compiler can 
do anything general to improve performance

•
 

Compilers can, and a few do, perform some 
simple cache optimization
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Cache Optimization

•
 

Consider the loop
for (j = 1; j < 10; j++)
for (i = 1; i < 1000; i++)

a[i] *= b[i]

•
 

This program has terrible cache performance
–

 
Why?
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Cache Optimization (Cont.)

•
 

Consider now the program:
for (i = 1; i < 1000; i++) 
for (j = 1; j < 10; j++)

a[i] *= b[i]

–
 

Computes the same thing
–

 
But with much better cache behavior

–
 

Might actually be more than 10x faster

•
 

A compiler can perform this optimization
–

 
called loop interchange
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Conclusions

•
 

Register allocation is a “must have”
 optimization in most compilers:

–
 

Because intermediate code uses too many 
temporaries

–
 

Because it makes a big difference in performance 

•
 

Graph coloring is a powerful register allocation 
scheme (with many variations on the heuristics)

•
 

Register allocation is more complicated for 
CISC machines


