Global Register Allocation

Lecture Outline

• Memory Hierarchy Management
• Register Allocation via Graph Coloring
 - Register interference graph
 - Graph coloring heuristics
 - Spilling
• Cache Management

The Memory Hierarchy

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Access Time</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td>1 cycle</td>
<td>256-8000 bytes</td>
</tr>
<tr>
<td>Cache</td>
<td>3 cycles</td>
<td>256k-16M</td>
</tr>
<tr>
<td>Main memory</td>
<td>20-100 cycles</td>
<td>512M-64G</td>
</tr>
<tr>
<td>Disk</td>
<td>0.5-5M cycles</td>
<td>10G-1T</td>
</tr>
</tbody>
</table>

Managing the Memory Hierarchy

• Programs are written as if there are only two kinds of memory: main memory and disk
• Programmer is responsible for moving data from disk to memory (e.g., file I/O)
• Hardware is responsible for moving data between memory and caches
• Compiler is responsible for moving data between memory and registers
Current Trends

- Power usage limits
 - Size and speed of registers/caches
 - Speed of processors
 - Improves faster than memory speed (and disk speed)
 - The cost of a cache miss is growing
 - The widening gap between processors and memory is bridged with more levels of caches
- It is very important to:
 - Manage registers properly
 - Manage caches properly
- Compilers are good at managing registers

The Register Allocation Problem

- Recall that intermediate code uses as many temporaries as necessary
 - This complicates final translation to assembly
 - But simplifies code generation and optimization
 - Typical intermediate code uses too many temporaries
- The register allocation problem:
 - Rewrite the intermediate code to use at most as many temporaries as there are machine registers
 - Method: Assign multiple temporaries to a register
 - But without changing the program behavior

History

- Register allocation is as old as intermediate code
 - Register allocation was used in the original FORTRAN compiler in the '50s
 - Very crude algorithms
- A breakthrough was not achieved until 1980
 - Register allocation scheme based on graph coloring
 - Relatively simple, global, and works well in practice

An Example

- Consider the program

  ```
  a := c + d
  e := a + b
  f := e - 1
  ```

 with the assumption that a and e die after use
- Temporary a can be “reused” after “a + b”
- Same with temporary e after “e - 1”
- Can allocate a, e, and f all to one register (r₁):

  ```
  r₁ := r₂ + r₃
  r₁ := r₁ + r₄
  r₁ := r₁ - 1
  ```
Basic Register Allocation Idea

- The value in a dead temporary is not needed for the rest of the computation
 - A dead temporary can be reused

- Basic rule: **Temporaries \(t_1 \) and \(t_2 \) can share the same register if at all points in the program at most one of \(t_1 \) or \(t_2 \) is live!**

Algorithm: Part I

Compute live variables for each program point:

\[
\begin{align*}
 &a := b + c \\
 &d := -a \\
 &e := d + f \\
 &f := 2 \times e \\
 &b := d + e \\
 &e := e - 1 \\
 &b := f + c
\end{align*}
\]

The Register Interference Graph

- Two temporaries that are live simultaneously cannot be allocated in the same register

- We construct an undirected graph with
 - A node for each temporary
 - An edge between \(t_1 \) and \(t_2 \) if they are live simultaneously at some point in the program

- This is the register interference graph (RIG)
 - Two temporaries can be allocated to the same register if there is no edge connecting them

Register Interference Graph: Example

- For our example:
 - E.g., \(b \) and \(c \) cannot be in the same register
 - E.g., \(b \) and \(d \) can be in the same register
Register Interference Graph: Properties

• It extracts exactly the information needed to characterize legal register assignments

• It gives a global (i.e., over the entire flow graph) picture of the register requirements

• After RIG construction, the register allocation algorithm is architecture independent

Graph Coloring: Definitions

• A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors

• A graph is k-colorable if it has a coloring with k colors

Register Allocation Through Graph Coloring

• In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries)

• Let k = number of machine registers

• If the RIG is k-colorable then there is a register assignment that uses no more than k registers

Graph Coloring: Example

• Consider the example RIG

• There is no coloring with less than 4 colors
• There are various 4-colorings of this graph
Graph Coloring: Example

Under this coloring the code becomes:

\[
\begin{align*}
 r_2 &:= r_3 + r_4 \\
 r_3 &:= -r_2 \\
 r_2 &:= r_3 + r_1 \\
 r_1 &:= 2 \times r_2 \\
 r_3 &:= r_3 + r_2 \\
 r_2 &:= r_2 - 1 \\
 r_3 &:= r_1 + r_4 \\
\end{align*}
\]

Computing Graph Colorings

The remaining problem is how to compute a coloring for the interference graph.

But:

1. Computationally this problem is NP-hard:
 - No efficient algorithms are known
2. A coloring might not exist for a given number of registers

The solution to (1) is to use heuristics.
We will consider the other problem later.

Graph Coloring Heuristic

Observation:
- Pick a node \(t \) with fewer than \(k \) neighbors in RIG
- Eliminate \(t \) and its edges from RIG
- If the resulting graph has a \(k \)-coloring then so does the original graph

Why:
- Let \(c_1, \ldots, c_n \) be the colors assigned to the neighbors of \(t \) in the reduced graph
- Since \(n < k \) we can pick some color for \(t \) that is different from those of its neighbors

Graph Coloring Simplification Heuristic

The following works well in practice:
- Pick a node \(t \) with fewer than \(k \) neighbors
- Put \(t \) on a stack and remove it from the RIG
- Repeat until the graph has one node

Then start assigning colors to nodes on the stack (starting with the last node added):
- At each step pick a color different from those assigned to already colored neighbors
Graph Coloring Example (1)

- Start with the RIG and with $k = 4$:

```
Stack: {}
```

- Remove a

Graph Coloring Example (2)

- Start with the RIG and with $k = 4$:

```
Stack: \{a\}
```

- Remove d

Graph Coloring Example (3)

- Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f

```
Stack: \{d, a\}
```

Graph Coloring Example (4)

- Start assigning colors to: f, e, b, c, d, a

```
```
What if the Heuristic Fails?

- What if during simplification we get to a state where all nodes have k or more neighbors?

- Example: try to find a 3-coloring of the RIG:

```
  a  b
 / \
|   |
f---e---d---c
```

What if the Heuristic Fails?

- Remove a and get stuck (as shown below)

- Pick a node as a possible candidate for spilling
 - A spilled temporary “lives” is memory
 - Assume that f is picked as a candidate

What if the Heuristic Fails?

- Remove f and continue the simplification
 - Simplification now succeeds: b, d, e, c

What if the Heuristic Fails?

- On the assignment phase we get to the point when we have to assign a color to f
 - We hope that among the 4 neighbors of f we used less than 3 colors ⇒ optimistic coloring
Spilling

• Since optimistic coloring failed, we must spill temporary \(f \) (actual spill)
• We must allocate a memory location as the “home” of \(f \)
 - Typically this is in the current stack frame
 - Call this address \(fa \)
• Before each operation that uses \(f \), insert
 \(f := \text{load} \ fa \)
• After each operation that defines \(f \), insert
 \(\text{store} \ f, \ fa \)

Spilling: Example

• This is the new code after spilling \(f \)

Recomputing Liveness Information

• The new liveness information after spilling:

Recomputing Liveness Information

• New liveness information is almost as before

• \(f \) is live only
 - Between a \(f := \text{load} \ fa \) and the next instruction
 - Between a \(\text{store} \ f, \ fa \) and the preceding instruction

• Spilling reduces the live range of \(f \)
 - And thus reduces its interferences
 - Which results in fewer RIG neighbors for \(f \)
Recompute RIG After Spilling

- The only changes are in removing some of the edges of the spilled node
- In our case \(f \) now interferes only with \(c \) and \(d \)
- And now the resulting RIG is 3-colorable

Spilling Notes

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- Possible heuristics:
 - Spill temporaries with most conflicts
 - Spill temporaries with few definitions and uses
 - Avoid spilling in inner loops
- Any heuristic is correct

Precolored Nodes

- Precolored nodes are nodes which are \textit{a priori} bound to actual machine registers
- These nodes are usually used for some specific (time-critical) purpose, e.g.:
 - for the frame pointer
 - for the first \(N \) arguments (\(N=2,3,4,5 \))

Precolored Nodes (Cont.)

- For each color, there should be only one precolored node with that color; all precolored nodes usually interfere with each other
- We can give an ordinary temporary the same color as a precolored node as long as it does not interfere with it
- However, we cannot simplify or spill precolored nodes; we thus treat them as having “infinite” degree
Effects of Global Register Allocation

Reduction in % for MIPS C Compiler

<table>
<thead>
<tr>
<th>Program</th>
<th>cycles</th>
<th>total loads/stores</th>
<th>scalar loads/stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>boyer</td>
<td>37.6</td>
<td>76.9</td>
<td>96.2</td>
</tr>
<tr>
<td>diff</td>
<td>40.6</td>
<td>69.4</td>
<td>92.5</td>
</tr>
<tr>
<td>yacc</td>
<td>31.2</td>
<td>67.9</td>
<td>84.4</td>
</tr>
<tr>
<td>nroff</td>
<td>16.3</td>
<td>49.0</td>
<td>54.7</td>
</tr>
<tr>
<td>ccom</td>
<td>25.0</td>
<td>53.1</td>
<td>67.2</td>
</tr>
<tr>
<td>upas</td>
<td>25.3</td>
<td>48.2</td>
<td>70.9</td>
</tr>
<tr>
<td>as1</td>
<td>30.5</td>
<td>54.6</td>
<td>70.8</td>
</tr>
<tr>
<td>Geo Mean</td>
<td>28.4</td>
<td>59.0</td>
<td>75.4</td>
</tr>
</tbody>
</table>

Managing Caches

- Compilers are very good at managing registers
 - Much better than a programmer could be
- Compilers are not good at managing caches
 - This problem is still left to programmers
 - It is still an open question whether a compiler can do anything general to improve performance
- Compilers can, and a few do, perform some simple cache optimization

Cache Optimization

- Consider the loop

  ```
  for (j = 1; j < 10; j++)
  for (i = 1; i < 1000; i++)
  a[i] *= b[i]
  ```

- This program has terrible cache performance
 - Why?

Cache Optimization (Cont.)

- Consider now the program:

  ```
  for (i = 1; i < 1000; i++)
  for (j = 1; j < 10; j++)
  a[i] *= b[i]
  ```

 - Computes the same thing
 - But with much better cache behavior
 - Might actually be more than 10x faster

- A compiler can perform this optimization
 - called *loop interchange*
Conclusions

• Register allocation is a “must have” optimization in most compilers:
 - Because intermediate code uses too many temporaries
 - Because it makes a big difference in performance

• Graph coloring is a powerful register allocation scheme (with many variations on the heuristics)

• Register allocation is more complicated for CISC machines