Lecture Outline

Global Optimization

Local Optimization

Recall the simple basic-block optimizations

- Constant propagation
- Dead code elimination

$$
\begin{aligned}
& x:=42 \\
& y:=z * w \\
& q:=y+x
\end{aligned} \quad \square \begin{aligned}
& x:=42 \\
& y:=z^{*} w \\
& q:=y+42
\end{aligned} \quad \begin{aligned}
& \\
& y:=z^{*} w \\
& q:=y+42
\end{aligned}
$$

Global Optimization

- Global flow analysis
- Global constant propagation
- Liveness analysis

These optimizations can be extended to an entire control-flow graph

Global Optimization

These optimizations can be extended to an entire control-flow graph

Global Optimization

These optimizations can be extended to an entire control-flow graph

Correctness

- How do we know whether it is OK to globally propagate constants?
- There are situations where it is incorrect:

Correctness (Cont.)

To replace a use of x by a constant k we must know that the following property ** holds:

On every path to the use of x, the last assignment to x is $x:=k$

Example 2 Revisited

Discussion

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
- An analysis that determines how data flows over the entire control-flow graph

Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property P at a particular point in program execution
- Proving P at any point requires knowledge of the entire function body
- It is OK to be conservative: If the optimization requires P to be true, then want to know either
- that P is definitely true, or
- that we don't know whether P is true
- It is always safe to say "don't know"

Global Analysis (Cont.)

- Global dataflow analysis is a standard technique for solving problems with these characteristics
- Global constant propagation is one example of an optimization that requires global dataflow analysis

Global Constant Propagation

- Global constant propagation can be performed at any point where property ** holds
- Consider the case of computing ** for a single variable \times at all program points

Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with x at every program point

value	interpretation
$\#$	This statement never executes
c	$x=$ constant c
$*$	Don't know whether x is a constant

Example

Using the Information

- Given global constant information, it is easy to perform the optimization
- Simply inspect the $x=$? associated with a statement using x
- If x is constant at that point replace that use of x by the constant
- But how do we compute the properties $x=$?

The Analysis Idea

The analysis of a (complicated) program can be expressed as a combination of simple rules relating the change in information between adjacent statements

Explanation

- The idea is to "push" or "transfer" information from one statement to the next
- For each statement s, we compute information about the value of x immediately before and afters

$$
\begin{aligned}
& C_{\text {in }}(x, s)=\text { value of } x \text { before } s \\
& C_{\text {out }}(x, s)=\text { value of } x \text { after } s
\end{aligned}
$$

Transfer Functions

- Define a transfer function that transfers information from one statement to another
- In the following rules, let statement s have as immediate predecessors statements p_{1}, \ldots, p_{n}

Rule 1

if $C_{\text {out }}\left(x, p_{\mathrm{i}}\right)=$ * for any i , then $C_{\text {in }}(x, s)=$ *

if $C_{\text {out }}\left(x, p_{i}\right)=c$ or $\#$ for all i, then $C_{\text {in }}(x, s)=c$

Rule 3

Rule 2

$$
\text { If } \begin{aligned}
C_{\text {out }}\left(x, p_{i}\right)= & c \text { and } C_{\text {out }}\left(x, p_{j}\right)=d \text { and } d \neq c \\
& \text { then } C_{\text {in }}(x, s)=\star
\end{aligned}
$$

Rule 4

$$
\begin{aligned}
& x=\# x=\# \\
& \text { if } C_{\text {out }}\left(x, p_{i}\right)=\# \text { for all } i \text {, } \\
& \text { then } C_{\text {in }}(x, s)=\#
\end{aligned}
$$

The Other Half

- Rules 1-4 relate the out of one statement to the in of the successor statement
- We also need rules relating the in of a statement to the out of the same statement

Rule 5

$$
C_{\text {out }}(x, s)=\# \text { if } C_{\text {in }}(x, s)=\#
$$

Rule 6

$$
C_{\text {out }}(x, x:=c)=c \text { if } c \text { is a constant }
$$

Rule 7

$$
C_{\text {out }}(x, x:=f(\ldots))=\text { * }
$$

This rule says that we do not perform inter-procedural analysis (i.e. we do not look at what other functions do)

Rule 8

$$
C_{\text {out }}(x, y:=\ldots)=C_{\text {in }}(x, y:=\ldots) \text { if } x \neq y
$$

An Algorithm

1. For every entry s to the function, set $C_{\text {in }}(x, s)=$ *
2. Set $C_{\text {in }}(x, s)=C_{\text {out }}(x, s)=\#$ everywhere else
3. Repeat until all points satisfy 1-8:

Pick s not satisfying 1-8 and update using the appropriate rule

The Value \#

To understand why we need \#, look at a loop

Discussion

- Consider the statement y:=0
- To compute whether x is constant at this point, we need to know whether x is constant at the two predecessors
- x := 42
- $q:=y+x$
- But information for $q:=y+x$ depends on its predecessors, including $y:=0$!

The Value \# (Cont.)

- Because of cycles, all points must have values at all times
- Intuitively, assigning some initial value allows the analysis to break cycles
- The initial value \# means "So far as we know, control never reaches this point"

Example

Example

Example

Example

Orderings

- We can simplify the presentation of the analysis by ordering the values

$$
\#<c<\star
$$

- Drawing a picture with "lower" values drawn lower, we get

Orderings (Cont.)

- * is the greatest value, \# is the least
- All constants are in between and incomparable
- Let lub be the least-upper bound in this ordering
- Rules 1-4 can be written using lub:
$C_{\text {in }}(x, s)=\operatorname{lub}\left\{C_{\text {out }}(x, p) \mid p\right.$ is a predecessor of $\left.s\right\}$

Termination

- Simply saying "repeat until nothing changes" doesn't guarantee that eventually we reach a point where nothing changes
- The use of lub explains why the algorithm terminates
- Values start as \# and only increase
- \# can change to a constant, and a constant to *
- Thus, C_(x, s) can change at most twice

Termination (Cont.)
Thus the algorithm is linear in program size

Number of steps $=$
Number of C_(....) values computed * $2=$ Number of program statements * 4

Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $x:=42$ is dead (assuming x is not used elsewhere)

Live and Dead Variables

- The first value of x is dead (never used)
- The second value of x is live (may be used)
- Liveness is an important concept for the compiler

Liveness

A variable x is live at statement s if

- There exists a statement s that uses x
- There is a path from s to s^{\prime}
- That path has no intervening assignment to x

Global Dead Code Elimination

- A statement x := ... is dead code if x is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

Liveness Rule 1

$L_{\text {out }}(x, p)=V\left\{L_{\text {in }}(x, s) \mid\right.$ s a successor of $\left.p\right\}$

Liveness Rule 2

$L_{\text {in }}(x, s)=$ true if s refers to x on the RHS

$$
L_{i n}(x, x:=e)=\text { false if e does not refer to } x
$$

$$
L_{\text {in }}(x, s)=L_{\text {out }}(x, s) \text { if } s \text { does not refer to } x
$$

Algorithm

1. Let all $L_{_}(\ldots)=$ false initially
2. Repeat until all statements s satisfy rules 1-4

Pick s where one of 1-4 does not hold and update using the appropriate rule

Termination

- A value can change from false to true, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis information is computed, it is simple to eliminate dead code

Forward vs. Backward Analysis

We have seen two kinds of analysis:

- An analysis that enables constant propagation:
- this is a forwards analysis: information is pushed from inputs to outputs
- An analysis that calculates variable liveness:
- this is a backwards analysis: information is pushed from outputs back towards inputs

Global Flow Analyses

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points

