
Semantic Analysis

2

Outline

•

The role of semantic analysis in a compiler
–

A laundry list of tasks

•

Scope
–

Static vs. Dynamic scoping

–

Implementation: symbol tables

•

Types
–

Static analyses that detect type errors

–

Statically vs. Dynamically typed languages

3

Where we are

4

The Compiler Front-End

Lexical analysis: program is lexically well-formed
–

Tokens are legal

•

e.g. identifiers have valid names, no stray characters, etc.
–

Detects inputs with illegal tokens

Parsing: program is syntactically well-formed
–

Declarations have correct structure, expressions are
syntactically valid, etc.

–

Detects inputs with ill-formed syntax
Semantic analysis:

–

Last “front end”

compilation phase
–

Catches all remaining errors

5

Beyond Syntax Errors

•

What’s wrong with
this C code?
(Note: it parses
correctly)

foo(int a, char * s){...}

int bar() {
int f[3];
int i, j, k;
char q, *p;
float k;
foo(f[6], 10, j);
break;
i->val = 42;
j = m + k;
printf("%s,%s.\n",p,q);
goto label42;

}

•

Undeclared identifier
•

Multiply declared identifier

•

Index out of bounds
•

Wrong number or types of
arguments to function call

•

Incompatible types for
operation

•

break statement outside
switch/loop

•

goto

with no label

6

Why Have a Separate Semantic Analysis?

Parsing cannot catch some errors

Some language constructs are not context-free
–

Example: Identifier declaration and use

–

An abstract version of the problem is:
L = { wcw | w ∈

(a + b)*

}

–

The 1st w represents the identifier’s declaration;
the 2nd w represents a use of the identifier

–

This language is not context-free

7

What Does Semantic Analysis Do?

Performs checks beyond syntax of many kinds ...
Examples:

1.

All used identifiers are declared
2.

Identifiers declared only once

3.

Types
4.

Procedures and functions defined only once

5.

Procedures and functions used with the right
number and type of arguments

And others . . .

The requirements depend on the language
8

What’s Wrong?

Example 1
let string y ←

"abc" in y + 42

Example 2
let integer y in x + 42

9

Semantic Processing: Syntax-Directed Translation

Basic idea: Associate information with language
constructs by attaching attributes to the
grammar symbols that represent these constructs
–

Values for attributes are computed using semantic
rules associated with grammar productions

–

An attribute can represent anything (reasonable)
that we choose; e.g. a string, number, type, etc.

–

A parse tree showing the values of attributes at
each node is called an annotated parse tree

10

Attributes of an Identifier

name: character string (obtained from scanner)
scope: program region in which identifier is valid
type:

- integer
- array:

•

number of dimensions
•

upper and lower bounds for each dimension

•

type of elements
–

function:

•

number and type of parameters (in order)
•

type of returned value

•

size of stack frame

11

Scope

•

The scope of an identifier (a binding of a name
to the entity it names) is the textual part of
the program in which the binding is active

•

Scope matches identifier declarations with uses
–

Important static analysis step in most languages

12

Scope (Cont.)

•

The scope of an identifier is the portion of a
program in which that identifier is accessible

•

The same identifier may refer to different
things in different parts of the program
–

Different scopes for same name don’t overlap

•

An identifier may have restricted scope

13

Static vs. Dynamic Scope

•

Most languages have static (lexical) scope
–

Scope depends only on the physical structure of
program text, not its run-time behavior

–

The determination of scope is made by the compiler
–

C, Java, ML have static scope; so do most languages

•

A few languages are dynamically scoped
–

Lisp, SNOBOL

–

Lisp has changed to mostly static scoping
–

Scope depends on execution of the program

14

Static Scoping Example

let integer x ←

0 in
{

x;
let integer x ←

1 in

x;
x;

}

Uses of x refer to closest enclosing definition

15

Dynamic Scope

•

A dynamically-scoped variable refers to the
closest enclosing binding in the execution of
the program

Example
g(y) = let integer a ←

42 in f(3);

f(x) = a;

–

When invoking g(54) the result will be 42

16

Static vs. Dynamic Scope

Program scopes (input, output);
var a: integer;
procedure first;
begin a := 1; end;

procedure second;
var a: integer;
begin first; end;

begin
a := 2; second; write(a);

end.

With static scope
rules, it prints 1

With dynamic scope
rules, it prints 2

17

Dynamic Scope (Cont.)

•

With dynamic scope, bindings cannot always be
resolved by examining the program because
they are dependent on calling sequences

•

Dynamic scope rules are usually encountered in
interpreted languages

•

Also, usually these languages do not normally
have static type checking:
–

type determination is not always possible when
dynamic rules are in effect

18

Scope of Identifiers

•

In most programming languages identifier
bindings are introduced by
–

Function declarations (introduce function names)

–

Procedure definitions (introduce procedure names)
–

Identifier declarations (introduce identifiers)

–

Formal parameters (introduce identifiers)

19

Scope of Identifiers (Cont.)

•

Not all kinds of identifiers follow the most-
 closely nested scope rule

•

For example, function declarations
–

often cannot be nested

–

are globally visible throughout the program

•

In other words, a function name can be used
before it is defined

20

Example: Use Before Definition

foo (integer x)
{
integer y
y ←

bar(x)

...
}
bar (integer i): integer
{
...

}

21

Other Kinds of Scope

•

In O-O languages, method and attribute
names have more sophisticated (static) scope
rules

•

A method need not be defined in the class in
which it is used, but in some parent class

•

Methods may also be redefined (overridden)

22

Implementing the Most-Closely Nested Rule

•

Much of semantic analysis can be expressed as
a recursive descent of an AST
–

Process an AST node n

–

Process the children of n
–

Finish processing the AST node n

•

When performing semantic analysis on a
portion of the AST, we need to know which
identifiers are defined

23

Implementing Most-Closely Nesting (Cont.)

•

Example:
–

the scope of variable declarations is one subtree

let integer x ←

42 in E

– x can be used in subtree E

24

Symbol Tables

Purpose: To hold information about identifiers
that is computed at some point and looked up
at later times during compilation
Examples:
–

type of a variable

–

entry point for a function

Operations: insert, lookup, delete

Common implementations: linked lists, hash tables

25

Symbol Tables

•

Assuming static scope, consider again:
let integer x ←

42 in E

•

Idea:
–

Before processing E, add definition of x to
current definitions, overriding any other
definition of x

–

After processing E, remove definition of x
and, if needed, restore old definition of x

•

A symbol table is a data structure that tracks
the current bindings of identifiers

26

A Simple Symbol Table Implementation

•

Structure is a stack

•

Operations
add_symbol(x) push x and associated info, such as
x’s

type, on the stack

find_symbol(x) search stack, starting from top, for
x. Return first x found or NULL if none found

remove_symbol() pop the stack

•

Why does this work?

27

Limitations

•

The simple symbol table works for variable
declarations
–

Symbols added one at a time

–

Declarations are perfectly nested

•

Doesn’t work for
foo(x: integer, x: float);

•

Other problems?

28

A Fancier Symbol Table

• enter_scope() start/push a new nested scope
• find_symbol(x) finds current x

(or null)

• add_symbol(x) add a symbol x

to the table
• check_scope(x) true if x defined in current

scope
• exit_scope() exits/pops the current scope

29

Function/Procedure Definitions

•

Function names can be used prior to their
definition

•

We can’t check that for function names
–

using a symbol table

–

or even in one pass
•

Solution
–

Pass 1: Gather all function/procedure names

–

Pass 2: Do the checking
•

Semantic analysis requires multiple passes
–

Probably more than two

30

Types

•

What is a type?
–

This is a subject of some debate

–

The notion varies from language to language

•

Consensus
–

A type is a set of values and

–

A set of operations on those values

•

Type errors arise when operations are performed on
values that do not support that operation

31

Why Do We Need Type Systems?

Consider the assembly language fragment

addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

32

Types and Operations

•

Certain operations are legal for values of each
type

–

It doesn’t make sense to add a function pointer and
an integer in C

–

It does make sense to add two integers

–

But both have the same assembly language
implementation!

33

Type Systems

•

A language’s type system specifies which
operations are valid for which types

•

The goal of type checking is to ensure that
operations are used with the correct types
–

Enforces intended interpretation of values,
because nothing else will!

•

Type systems provide a concise formalization
of the semantic checking rules

34

What Can Types do For Us?

•

Allow for a more efficient compilation of
programs
–

Allocate right amount of space for variables

•

Use fewer bits when possible
–

Select the right machine operations

•

Detect statically certain kinds of errors
–

Memory errors

•

Reading from an invalid pointer, etc.
–

Violation of abstraction boundaries

–

Security and access rights violations

35

Type Checking Overview

Three kinds of languages:

Statically typed: All or almost all checking of types
is done as part of compilation

•

C, C++, ML, Haskell, Java, C#, ...

Dynamically typed: Almost all checking of types is
done as part of program execution

•

Scheme, Prolog, Erlang, Python, Ruby, PHP, Perl, ...

Untyped: No type checking (machine code)

36

The Type Wars

•

Competing views on static vs. dynamic typing

•

Static typing proponents say:
–

Static checking catches many programming errors
at compile time

–

Avoids overhead of runtime type checks

•

Dynamic typing proponents say:
–

Static type systems are restrictive

–

Rapid prototyping easier in a dynamic type system

37

The Type Wars (Cont.)

•

In practice, most code is written in statically
typed languages with an “escape”

mechanism

–

Unsafe casts in C, Java

•

It is debatable whether this compromise
represents the best or worst of both worlds

