Semantic Analysis

Outline

* The role of semantic analysis in a compiler
- A laundry list of tasks

- Scope
- Static vs. Dynamic scoping
- Implementation: symbol tables

- Types
- Static analyses that detect type errors
- Statically vs. Dynamically typed languages

Where we are

Source | mmmm
Code

The Compiler Front-End

Syntax Analysis

Lexical analysis: program is /exically well-formed

- Tokens are legal
* e.g. identifiers have valid names, no stray characters, etc.

- Detects inputs with illegal tokens
Parsing: program is syntactically well-formed

- Declarations have correct structure, expressions are
syntactically valid, etc.

- Detects inputs with ill-formed syntax
Semantic analysis:

- Last “front end” compilation phase

- Catches all remaining errors

Beyond Syntax Errors

Why Have a Separate Semantic Analysis?

What's wrong with foo(int a, char * s){...}

this C code?
(Note: it parses int bar(Q) {
correctly) int f[3];

int i, j, k;

Undeclared identifier char q, *p;

Multiply declared identifier float K;
Index out of bounds foo(F[6], 10, J);
Wrong number or types of break:

arguments to function call

Incompatible types for 1->val = 42;

operation J=m+Kk;

break statement outside printf("%s,%s-\n",p,q);
switch/loop goto label42;

goto with no label 3}

Parsing cannot catch some errors

Some language constructs are not context-free
- Example: Identifier declaration and use
- An abstract version of the problem is:
L={wew| we (a+b)}
- The 1st wrepresents the identifier's declaration;
the 2nd wrepresents a use of the idenftifier

- This language is not context-free

What Does Semantic Analysis Do?

What's Wrong?

Performs checks beyond syntax of many kinds ...

Examples:
1. All used identifiers are declared
Identifiers declared only once
Types
Procedures and functions defined only once

Procedures and functions used with the right
number and type of arguments

And others . ..

o, wn

The requirements depend on the language

Example 1
let string y « "abc” Iny + 42

Example 2
let Integer y In X + 42

Semantic Processing: Syntax-Directed Translation

Basic idea: Associate information with language
constructs by attaching attributes to the
grammar symbols that represent these constructs

- Values for attributes are computed using semantic
rules associated with grammar productions

- An attribute can represent anything (reasonable)
that we choose; e.g. a string, number, type, etc.

- A parse tree showing the values of attributes at
each node is called an annotated parse tree

Attributes of an Identifier

name: character string (obtained from scanner)
scope: program region in which identifier is valid
type:

- integer

- array:
* number of dimensions
* upper and lower bounds for each dimension
* fype of elements

- function:
* number and type of parameters (in order)
* type of returned value
* size of stack frame

10

Scope

* The scope of an identifier (a binding of a name
to the entity it names) is the textual part of
the program in which the binding is active

+ Scope matches identifier declarations with uses
- Important static analysis step in most languages

1

Scope (Cont.)

* The scope of an identifier is the portion of a
program in which that identifier is accessible

* The same identifier may refer to different
things in different parts of the program
- Different scopes for same name don't overlap

* An identifier may have restricted scope

12

Static vs. Dynamic Scope

* Most languages have static (lexical) scope

- Scope depends only on the physical structure of
program text, not its run-time behavior

- The determination of scope is made by the compiler
- C, Java, ML have static scope; so do most languages

- A few languages are dynamically scoped
- Lisp, SNOBOL
- Lisp has changed to mostly static scoping
- Scope depends on execution of the program

13

Static Scoping Example

let integer (X « O in

{
&
let Integer|Xx|« 1 iIn
X
&
+

Uses of x refer to closest enclosing definition

14

Dynamic Scope

- A dynamically-scoped variable refers to the
closest enclosing binding in the execution of
the program

Example
g(y) = let integer a « 42 i1n T(3);
OO = a;
- When invoking g(54) the result will be 42

15

Static vs. Dynamic Scope

Program scopes (input, output);

var a: integer;
procedure First; With static scope
begin a :=1; end; rules, it prints 1
procedure second;
var a: integer; With dynamic scope
begin Tfirst; end; rules, it prints 2
begin
a := 2; second; write(a);

end.

16

Dynamic Scope (Cont.)

+ With dynamic scope, bindings cannot always be
resolved by examining the program because
they are dependent on calling sequences

* Dynamic scope rules are usually encountered in
interpreted languages

* Also, usually these languages do not normally
have static type checking:

- type determination is not always possible when
dynamic rules are in effect

17

Scope of Identifiers

* In most programming languages identifier
bindings are introduced by
- Function declarations (introduce function names)
- Procedure definitions (introduce procedure names)
- Identifier declarations (introduce identifiers)
- Formal parameters (introduce identifiers)

18

Scope of Identifiers (Cont.)

* Noft all kinds of identifiers follow the most-
closely nested scope rule

* For example, function declarations
- often cannot be nested
- are globally visible throughout the program

« Inother words, a function nhame can be used
before it is defined

19

Example: Use Before Definition

foo (integer Xx)

{
integer y
y « bar(x)

}
bar (integer 1):

{
}

integer

20

Other Kinds of Scope

+ In O-O languages, method and attribute
names have more sophisticated (static) scope
rules

+ A method need not be defined in the class in
which it is used, but in some parent class

* Methods may also be redefined (overridden)

21

Implementing the Most-Closely Nested Rule

* Much of semantic analysis can be expressed as
a recursive descent of an AST
- Process an AST node n
- Process the children of n
- Finish processing the AST node n

* When performing semantic analysis on a
portion of the AST, we need to know which
identifiers are defined

22

Implementing Most-Closely Nesting (Cont.)

+ Example:
- the scope of variable declarations is one subtree
let Integer X « 42 in E

— X can be used in subtree E

23

Symbol Tables

Purpose: To hold information about identifiers
that is computed at some point and looked up
at later times during compilation

Examples:
- type of a variable
- entry point for a function

Operations: insert, lookup, delete

Common implementations: linked lists, hash tables

24

Symbol Tables

- Assuming static scope, consider again:
let Integer X « 42 in E
+ Idea:
- Before processing E, add definition of x to

current definitions, overriding any other
definition of x

- After processing E, remove definition of x
and, if needed, restore old definition of x

« A symbol table is a data structure that tracks
the current bindings of identifiers

25

A Simple Symbol Table Implementation

- Structure is a stack

* Operations

add_symbol(x) push X and associated info, such as
X's type, on the stack

find_symbol(x) search stack, starting from top, for
X. Return first X found or NULL if none found

remove_symbol() pop the stack

- Why does this work?

26

Limitations

* The simple symbol table works for variable
declarations
- Symbols added one at a time
- Declarations are perfectly nested

* Doesn't work for
foo(x: iInteger, x: fTloat);

* Other problems?

27

A Fancier Symbol Table

enter_scope()

find_symbol(x)
add_symbol(x)
check_scope(x)

start/push a new nested scope
finds current x (or null)
add a symbol x to the table

true if x defined in current
scope

exits/pops the current scope

exit_scope()

28

Function/Procedure Definitions

* Function names can be used prior to their
definition

* We can't check that for function names
- using a symbol table
- or even in one pass

+ Solution
- Pass 1: Gather all function/procedure names
- Pass 2: Do the checking

- Semantic analysis requires multiple passes
- Probably more than two

29

Types

* What is a type?
- This is a subject of some debate
- The notion varies from language to language

- Consensus
- A type is a set of values and
- A set of operations on those values

- Type errors arise when operations are performed on
values that do not support that operation

30

Why Do We Need Type Systems?

Consider the assembly language fragment

addi $r1, $r2, $r3

What are the types of $rl1, $r2, $r3?

31

Types and Operations

- Certain operations are legal for values of each
type

- It doesn't make sense to add a function pointer and
an integer in C

- It does make sense to add two integers

- But both have the same assembly language
implementation!

32

Type Systems

* A language's type system specifies which
operations are valid for which types

* The goal of type checking is to ensure that
operations are used with the correct types

- Enforces intended interpretation of values,
because nothing else willl

* Type systems provide a concise formalization
of the semantic checking rules

33

What Can Types do For Us?

» Allow for a more efficient compilation of
programs

- Allocate right amount of space for variables
* Use fewer bits when possible

- Select the right machine operations

- Detect statically certain kinds of errors

- Memory errors
* Reading from an invalid pointer, etc.

- Violation of abstraction boundaries
- Security and access rights violations

34

Type Checking Overview

Three kinds of languages:

Statically typed: All or almost all checking of types
is done as part of compilation
- C, C++, ML, Haskell, Java, C#, ...

Dynamically typed. Almost all checking of types is
done as part of program execution
* Scheme, Prolog, Erlang, Python, Ruby, PHP, Perl, ...

Untyped: No type checking (machine code)

35

The Type Wars

- Competing views on static vs. dynamic typing

- Static typing proponents say:

- Static checking catches many programming errors
at compile time

- Avoids overhead of runtime type checks

- Dynamic typing proponents say:
- Static type systems are restrictive
- Rapid prototyping easier in a dynamic type system

36

The Type Wars (Cont.)

 In practice, most code is written in statically
typed languages with an “escape” mechanism
- Unsafe casts in C, Java

- It is debatable whether this compromise
represents the best or worst of both worlds

37

