
Semantic Analysis

2

Outline

•
 

The role of semantic analysis in a compiler
–

 
A laundry list of tasks

•
 

Scope
–

 
Static vs. Dynamic scoping

–
 

Implementation: symbol tables

•
 

Types
–

 
Static analyses that detect type errors

–
 

Statically vs. Dynamically typed languages
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Where we are
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The Compiler Front-End

Lexical analysis: program is lexically well-formed
–

 
Tokens are legal

•
 

e.g. identifiers have valid names, no stray characters, etc.
–

 
Detects inputs with illegal tokens

Parsing: program is syntactically well-formed
–

 
Declarations have correct structure, expressions are 
syntactically valid, etc.

–
 

Detects inputs with ill-formed syntax
Semantic analysis: 

–
 

Last “front end”
 

compilation phase
–

 
Catches all remaining errors
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Beyond Syntax Errors

•
 

What’s wrong with 
this C code? 
(Note: it parses 
correctly)

foo(int a, char * s){...}

int bar() {
int f[3];
int i, j, k;
char q, *p;
float k;
foo(f[6], 10, j);
break;
i->val = 42;
j = m + k;
printf("%s,%s.\n",p,q);
goto label42;

}

•
 

Undeclared identifier
•

 
Multiply declared identifier

•
 

Index out of bounds
•

 
Wrong number or types of 
arguments to function call

•
 

Incompatible types for 
operation

•
 

break statement outside 
switch/loop

•
 

goto
 

with no label
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Why Have a Separate Semantic Analysis?

Parsing cannot catch some errors

Some language constructs are not context-free
–

 
Example: Identifier declaration and use

–
 

An abstract version of the problem is:
L = { wcw | w ∈

 
(a + b)*

 
}

–
 

The 1st w represents the identifier’s declaration; 
the 2nd w represents a use of the identifier

–
 

This language is not context-free
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What Does Semantic Analysis Do?

Performs checks beyond syntax of many kinds ...
Examples:

1.
 

All used identifiers are declared
2.

 
Identifiers declared only once

3.
 

Types 
4.

 
Procedures and functions defined only once

5.
 

Procedures and functions used with the right 
number and type of arguments

And others . . .

The requirements depend on the language
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What’s Wrong?

Example 1
let string y ←

 
"abc" in y + 42

Example 2
let integer y in x + 42
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Semantic Processing: Syntax-Directed Translation

Basic idea: Associate information with language 
constructs by attaching attributes to the 
grammar symbols that represent these constructs
–

 
Values for attributes are computed using semantic 
rules associated with grammar productions

–
 

An attribute can represent anything (reasonable) 
that we choose; e.g. a string, number, type, etc.

–
 

A parse tree showing the values of attributes at 
each node is called an annotated parse tree
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Attributes of an Identifier

name: character string (obtained from scanner)
scope: program region in which identifier is valid
type:

- integer
- array:

•
 

number of dimensions
•

 
upper and lower bounds for each dimension

•
 

type of elements
–

 
function:

•
 

number and type of parameters (in order)
•

 
type of returned value

•
 

size of stack frame
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Scope

•
 

The scope of an identifier (a binding of a name 
to the entity it names) is the textual part of 
the program in which the binding is active

•
 

Scope matches identifier declarations with uses
–

 
Important static analysis step in most languages
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Scope (Cont.)

•
 

The scope of an identifier is the portion of a 
program in which that identifier is accessible

•
 

The same identifier may refer to different 
things in different parts of the program
–

 
Different scopes for same name don’t overlap

•
 

An identifier may have restricted scope
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Static vs. Dynamic Scope

•
 

Most languages have static (lexical) scope
–

 
Scope depends only on the physical structure of 
program text, not its run-time behavior

–
 

The determination of scope is made by the compiler
–

 
C, Java, ML have static scope; so do most languages

•
 

A few languages are dynamically scoped
–

 
Lisp, SNOBOL

–
 

Lisp has changed to mostly static scoping
–

 
Scope depends on execution of the program
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Static Scoping Example

let integer x ←
 

0 in
{

x;
let integer x ←

 
1 in

x;
x;

}

Uses of x refer to closest enclosing definition
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Dynamic Scope

•
 

A dynamically-scoped variable refers to the 
closest enclosing binding in the execution of 
the program

Example
g(y) = let integer a ←

 
42 in f(3);

f(x) = a;

–
 

When invoking g(54) the result will be 42
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Static vs. Dynamic Scope

Program scopes (input, output);
var a: integer;
procedure first;
begin  a := 1;  end;

procedure second;
var a: integer;
begin  first;  end;

begin
a := 2;  second;  write(a);

end.

With static scope 
rules, it prints 1

With dynamic scope 
rules, it prints 2
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Dynamic Scope (Cont.)

•
 

With dynamic scope, bindings cannot always be 
resolved by examining the program because 
they are dependent on calling sequences

•
 

Dynamic scope rules are usually encountered in 
interpreted languages

•
 

Also, usually these languages do not normally 
have static type checking:
–

 
type determination is not always possible when 
dynamic rules are in effect
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Scope of Identifiers

•
 

In most programming languages identifier 
bindings are introduced by
–

 
Function declarations (introduce function names)

–
 

Procedure definitions (introduce procedure names)
–

 
Identifier declarations (introduce identifiers)

–
 

Formal parameters (introduce identifiers)
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Scope of Identifiers (Cont.)

•
 

Not all kinds of identifiers follow the most-
 closely nested scope rule

•
 

For example, function declarations
–

 
often cannot be nested

–
 

are globally visible throughout the program

•
 

In other words, a function name can be used 
before it is defined
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Example: Use Before Definition

foo (integer x)
{
integer y 
y ←

 
bar(x)

...
}
bar (integer i): integer
{
... 

}
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Other Kinds of Scope

•
 

In O-O languages, method and attribute 
names have more sophisticated (static) scope 
rules

•
 

A method need not be defined in the class in 
which it is used, but in some parent class

•
 

Methods may also be redefined (overridden)
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Implementing the Most-Closely Nested Rule

•
 

Much of semantic analysis can be expressed as 
a recursive descent of an AST
–

 
Process an AST node n

–
 

Process the children of n
–

 
Finish processing the AST node n

•
 

When performing semantic analysis on a 
portion of the AST, we need to know which 
identifiers are defined
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Implementing Most-Closely Nesting (Cont.)

•
 

Example:
–

 
the scope of variable declarations is one subtree

let integer x ←
 

42 in E

– x can be used in subtree E

24

Symbol Tables

Purpose: To hold information about identifiers 
that is computed at some point and looked up 
at later times during compilation
Examples:
–

 
type of a variable

–
 

entry point for a function

Operations: insert, lookup, delete

Common implementations: linked lists, hash tables



25

Symbol Tables

•
 

Assuming static scope, consider again:
let integer x ←

 
42 in E

•
 

Idea:
–

 
Before processing E, add definition of x to 
current definitions, overriding any other 
definition of x

–
 

After processing E, remove definition of x 
and, if needed, restore old definition of x

•
 

A symbol table is a data structure that tracks 
the current bindings of identifiers 
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A Simple Symbol Table Implementation

•
 

Structure is a stack

•
 

Operations
add_symbol(x) push x and associated info, such as 
x’s

 
type, on the stack

find_symbol(x) search stack, starting from top, for 
x. Return first x found or NULL if none found

remove_symbol() pop the stack

•
 

Why does this work?
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Limitations

•
 

The simple symbol table works for variable 
declarations
–

 
Symbols added one at a time

–
 

Declarations are perfectly nested

•
 

Doesn’t work for
foo(x: integer, x: float);

•
 

Other problems?
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A Fancier Symbol Table

• enter_scope() start/push a new nested scope
• find_symbol(x) finds current x

 
(or null)

• add_symbol(x) add a symbol x
 

to the table
• check_scope(x) true if x defined in current 

scope
• exit_scope() exits/pops the current scope
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Function/Procedure Definitions

•
 

Function names can be used prior to their 
definition

•
 

We can’t check that for function names
–

 
using a symbol table

–
 

or even in one pass
•

 
Solution
–

 
Pass 1: Gather all function/procedure names

–
 

Pass 2: Do the checking
•

 
Semantic analysis requires multiple passes
–

 
Probably more than two
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Types

•
 

What is a type?
–

 
This is a subject of some debate

–
 

The notion varies from language to language

•
 

Consensus
–

 
A type is a set of values and

–
 

A set of operations on those values

•
 

Type errors arise when operations are performed on 
values that do not support that operation

31

Why Do We Need Type Systems?

Consider the assembly language fragment

addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?
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Types and Operations

•
 

Certain operations are legal for values of each 
type

–
 

It doesn’t make sense to add a function pointer and 
an integer in C

–
 

It does make sense to add two integers

–
 

But both have the same assembly language 
implementation!
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Type Systems

•
 

A language’s type system specifies which 
operations are valid for which types

•
 

The goal of type checking is to ensure that 
operations are used with the correct types
–

 
Enforces intended interpretation of values, 
because nothing else will!

•
 

Type systems provide a concise formalization 
of the semantic checking rules
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What Can Types do For Us?

•
 

Allow for a more efficient compilation of 
programs
–

 
Allocate right amount of space for variables

•
 

Use fewer bits when possible
–

 
Select the right machine operations

•
 

Detect statically certain kinds of errors
–

 
Memory errors

•
 

Reading from an invalid pointer, etc.
–

 
Violation of abstraction boundaries

–
 

Security and access rights violations
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Type Checking Overview

Three kinds of languages:

Statically typed: All or almost all checking of types 
is done as part of compilation

•
 

C, C++, ML, Haskell, Java, C#, ...

Dynamically typed: Almost all checking of types is 
done as part of program execution

•
 

Scheme, Prolog, Erlang, Python, Ruby, PHP, Perl, ...

Untyped: No type checking (machine code)
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The Type Wars

•
 

Competing views on static vs. dynamic typing

•
 

Static typing proponents say:
–

 
Static checking catches many programming errors 
at compile time

–
 

Avoids overhead of runtime type checks

•
 

Dynamic typing proponents say:
–

 
Static type systems are restrictive

–
 

Rapid prototyping easier in a dynamic type system
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The Type Wars (Cont.)

•
 

In practice, most code is written in statically 
typed languages with an “escape”

 
mechanism

–
 

Unsafe casts in C, Java

•
 

It is debatable whether this compromise 
represents the best or worst of both worlds


