Outline

- Review of bottom-up parsing
- Computing the parsing DFA
- Using parser generators

The Shift and Reduce Actions (Review)

- Recall the CFG: $E \rightarrow \operatorname{int} \mid E+(E)$
- A bottom-up parser uses two kinds of actions:
- Shift pushes a terminal from input on the stack

$$
E+(ı \text { int }) \Rightarrow E+(\text { int } ।)
$$

- Reduce pops 0 or more symbols off of the stack (production RHS) and pushes a nonterminal on the stack (production LHS)

$$
E+(\underline{E}+(E) \mid) \Rightarrow E+(\underline{E} \mid)
$$

Key Issue: When to Shift or Reduce?

- Idea: use a deterministic finite automaton (DFA) to decide when to shift or reduce
- The input is the stack
- The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after I
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

Representing the DFA

- Parsers represent the DFA as a 2D table
- Recall table-driven lexical analysis
- Lines correspond to DFA states
- Columns correspond to terminals and nonterminals
- Typically columns are split into:
- Those for terminals: the action table
- Those for non-terminals: the goto table

LR(1) Parsing: An Example

	$1 \mathrm{int}+$ (int) + (int)\$	shift
	int $1+$ (int) + (int)\$	$E \rightarrow$ int
	$E_{1}+(\mathrm{int})+(\mathrm{int}) \$$	shift (x3)
	$E+(\mathrm{int})$) + (int)\$	$E \rightarrow$ int
	$E+\left(E_{1}\right)+(\mathrm{int}) \$$	shift
	$E+(E) 1+(i n t) \$$	$E \rightarrow E+(E)$
	E $1+(\mathrm{int})$ \$	shift (x3)
	$E+(\mathrm{int} \mathrm{l})$ \$	$E \rightarrow$ int
(8) $\quad 9$	$E+(E)$)	shift
	$E+(E) \mid \$$	$\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
	E\|\$	accept

Representing the DFA: Example

The table for a fragment of our DFA:

	int	+	()	\$	E
\cdots			$s 4$			
4	s5					$g 6$
5		$r_{E \rightarrow \text { int }}$		$\mathrm{r}_{\mathrm{E} \rightarrow \text { int }}$		
6	s8		s7			
7		$r_{E \rightarrow E+(E)}$			$r_{E \rightarrow E+(E)}$	
		sk is shif $r_{X} \rightarrow{ }_{\alpha}$ is $g k$ is got	$\begin{aligned} & \text { t an } \\ & \text { cedu } \\ & 0 \text { stc } \end{aligned}$	d goto s te k	ate k	

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
- This is wasteful, since most of the work is repeated
- Remember for each stack element on which state it brings the DFA
- LR parser maintains a stack

$$
\left\langle\text { sym }_{1}, \text { state }_{1}\right\rangle \ldots\left\langle\text { sym }_{n}, \text { state }_{n}\right\rangle
$$

state $_{k}$ is the final state of the DFA on sym $_{1} \ldots$ sym $_{k}$

The LR Parsing Algorithm

```
let I = w$ be initial input
let j=0
let DFA state O be the start state
let stack = < dummy, 0 >
    repeat
        case action[top_state(stack), I[j]] of
            shift k: push <I[j++], k \
            reduce X }->\mathrm{ A:
                pop |A| pairs,
                push < X, goto[top_state(stack), X]>
            accept: halt normally
            error: halt and report error
```


LR(0) Items

- An $\underline{L R(0)}$ item is a production with a "।" somewhere on the RHS
- The items for $T \rightarrow(E)$ are

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{I}(\mathrm{E}) \\
& \mathrm{T} \rightarrow(\mathrm{IE}) \\
& \mathrm{T} \rightarrow(\mathrm{E},) \\
& \mathrm{T} \rightarrow(\mathrm{E}) ।
\end{aligned}
$$

- The only item for $X \rightarrow \varepsilon$ is $X \rightarrow 1$

LR(0) Items: Intuition

- An item $[X \rightarrow \alpha \mid \beta]$ says that
- the parser is looking for an X
- it has an α on top of the stack
- Expects to find a string derived from β next in the input
- Notes:
- $[X \rightarrow \alpha \mid a \beta]$ means that a should follow. Then we can shift it and still have a viable prefix
- $[X \rightarrow \alpha$ I] means that we could reduce X
- But this is not always a good idea!

Note

- The symbol I was used before to separate the stack from the rest of input
- $\alpha \mid \gamma$, where α is the stack and γ is the remaining string of terminals
- In items I is used to mark a prefix of a production RHS:

$$
X \rightarrow \alpha \mid \beta, \quad a
$$

- Here β might contain terminals as well
- In both case the stack is on the left of ।

LR(1) Items

- An LR(1) item is a pair:

$$
X \rightarrow \alpha \perp \beta, a
$$

- $X \rightarrow \alpha \beta$ is a production
- a is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- $[X \rightarrow \alpha \mid \beta, a]$ describes a context of the parser
- We are trying to find an X followed by an a, and
- We have (at least) α already on top of the stack
- Thus we need to see next a prefix derived from βa

Thus we need to see next a prefix derived from

Convention

- We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
- Where E is the old start symbol
- The initial parsing context contains:

$$
S \rightarrow I E, \$
$$

- Trying to find an S as a string derived from $E \$$
- The stack is empty

LR(1) Items (Cont.)

- In context containing

$$
E \rightarrow E+1(E),+
$$

- If (follows then we can perform a shift to context containing

$$
E \rightarrow E+(1 E),+
$$

- In context containing

$$
E \rightarrow E+(E) ।,+
$$

- We can perform a reduction with $E \rightarrow E+(E)$
- But only if a + follows

LR(1) Items (Cont.)

- Consider the item

$$
E \rightarrow E+(। E),+
$$

- We expect a string derived from E) +
- There are two productions for E

$$
E \rightarrow \text { int and } E \rightarrow E+(E)
$$

- We describe this by extending the context with two more items:

$$
\begin{array}{ll}
E \rightarrow \text { int } & ,) \\
E \rightarrow I E+(E),)
\end{array}
$$

The Closure Operation

- The operation of extending the context with items is called the closure operation

```
Closure(Items) =
    repeat
        for each [X }->\alpha\mathrm{ I Y }\beta,a]\mathrm{ in Items
            for each production }Y->
            for each b in First( }\betaa\mathrm{ )
                add [Y }->|\gamma,b]\mathrm{ to Items
    until Items is unchanged
```


Constructing the Parsing DFA (1)

- Construct the start context:

$$
\begin{aligned}
& \text { Closure (\{S } \rightarrow \text { IE, \$\}) } \\
& S \rightarrow I E \quad \$ \\
& E \rightarrow I E+(E), \$ \\
& E \rightarrow \text { int }, \$ \\
& E \rightarrow I E+(E) \text {, }+ \\
& E \rightarrow \text { I int , }+
\end{aligned}
$$

- We abbreviate as:

$$
\begin{array}{ll}
S \rightarrow I E & , \$ \\
E \rightarrow \text { I } \mathrm{E}+(\mathrm{E}) & , \$ /+ \\
\mathrm{E} \rightarrow \text { I int } & , \$ /+
\end{array}
$$

Constructing the Parsing DFA (2)

- A DFA state is a closed set of $\operatorname{LR}(1)$ items
- The start state contains [S \rightarrow I $E, \$$]
- A state that contains $[X \rightarrow \alpha \mathrm{I}, \mathrm{b}]$ is labelled with "reduce with $X \rightarrow \alpha$ on b "
- And now the transitions ...

The DFA Transitions

- A state "State" that contains [$X \rightarrow \alpha \mid y \beta, b]$ has a transition labeled y to a state that contains the items "Transition(State, y)"
- y can be a terminal or a non-terminal

```
Transition(State, y)
    Items= \varnothing
    for each [X->\alpha|y\beta,b] in State
        add [X->\alphay | \beta,b] to Items
    return Closure(Items)
```


LR Parsing Tables: Notes

- Parsing tables (i.e., the DFA) can be constructed automatically for a CFG
- But we still need to understand the construction to work with parser generators
- E.g., they report errors in terms of sets of items
- What kind of errors can we expect?

Shift/Reduce Conflicts

- If a DFA state contains both

$$
[X \rightarrow \alpha \mid a \beta, b] \text { and }[Y \rightarrow \gamma \mid, a]
$$

- Then on input "a" we could either
- Shift into state [$X \rightarrow \alpha a \mid \beta$, b], or
- Reduce with $Y \rightarrow \gamma$
- This is called a shift-reduce conflict

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
- Classic example: the dangling else

$$
S \rightarrow \text { if } E \text { then } S \mid \text { if } E \text { then } S \text { else } S \mid \text { OTHER }
$$

- Will have DFA state containing

$$
\begin{array}{ll}
{[S \rightarrow \text { if } E \text { then } S I,} & \text { else }] \\
{[S \rightarrow \text { if } E \text { then } S \text { I else } S,} & x]
\end{array}
$$

- If else follows then we can shift or reduce
- Default (yacc, ML-yacc, etc.) is to shift
- Default behavior is as needed in this case

More Shift/Reduce Conflicts

- Consider the ambiguous grammar

$$
E \rightarrow E+E|E * E| \text { int }
$$

- We will have the states containing

$$
\begin{aligned}
& {\left[E \rightarrow E^{*} \mid E_{1}+\right]} \\
& {[E \rightarrow \mid E+E,+] \Rightarrow E \quad[E \rightarrow E * E \mid,+]} \\
& {[E \rightarrow E \mid+E,+]}
\end{aligned}
$$

- Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Recall solution: declare the precedence of * and +

More Shift/Reduce Conflicts

- In yacc declare precedence and associativity:

$$
\begin{aligned}
& \text { \%left + } \\
& \text { \%left * }
\end{aligned}
$$

- Precedence of a rule $=$ that of its last terminal See yacc manual for ways to override this default
- Resolve shift/reduce conflict with a shift if:
- no precedence declared for either rule or terminal
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

Using Precedence to Solve S/R Conflicts

- Back to our example:

$$
\begin{array}{ll}
{\left[E \rightarrow E^{*} \mid E,+\right]} \\
{[E \rightarrow \mid E+E,+] \Rightarrow E} & {\left[E \rightarrow E^{*} E \mid,+\right]} \\
{[E \rightarrow E \mid+E,+]}
\end{array}
$$

- Will choose reduce because precedence of rule $E \rightarrow E$ * E is higher than of terminal +

Using Precedence to Solve S/R Conflicts

- Back to our dangling else example
[$S \rightarrow$ if E then $S I, \quad$ else]
[$S \rightarrow$ if E then S I else S, x]
- Can eliminate conflict by declaring else having higher precedence than then
- But this starts to look like "hacking the tables"
- Best to avoid overuse of precedence declarations or we will end with unexpected parse trees

Using Precedence to Solve S/R Conflicts

- Same grammar as before

$$
E \rightarrow E+E|E * E| \operatorname{int}
$$

- We will also have the states

$$
\begin{aligned}
& {[E \rightarrow E+I E,+]} \\
& {[E \rightarrow I E+E,+] \Rightarrow E \quad[E \rightarrow E+E \mid,+]} \\
& {[E \rightarrow E \mid+E,+]}
\end{aligned}
$$

- Now we also have a shift/reduce on input +
- We choose reduce because $E \rightarrow E+E$ and + have the same precedence and + is left-associative

Precedence Declarations Revisited

The term "precedence declaration" is misleading!

These declarations do not define precedence:
they define conflict resolutions
I.e., they instruct shift-reduce parsers to resolve conflicts in certain ways
The two are not quite the same thing!

- If a DFA state contains both

$$
[X \rightarrow \alpha 1, a] \text { and }[Y \rightarrow \beta 1, a]
$$

- Then on input " a " we don't know which production to reduce
- This is called a reduce/reduce conflict

More on Reduce/Reduce Conflicts

- Consider the states
[$S \rightarrow$ id I, \$]
$\left[\begin{array}{ll}S^{\prime} \rightarrow \mid S, & \$] \quad[S \rightarrow i d \mid S, \$]\end{array}\right.$
$[S \rightarrow 1, \quad \$] \quad \Rightarrow \quad[S \rightarrow 1, \quad \$]$
$[S \rightarrow 1$ id, \$] [S \rightarrow iid, \$]
$[S \rightarrow$ Iid $S, \$] \quad[S \rightarrow 1$ id $S, \$]$
- Reduce/reduce conflict on input \$

$$
\begin{aligned}
& S^{\prime} \rightarrow S \rightarrow \mathrm{id} \\
& S^{\prime} \rightarrow S \rightarrow \mathrm{id} S \rightarrow \mathrm{id}
\end{aligned}
$$

- Better rewrite the grammar as: $S \rightarrow \varepsilon \mid$ id S

Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers

$$
S \rightarrow \varepsilon \mid \text { id } \mid \text { id } S
$$

- There are two parse trees for the string id

$$
\begin{aligned}
& S \rightarrow \text { id } \\
& S \rightarrow \text { id } S \rightarrow \text { id }
\end{aligned}
$$

- How does this confuse the parser?

Using Parser Generators

- Parser generators automatically construct the parsing DFA given a CFG
- Use precedence declarations and default conventions to resolve conflicts
- The parser algorithm is the same for all grammars (and is provided as a library function)
- But most parser generators do not construct the DFA as described before
- Because the LR(1) parsing DFA has 1000s of states even for a simple language

LR(1) Parsing Tables are Big

- But many states are similar, e.g.

- Idea: merge the DFA states whose items differ only in the lookahead tokens
- We say that such states have the same core
- We obtain

LALR States

- Consider for example the LR(1) states

$$
\begin{aligned}
& \{[\mathrm{X} \rightarrow \alpha \mathrm{I}, \mathrm{a}],[\mathrm{Y} \rightarrow \beta \mathrm{I}, \mathrm{c}]\} \\
& \{[\mathrm{X} \rightarrow \alpha \mathrm{I}, \mathrm{~b}],[\mathrm{Y} \rightarrow \beta \mathrm{I}, \mathrm{~d}]\}
\end{aligned}
$$

- They have the same core and can be merged
- And the merged state contains:

$$
\{[X \rightarrow \alpha \mathrm{I}, \mathrm{a} / \mathrm{b}],[Y \rightarrow \beta \mathrm{I}, c / d]\}
$$

- These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10 times fewer LALR(1) states than LR(1)

The Core of a Set of LR Items

Definition: The core of a set of LR items is the set of first components

- Without the lookahead terminals
- Example: the core of

$$
\{[X \rightarrow \alpha \mid \beta, b],[Y \rightarrow \gamma \mid \delta, d]\}
$$

is

$$
\{X \rightarrow \alpha|\beta, Y \rightarrow \gamma| \delta\}
$$

A LALR(1) DFA

- Repeat until all states have distinct core
- Choose two distinct states with same core
- Merge the states by creating a new one with the union of all the items
- Point edges from predecessors to new state
- New state points to all the previous successors

Conversion LR(1) to LALR(1): Example.

The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states

$$
\begin{aligned}
& \{[\mathrm{X} \rightarrow \alpha \mathrm{I}, \mathrm{a}],[\mathrm{Y} \rightarrow \beta \mathrm{I}, \mathrm{~b}]\} \\
& \{[\mathrm{X} \rightarrow \alpha \mathrm{I}, \mathrm{~b}],[\mathrm{Y} \rightarrow \beta \mathrm{I}, \mathrm{a}]\}
\end{aligned}
$$

- And the merged LALR(1) state

$$
\{[X \rightarrow \alpha \mathrm{I}, \mathrm{a} / \mathrm{b}],[Y \rightarrow \beta \mathrm{I}, \mathrm{a} / \mathrm{b}]\}
$$

- Has a new reduce/reduce conflict
- In practice such cases are rare

LALR vs. LR Parsing: Things to keep in mind

- LALR languages are not natural
- They are an efficiency hack on LR languages
- Any reasonable programming language has a LALR(1) grammar
- LALR(1) parsing has become a standard for programming languages and for parser generators

A Hierarchy of Grammar Classes

From Andrew Appel
"Modern Compiler
Implementation in ML"

Semantic Actions in LR Parsing

- We can now illustrate how semantic actions are implemented for LR parsing
- Keep attributes on the stack
- On shifting a, push attribute for a on stack
- On reduce $X \rightarrow \alpha$
- pop attributes for α
- compute attribute for X
- and push it on the stack

Performing Semantic Actions: Example
Recall the example

$$
\begin{aligned}
& E \rightarrow T+E_{1} \quad\left\{E . v a l=T . v a l+E_{1} \cdot v a l\right\} \\
& \text { | T } \quad \text { E.val }=\text { T.val }\} \\
& T \rightarrow \text { int * } T_{1} \quad\left\{\text { T.val }=\text { int.val * } T_{1} \text {.val }\right\} \\
& \text { | int } \quad\{\text { T.val }=\text { int.val }\}
\end{aligned}
$$

Consider the parsing of the string: 4 * $9+6$

Performing Semantic Actions: Example

shift
shift
shift
reduce $T \rightarrow$ int
reduce $T \rightarrow$ int * T
shift
shift
reduce $T \rightarrow$ int
reduce $E \rightarrow T$
reduce $E \rightarrow T+E$
accept

Notes

- The previous example shows how synthesized attributes are computed by LR parsers
- It is also possible to compute inherited attributes in an LR parser

Notes on Parsing

- Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1)
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- LALR(1) parser generators
- Next time we move on to semantic analysis

Strange Reduce/Reduce Conflicts

- Consider the grammar

$$
\begin{array}{ll}
S \rightarrow P R, & N L \rightarrow N \mid N, N L \\
P \rightarrow T \mid N L: T & R \rightarrow T \mid N: T \\
N \rightarrow \text { id } & T \rightarrow \text { id }
\end{array}
$$

- P - parameters specification
- R - result specification
- N - a parameter or result name
- T - a type name
- NL - a list of names

Strange Reduce/Reduce Conflicts due to LALR Conversion (and how to handle them)

Strange Reduce/Reduce Conflicts

- In Pan id is a
- N when followed by , or:
- T when followed by id
- In R an id is a
- N when followed by:
- T when followed by,
- This is an LR(1) grammar
- But it is not LALR(1). Why?
- For obscure reasons

A Few LR(1) States

53

What Happened?

- Two distinct states were confused because they have the same core
- Fix: add dummy productions to distinguish the two confused states
- E.g., add

$$
R \rightarrow \text { id bogus }
$$

- bogus is a terminal not used by the lexer
- This production will never be used during parsing
- But it distinguishes R from P

A Few LR(1) States After Fix

```
P->IT id 
P->INL:T id
NL}->I
NL}->IN,N
N}->1\mathrm{ id
N}->\mathrm{ lid
T}->1\mathrm{ id
id
```

$\mathrm{R} \rightarrow$. T,
$\mathrm{R} \rightarrow . \mathrm{N}: T$,
$\mathrm{R} \rightarrow$. id bogus,
$\mathrm{T} \rightarrow$. id,
$\mathrm{N} \rightarrow$. id $\quad:$

