Abstract Syntax Trees & Top-Down Parsing

Review of Parsing

- Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree.
- Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes how $s \in L(G)$
 - Ambiguity: more than one parse tree (possible interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens.
- The rest of the compiler needs a structural representation of the program.
- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]
- And the string
 \[5 + (2 + 3) \]
- After lexical analysis (a list of tokens)
 \[\text{int}_5 \ ' + ' \ '(' \text{int}_2 \ ' + ' \text{int}_3 \ ')' \]
- During parsing we build a parse tree...
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - More compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we will use to construct ASTs
- Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \) \{ action \}
 - That can refer to or compute symbol attributes
- Consider the grammar
 \[
 E \rightarrow \text{int} \mid E + E \mid (E)
 \]
- For each symbol \(X \) define an attribute \(X\.val \)
 - For terminals, \(val \) is the associated lexeme
 - For non-terminals, \(val \) is the expression's value (which is computed from values of subexpressions)
- We annotate the grammar with actions:
 \[
 \begin{align*}
 E &\rightarrow \text{int} \quad \{ \ \text{E.val} = \text{int.val} \} \\
 &\mid E_1 + E_2 \quad \{ \ \text{E.val} = E_1\.val + E_2\.val \} \\
 &\mid (E_1) \quad \{ \ \text{E.val} = E_1\.val \}
 \end{align*}
 \]
Semantic Actions: An Example (Cont.)

- String: $5 + (2 + 3)$
- Tokens: int5 '+' '(' int2 '+' int3 ')'

Productions

\[
E \rightarrow E_1 + E_2 \\
E_1 \rightarrow \text{int}_5 \\
E_2 \rightarrow (E_3) \\
E_3 \rightarrow E_4 + E_5 \\
E_4 \rightarrow \text{int}_2 \\
E_5 \rightarrow \text{int}_3 \\
\]

Equations

\[
E \cdot \text{val} = E_1 \cdot \text{val} + E_2 \cdot \text{val} \\
E_1 \cdot \text{val} = \text{int}_5 \cdot \text{val} = 5 \\
E_2 \cdot \text{val} = E_3 \cdot \text{val} \\
E_3 \cdot \text{val} = E_4 \cdot \text{val} + E_5 \cdot \text{val} \\
E_4 \cdot \text{val} = \text{int}_2 \cdot \text{val} = 2 \\
E_5 \cdot \text{val} = \text{int}_3 \cdot \text{val} = 3 \\
\]

Semantic Actions: Dependencies

Semantic actions specify a system of equations

- Order of executing the actions is not specified

- Example:
 \[
 E_3 \cdot \text{val} = E_4 \cdot \text{val} + E_5 \cdot \text{val} \\
 \text{Must compute } E_4 \cdot \text{val} \text{ and } E_5 \cdot \text{val} \text{ before } E_3 \cdot \text{val} \\
 \text{We say that } E_3 \cdot \text{val} \text{ depends on } E_4 \cdot \text{val} \text{ and } E_5 \cdot \text{val} \\
 \]

- The parser must find the order of evaluation

Dependency Graph

- Each node labeled with a non-terminal E has one slot for its val attribute
- Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

- **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree
 - \texttt{E.val} is a synthesized attribute
 - Can always be calculated in a bottom-up order

- Grammars with only synthesized attributes are called **S-attributed grammars**
 - Most frequent kinds of grammars

Inherited Attributes

- Another kind of attributes
- Calculated from attributes of the parent node(s) and/or siblings in the parse tree

- Example: a line calculator

A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the \(= \) sign
 \[L \rightarrow E = \mid + E = \]
- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P L \]

Attributes for the Line Calculator

- Each \(E \) has a synthesized attribute \texttt{val}
 - Calculated as before
- Each \(L \) has a synthesized attribute \texttt{val}
 \[L \rightarrow E = \quad \{ \texttt{L.val} = \texttt{E.val} \} \]
 \[+ E = \quad \{ \texttt{L.val} = \texttt{E.val} + \texttt{L.prev} \} \]
- We need the value of the previous line
- We use an inherited attribute \texttt{L.prev}
Attributes for the Line Calculator (Cont.)

- Each P has a synthesized attribute \(\text{val} \)
 - The value of its last line
 \[
 \text{P} \rightarrow \epsilon \quad \{ \text{P.val} = 0 \}
 \]
 \[
 | \text{P1 L} \quad \{ \text{P.val} = \text{L.val};
 \]
 \[
 \text{L.prev} = \text{P1.val} \}

- Each L has an inherited attribute \(\text{prev} \)
 - \(\text{L.prev} \) is inherited from sibling \(\text{P1.val} \)

- Example ...

Example of Inherited Attributes

- \(\text{val} \) synthesized
- \(\text{prev} \) inherited
- All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
 - Also used for type checking, code generation, ...
- Process is called syntax-directed translation
 - Substantial generalization over CFGs

Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

 \[
 \text{mkleaf(n)} = \begin{array}{c}
 n
 \end{array}
 \]
 \[
 \text{mkplus(,)} = \begin{array}{c}
 \text{PLUS}
 \end{array}
 \]

 \[
 \begin{array}{c}
 \text{T}_1
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{T}_2
 \end{array}
 \]
Constructing a Parse Tree

• We define a synthesized attribute ast
 - Values of ast values are ASTs
 - We assume that int.lexval is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad \{ \text{E.ast} = \text{mkleaf}(\text{int.lexval}) \}
\]
\[
| \ E_1 + E_2 \quad \{ \text{E.ast} = \text{mkplus}(E_1.ast, E_2.ast) \}
\]
\[
| \ (E_1) \quad \{ \text{E.ast} = E_1.ast \}
\]

Parse Tree Example

• Consider the string int\(_5\) ' + ' (int\(_2\) ' + ' int\(_3\))
• A bottom-up evaluation of the ast attribute:
 \[
 E.ast = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))
 \]

Review of Abstract Syntax Trees

• We can specify language syntax using CFG
• A parser will answer whether \(s \in L(G) \)
• ... and will build a parse tree
• ... which we convert to an AST
• ... and pass on to the rest of the compiler

• Next two & a half lectures:
 - How do we answer \(s \in L(G) \) and build a parse tree?
• After that: from AST to assembly language

Second-Half of Lecture 5: Outline

• Implementation of parsers
• Two approaches
 - Top-down
 - Bottom-up
• Today: Top-Down
 - Easier to understand and program manually
• Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:
 \[t_2 \ t_5 \ t_6 \ t_8 \ t_9 \]
- The parse tree is constructed
 - From the top
 - From left to right

Recursive Descent Parsing

- Consider the grammar
 \[
 E \rightarrow T \ast E \mid T \\
 T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
 \]
- Token stream is: \(\text{int}_5 \ast \text{int}_2 \)
- Start with top-level non-terminal \(E \)
- Try the rules for \(E \) in order

Recursive Descent Parsing. Example (Cont.)

- Try \(E_0 \rightarrow T_1 + E_2 \)
 - Token stream: \(\text{int}_5 \ast \text{int}_2 \)
- Then try a rule for \(T_1 \rightarrow (E_3) \)
 - But \((\) does not match input token \(\text{int}_5 \)
- Try \(T_1 \rightarrow \text{int} \). Token matches.
 - But \(+ \) after \(T_1 \) does not match input token \(\ast \)
- Try \(T_1 \rightarrow \text{int} \ast T_2 \)
 - This will match and will consume the two tokens.
 - Try \(T_2 \rightarrow \text{int} \) (matches) but \(+ \) after \(T_1 \) will be unmatched
 - Try \(T_2 \rightarrow \text{int} \ast T_3 \) but \(\ast \) does not match with end-of-input
- Has exhausted the choices for \(T_1 \)
 - Backtrack to choice for \(E_0 \)
 - \(E \rightarrow T + E \mid T \)
 - \(T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \)
Recursive Descent Parsing. Notes.

- Easy to implement by hand
- Somewhat inefficient (due to backtracking)
- But does not always work ...

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S a$
  ```
  bool $S_1()$ { return $S()$ && term(a); }
  bool $S()$ { return $S_1();$ }
  ```
- $S()$ will get into an infinite loop
- A left-recursive grammar has a non-terminal S
 $$S \rightarrow^* S\alpha$$
- Recursive descent does not work in such cases

Elimination of Left Recursion

- Consider the left-recursive grammar
 $$S \rightarrow S \alpha \mid \beta$$
- S generates all strings starting with a β and followed by any number of α's
- The grammar can be rewritten using right-recursion
 $$S \rightarrow \beta S'$$
 $$S' \rightarrow \alpha S' \mid \varepsilon$$

More Elimination of Left-Recursion

- In general
 $$S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$$
- All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$
- Rewrite as
 $$S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S'$$
 $$S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \varepsilon$$
General Left Recursion

- The grammar

 \[
 S \rightarrow A \alpha \mid \delta \\
 A \rightarrow S \beta
 \]

 is also left-recursive because

 \[
 S \rightarrow S \beta \alpha
 \]

- This left-recursion can also be eliminated

 [See a Compilers book for a general algorithm]

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - … but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

- Recall the grammar for arithmetic expressions
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} * T \]

- Hard to predict because
 - For \(T \) two productions start with \(\text{int} \)
 - For \(E \) it is not clear how to predict

- A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

- Recall the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} * T \]

- Factor out common prefixes of productions
 \[E \rightarrow T \ X \]
 \[X \rightarrow + E \mid \epsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow * T \mid \epsilon \]

LL(1) Parsing Table Example

- Left-factored grammar
 \[E \rightarrow T \ X \]
 \[X \rightarrow + E \mid \epsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow * T \mid \epsilon \]

- The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>T X</td>
<td></td>
<td>T X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X)</td>
<td></td>
<td>+ E</td>
<td></td>
<td>\epsilon</td>
<td>\epsilon</td>
</tr>
<tr>
<td>(T)</td>
<td>int Y</td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Y)</td>
<td></td>
<td>* T</td>
<td></td>
<td>\epsilon</td>
<td>\epsilon</td>
</tr>
</tbody>
</table>

LL(1) Parsing Table Example (Cont.)

- Consider the \([E, \text{int}]\) entry
 - “When current non-terminal is \(E \) and next input is \(\text{int} \), use production \(E \rightarrow T \ X \)
 - This production can generate an \(\text{int} \) in the first place

- Consider the \([Y,+]\) entry
 - “When current non-terminal is \(Y \) and current token is \(+ \), get rid of \(Y \)"
 - \(Y \) can be followed by \(+ \) only in a derivation in which \(Y \rightarrow \epsilon \)
LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - “There is no way to derive a string starting with * from non-terminal E”

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at [S,a]

- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y_1…Y_n then stack ← <Y_1…Y_n rest>; else error();
 <t, rest> : if t == *next++ then stack ← <rest>; else error();
until stack == <>

LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

• LL(1) languages are those defined by a parsing table for the LL(1) algorithm
• No table entry can be multiply defined
• We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

• If \(A \rightarrow \alpha \), where in the line of \(A \) we place \(\alpha \)?

• In the column of \(t \) where \(t \) can start a string derived from \(\alpha \)
 - \(\alpha \rightarrow \ast \beta \)
 - We say that \(t \in \text{First}(\alpha) \)
• In the column of \(t \) if \(\alpha \) is \(\varepsilon \) and \(t \) can follow an \(A \)
 - \(S \rightarrow \ast \beta \ A \rightarrow \delta \)
 - We say \(t \in \text{Follow}(A) \)

Computing First Sets

Definition
\[
\text{First}(X) = \{ t \mid X \rightarrow^* t \alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \}
\]

Algorithm sketch
1. \(\text{First}(t) = \{ t \} \)
2. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow \varepsilon \) is a production
3. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)

First Sets: Example

• Recall the grammar

\[
\begin{align*}
E & \rightarrow TX \\
T & \rightarrow (E) \mid \text{int} \ Y \\
X & \rightarrow +E \mid \varepsilon \\
Y & \rightarrow \ast T \mid \varepsilon
\end{align*}
\]

• First sets

\[
\begin{align*}
\text{First}(\) & = \{ \} & \text{First}(\) & = \{ \} \\
\text{First}(+) & = \{ + \} & \text{First}(* &) & = \{ * \}
\end{align*}
\]

\[
\begin{align*}
\text{First}(\text{int}) & = \{ \text{int} \} \\
\text{First}(T) & = \{ \text{int}, (\} \\
\text{First}(E) & = \{ \text{int}, (\} \\
\text{First}(X) & = \{ +, \varepsilon \} \\
\text{First}(Y) & = \{ *, \varepsilon \}
\end{align*}
\]
Computing Follow Sets

- **Definition**
 \[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta X t \delta \} \]

- **Intuition**
 - If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \)
 - Also if \(B \rightarrow^* \epsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
 - If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)

Follow Sets: Example

- Recall the grammar
 \[
 \begin{align*}
 E &\rightarrow T X & X &\rightarrow + E | \epsilon \\
 T &\rightarrow (E) | \text{int} Y & Y &\rightarrow * T | \epsilon
 \end{align*}
 \]
- **Follow sets**
 \[
 \begin{align*}
 \text{Follow}(+) &= \{ \text{int}, (\} & \text{Follow}(\ast) &= \{ \text{int}, (\} \\
 \text{Follow}(()) &= \{ \text{int}, (\} & \text{Follow}(E) &= \{), $ \} \\
 \text{Follow}(X) &= \{ $,) \} & \text{Follow}(T) &= \{ +,), $ \} \\
 \text{Follow}(()) &= \{ +,), $ \} & \text{Follow}(Y) &= \{ +,), $ \} \\
 \text{Follow}(\text{int}) &= \{ *, +,), $ \}
 \end{align*}
 \]

Constructing LL(1) Parsing Tables

- Construct a parsing table \(T \) for CFG \(G \)
 - For each production \(A \rightarrow \alpha \) in \(G \) do:
 - For each terminal \(t \in \text{First}(\alpha) \) do
 - \(T[\alpha, t] = \alpha \)
 - If \(\epsilon \in \text{First}(\alpha) \), for each \(t \in \text{Follow}(A) \) do
 - \(T[\alpha, t] = \alpha \)
 - If \(\epsilon \in \text{First}(\alpha) \) and \(\$ \in \text{Follow}(A) \) do
 - \(T[\alpha, \$] = \alpha \)
Notes on LL(1) Parsing Tables

• If any entry is multiply defined then \(G \) is not LL(1)
 - If \(G \) is ambiguous
 - If \(G \) is left recursive
 - If \(G \) is not left-factored
 - And in other cases as well
• Most programming language grammars are not LL(1)
• There are tools that build LL(1) tables

Review

• For some grammars there is a simple parsing strategy
 Predictive parsing
• Next time: a more powerful parsing strategy