
Introduction to Parsing
 Ambiguity and Syntax Errors

2

Outline

•

Regular languages revisited

•

Parser overview

•

Context-free grammars (CFG’s)

• Derivations

• Ambiguity

• Syntax errors

3

Languages and Automata

•

Formal languages are very important in CS
–

Especially in programming languages

•

Regular languages
–

The weakest formal languages widely used

–

Many applications

•

We will also study context-free languages

4

Limitations of Regular Languages

Intuition:

A finite automaton that runs long
enough must repeat states

•

A finite automaton cannot remember # of
times it has visited a particular state

•

because a finite automaton has finite memory
–

Only enough to store in which state it is

–

Cannot count, except up to a finite limit
•

Many languages are not regular

•

E.g., language of balanced parentheses is not
regular: { (i

)i

| i ≥

0}

5

The Functionality of the Parser

•

Input: sequence of tokens from lexer

•

Output: parse tree of the program

6

Example

•

If-then-else statement
if (x == y) then z =1; else z = 2;

•

Parser input
IF (ID == ID) THEN ID = INT; ELSE ID = INT;

•

Possible parser output

IF-THEN-ELSE

==

ID ID

=

ID INT

=

ID INT

7

Comparison with Lexical Analysis

Phase Input Output

Lexer Sequence of
characters

Sequence of
tokens

Parser Sequence of
tokens

Parse tree

8

The Role of the Parser

•

Not all sequences of tokens are programs ...
•

Parser must distinguish between valid and
invalid sequences of tokens

•

We need
–

A language for describing valid sequences of tokens

–

A method for distinguishing valid from invalid
sequences of tokens

9

Context-Free Grammars

•

Many programming language constructs have a
recursive structure

•

A STMT is of the form
if COND then STMT else STMT , or
while COND do STMT , or
…

•

Context-free grammars are a natural notation
for this recursive structure

10

CFGs (Cont.)

•

A CFG consists of
–

A set of terminals T

–

A set of non-terminals N
–

A start symbol S (a non-terminal)

–

A set of productions

Assuming

X ∈ N the productions are of the form
X → ε

, or

X → Y1

Y2

... Yn

where

Yi

∈

N ∪T

11

Notational Conventions

•

In these lecture notes
–

Non-terminals are written upper-case

–

Terminals are written lower-case
–

The start symbol is the left-hand side of the first
production

12

Examples of CFGs

A fragment of our example language (simplified):

STMT →

if COND then STMT else STMT
⏐

while COND do STMT

⏐

id = int

13

Examples of CFGs (cont.)

Grammar for simple arithmetic expressions:

E →

E * E
⏐

E + E

⏐

(E)
⏐

id

14

The Language of a CFG

Read productions as replacement rules:

X →

Y1

... Yn
Means X

can be replaced by Y1

... Yn

X → ε
Means X

can be erased (replaced with empty string)

15

Key Idea

(1) Begin with a string consisting of the start
symbol “S”

(2) Replace any non-terminal X in the string by
a right-hand side of some production

(3) Repeat (2) until there are no non-terminals in
the string

1 nX Y Y→ L

16

The Language of a CFG (Cont.)

More formally, we write

if there is a production

1 1 1 1 1i n i m i nX X X X X Y Y X X− +→L L L L L

1i mX Y Y→ L

17

The Language of a CFG (Cont.)

Write

if

in 0 or more steps

1 1n mX X Y Y∗→L L

1 1n mX X Y Y→ → →L L L L

18

The Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language of G is:

{ }1 1| and every is a terminaln n ia a S a a a∗→K K

19

Terminals

•

Terminals are called so because there are no
rules for replacing them

•

Once generated, terminals are permanent

•

Terminals ought to be tokens of the language

20

Examples

L(G) is the language of the CFG G

Strings of balanced parentheses

Two grammars:

()S S
S ε

→
→

()
|

S S
ε

→

{ }() | 0i i i ≥

or

21

Example

A fragment of our example language (simplified):

STMT →

if COND then STMT
⏐

if COND then STMT else STMT

⏐

while COND do STMT
⏐

id = int

COND →

(id == id)
⏐

(id != id)

22

Example (Cont.)

Some elements of the our language

id = int
if (id == id) then id = int else id = int
while (id != id) do id = int
while (id == id) do while (id != id) do id = int
if (id != id) then if (id == id) then id = int else id = int

23

Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id→ ∗

id id + id
(id) id id
(id) id id (id)

∗
∗ ∗

24

Notes

The idea of a CFG is a big step.
But:

•

Membership in a language is just “yes”

or “no”;
we also need the parse tree of the input

•

Must handle errors gracefully

•

Need an implementation of CFG’s (e.g.,

yacc)

25

More Notes

•

Form of the grammar is important
–

Many grammars generate the same language

–

Parsing tools are sensitive to the grammar

Note: Tools for regular languages (e.g., lex/ML-Lex)
are also sensitive to the form of the regular
expression, but this is rarely a problem in practice

26

Derivations and Parse Trees

A derivation is a sequence of productions

A derivation can be drawn as a tree
–

Start symbol is the tree’s root

–

For a production add children
to node

S → → →L L L

1 nX Y Y→ L
X 1 nY YL

27

Derivation Example

•

Grammar

•

String

E E+E | E E | (E) | id→ ∗

id id + id∗

28

Derivation Example (Cont.)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→ ∗
→ ∗

E

E

E E

E+

id*

idid

29

Derivation in Detail (1)

E

E

30

Derivation in Detail (2)

E
E+E→

E

E E+

31

Derivation in Detail (3)

E E

E
E+E
E +→ ∗

→

E

E

E E

E+

*

32

Derivation in Detail (4)

E
E+E
E E+E
id E + E→ ∗

→
→ ∗

E

E

E E

E+

*

id

33

Derivation in Detail (5)

E
E+E
E E+E
id E +
id id +

E
E→ ∗

→
→ ∗
→ ∗

E

E

E E

E+

*

idid

34

Derivation in Detail (6)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→
→ ∗

∗

E

E

E E

E+

id*

idid

35

Notes on Derivations

•

A parse tree has
–

Terminals at the leaves

–

Non-terminals at the interior nodes

•

An in-order traversal of the leaves is the
original input

•

The parse tree shows the association of
operations, the input string does not

36

Left-most and Right-most Derivations

•

What was shown before
was a left-most derivation
–

At each step, replace the
left-most non-terminal

•

There is an equivalent
notion of a right-most
derivation
–

Shown on the right

E
E+E
E+id
E E + id
E id + id
id id + id

→
→
→ ∗
→ ∗
→ ∗

37

Right-most Derivation in Detail (1)

E

E

38

Right-most Derivation in Detail (2)

E
E+E→

E

E E+

39

Right-most Derivation in Detail (3)

id

E
E+E
E+→

→

E

E E+

id

40

Right-most Derivation in Detail (4)

E
E+E
E+id
E E + id

→

∗
→
→

E

E

E E

E+

id*

41

Right-most Derivation in Detail (5)

E
E+E
E+id
E E
E

+ id
id + id

→
→
→

∗
∗

→

E

E

E E

E+

id*

id

42

Right-most Derivation in Detail (6)

E
E+E
E+id
E E + id
E id + id
id id + id→ ∗

→
→
→ ∗
→ ∗

E

E

E E

E+

id*

idid

43

Derivations and Parse Trees

•

Note that right-most and left-most
derivations have the same parse tree

•

The difference is just in the order in which
branches are added

44

Summary of Derivations

•

We are not just interested in whether
s ∈ L(G)

–

We need a parse tree for s

•

A derivation defines a parse tree
–

But one parse tree may have many derivations

•

Left-most and right-most derivations are
important in parser implementation

45

Ambiguity

•

Grammar:
E →

E + E | E * E | (E) | int

•

The string int * int + int has two parse trees

E

E

E E

E*

int +

intint

E

E

E E

E+

int*

intint
46

Ambiguity (Cont.)

•

A grammar is ambiguous if it has more than
one parse tree for some string
–

Equivalently, there is more than one right-most or
left-most derivation for some string

•

Ambiguity is bad
–

Leaves meaning of some programs ill-defined

•

Ambiguity is common

in programming languages
–

Arithmetic expressions

–

IF-THEN-ELSE

47

Dealing with Ambiguity

•

There are several ways to handle ambiguity

•

Most direct method is to rewrite grammar
unambiguously

E →

T + E | T
T →

int * T | int | (E)

•

This grammar enforces precedence of *

over +

48

Ambiguity: The Dangling Else

•

Consider the following grammar

S →

if C then S
| if C then S else S
| OTHER

•

This grammar is also ambiguous

49

The Dangling Else: Example

•

The expression
if C1

then if C2

then S3

else S4

has two parse trees

if

C1 if

C2 S3 S4

if

C1 if

C2 S3

S4

•

Typically we want the second form
50

The Dangling Else: A Fix

•

else

should match the closest unmatched then
•

We can describe this in the grammar

S →

MIF /* all then

are matched */
| UIF /* some then

are unmatched */

MIF →

if C then MIF else MIF
| OTHER

UIF →

if C then S
| if C then MIF else UIF

•

Describes the same set of strings

51

The Dangling Else: Example Revisited

•

The expression if C1

then if C2

then S3

else S4

if

C1 if

C2 S3 S4

if

C1 if

C2 S3

S4

•

Not valid because the
then

expression is not

a MIF

•

A valid parse tree
(for a UIF)

52

Ambiguity

•

No general techniques for handling ambiguity

•

Impossible to convert automatically an
ambiguous grammar to an unambiguous one

•

Used with care, ambiguity can simplify the
grammar
–

Sometimes allows more natural definitions

–

We need disambiguation mechanisms

53

Precedence and Associativity

Declarations

•

Instead of rewriting the grammar
–

Use the more natural (ambiguous) grammar

–

Along with disambiguating declarations

•

Most tools allow precedence and associativity
 declarations

to disambiguate grammars

•

Examples …

54

Associativity

Declarations

•

Consider the grammar E

→

E + E | int
•

Ambiguous: two parse trees of int

+ int

+ int

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

•

Left associativity

declaration: %left +

55

Precedence Declarations

•

Consider the grammar E

→

E + E | E * E | int
 And the string int + int * int

E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint

•

Precedence declarations: %left +
%left *

56

Error Handling

•

Purpose of the compiler is
–

To detect non-valid programs

–

To translate the valid ones
•

Many kinds of possible errors (e.g. in C)

Error kind Example Detected by …
Lexical …

$ …

Lexer

Syntax …

x *% …

Parser
Semantic …

int

x; y = x(3); …

Type checker

Correctness your favorite program

Tester/User

57

Syntax Error Handling

•

Error handler should
–

Report errors accurately and clearly

–

Recover from an error quickly
–

Not slow down compilation of valid code

•

Good error handling is not easy to achieve

58

Approaches to Syntax Error Recovery

•

From simple to complex
–

Panic mode

–

Error productions
–

Automatic local or global correction

•

Not all are supported by all parser generators

59

Error Recovery: Panic Mode

•

Simplest, most popular method

•

When an error is detected:
–

Discard tokens until one with a clear role is found

–

Continue from there

•

Such tokens are called synchronizing

tokens
–

Typically the statement or expression terminators

60

Syntax Error Recovery: Panic Mode (Cont.)

•

Consider the erroneous expression
(1 + +

2) + 3

•

Panic-mode recovery:
–

Skip ahead to next integer and then continue

•

(ML)-Yacc: use the special terminal error

to
describe how much input to skip

E

→

int

| E + E | (E) | error int

| (error)

61

Syntax Error Recovery: Error Productions

•

Idea: specify in the grammar known common
mistakes

•

Essentially promotes common errors to
alternative syntax

•

Example:
–

Write 5 x

instead of 5 * x

–

Add the production E → … | E E
•

Disadvantage
–

Complicates the grammar

62

Syntax Error Recovery: Past and Present

•

Past
–

Slow recompilation cycle (even once a day)

–

Find as many errors in one cycle as possible
–

Researchers could not let go of the topic

•

Present
–

Quick recompilation cycle

–

Users tend to correct one error/cycle
–

Complex error recovery is needed less

–

Panic-mode seems enough

