Implementation of Lexical Analysis

Notation

- For convenience, we use a variation (allow userdefined abbreviations) in regular expression notation
- Union: $A+B$
$\equiv A \mid B$
- Option: $A+\varepsilon$
$\equiv A$?
- Range: 'a'+'b'+...'z'
\equiv [a-z]
- Excluded range:

$$
\text { complement of }[a-z] \equiv[\wedge a-z]
$$

Outline

- Specifying lexical structure using regular expressions
- Finite automata
- Deterministic Finite Automata (DFAs)
- Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions

$$
\text { RegExp } \Rightarrow \text { NFA } \Rightarrow \text { DFA } \Rightarrow \text { Tables }
$$

Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate

$$
s \in L(R)
$$

- But a yes/no answer is not enough !
- Instead: partition the input into tokens
- We will adapt regular expressions to this goal

Regular Expressions \Rightarrow Lexical Spec. (1)

1. Select a set of tokens

- Integer, Keyword, Identifier, OpenPar, ...

2. Write a regular expression (pattern) for the lexemes of each token

- Integer = digit +
- Keyword = 'if' + 'else' + ...
- Identifier = letter (letter + digit)*
- OpenPar = '('

Regular Expressions \Rightarrow Lexical Spec. (2)
3. Construct R, matching all lexemes for all tokens

$$
\begin{aligned}
R & =\text { Keyword }+ \text { Identifier }+ \text { Integer }+\ldots \\
& =R_{1}+R_{2}+R_{3}+\ldots
\end{aligned}
$$

Facts: If $s \in L(R)$ then s is a lexeme

- Furthermore $s \in L\left(R_{i}\right)$ for some " i "
- This " i " determines the token that is reported

Regular Expressions \Rightarrow Lexical Spec. (3)
4. Let input be $x_{1} \ldots x_{n}$

- ($x_{1} \ldots x_{n}$ are characters)
- For $1 \leq i \leq n$ check

$$
x_{1} \ldots x_{i} \in L(R) ?
$$

5. It must be that
$x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ for some j
(if there is a choice, pick a smallest such j)
6. Remove $x_{1} \ldots x_{i}$ from input and go to previous step

How to Handle Spaces and Comments?

1. We could create a token Whitespace

Whitespace $=\left(\text { ' ' }^{\prime} \text { ' } \backslash n^{\prime}+' \backslash t^{\prime}\right)^{+}$

- We could also add comments in there
- An input" $\backslash t \backslash n 5555$ " is transformed into Whitespace Integer Whitespace

2. Lexer skips spaces (preferred)

- Modify step 5 from before as follows:

It must be that $x_{k} \ldots x_{i} \in L\left(R_{j}\right)$ for some j such that $x_{1} \ldots x_{k-1} \in L$ (Whitespace)

- Parser is not bothered with spaces

Ambiguities (1)

Ambiguities (2)

- There are ambiguities in the algorithm
- How much input is used? What if
- $x_{1} . . x_{i} \in L(R)$ and also
- $x_{1 . .} x_{k} \in L(R)$
- Rule: Pick the longest possible substring
- The "maximal munch"
- Which token is used? What if
- $x_{1} \ldots x_{i} \in L\left(R_{R}\right)$ and also
- $x_{1} \ldots x_{i} \in L\left(R_{k}\right)$
- Rule: use rule listed first (j if $\mathrm{j}<\mathrm{k}$)
- Example:
- $R_{1}=$ Keyword and $R_{2}=$ Identifier
- "if" matches both
- Treats "if" as a keyword not an identifier

Error Handling

- What if

No rule matches a prefix of input?

- Problem: Can't just get stuck ..
- Solution:
- Write a rule matching all "bad" strings
- Put it last
- Lexer tools allow the writing of:
$R=R_{1}+\ldots+R_{n}+$ Error
- Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
- To resolve ambiguities
- To handle errors
- Good algorithms known (next)
- Require only single pass over the input
- Few operations per character (table lookup)

Regular Languages \& Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata
A finite automaton is a recognizer for the strings of a regular language

A finite automaton consists of

- A finite input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $F \subseteq S$
- A set of transitions state \rightarrow input state

Finite Automata

- Transition

$$
s_{1} \rightarrow^{a} s_{2}
$$

- Is read

In state s_{1} on input "a" go to state s_{2}

- If end of input (or no transition possible)
- If in accepting state \Rightarrow accept
- Otherwise \Rightarrow reject

Finite Automata State Graphs

- A state
- The start state
- An accepting state

- A transition

A Simple Example

- A finite automaton that accepts only "1"

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: \{0,1\}

And Another Example

- Alphabet $\{0,1\}$
- What language does this recognize?

And Another Example

- Alphabet still $\{0,1\}$

- The operation of the automaton is not completely defined by the input
- On input "11" the automaton could be in either state

Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input
- Deterministic Finite Automata (DFA)
- One transition per input per state
- No ε-moves
- Non-deterministic Finite Automata (NFA)
- Can have multiple transitions for one input in a given state
- Can have ε-moves
- Finite automata have finite memory
- Enough to only encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
- Completely determined by input
- NFAs can choose
- Whether to make ε-moves
- Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

- Input: $\quad \begin{array}{lll}1 & 0 & 1\end{array}$
- Rule: NFA accepts an input if it can get in a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
- There are no choices to consider

NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

NFA

DFA

- DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

- High-level sketch

Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
- Notation: NFA for regular expression M

- For ε

- For input a

Regular Expressions to NFA (2)

- For $A B$

- For A + B

Example of Regular Expression \rightarrow NFA conversion

- Consider the regular expression

$$
(1+0)^{\star} 1
$$

- The NFA is

- For A^{*}

NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
= a non-empty subset of states of the NFA
- Start state
$=$ the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow \rightarrow^{a} S^{\prime}$ to DFA iff
- S' is the set of NFA states reachable from any state in S after seeing the input a
- considering ε-moves as well

NFA to DFA. Remark

NFA to DFA Example

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
- $2^{N}-1$ - finitely many

Table Implementation of a DFA

- A DFA can be implemented by a 2D table T
- One dimension is "states"
- Other dimension is "input symbols"
- For every transition $S_{i} \rightarrow S_{k}$ define $T[i, a]=k$
- DFA "execution"
- If in state S_{i} and input a, read $T[i, a]=k$ and skip to state S_{k}
- Very efficient

	0	1
S	T	U
T	T	U
U	T	U

Implementation (Cont.)

- NFA \rightarrow DFA conversion is at the heart of tools such as lex, ML-Lex or flex
- But, DFAs can be huge
- In practice, lex/ML-Lex/flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice
Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.
- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.

