Implementation of Lexical Analysis

Outline

• Specifying lexical structure using regular expressions

• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables

Notation

• For convenience, we use a variation (allow user-defined abbreviations) in regular expression notation

 - Union: $A + B$ $\equiv A \mid B$
 - Option: $A + \varepsilon$ $\equiv A?$
 - Range: `'a'+b'+...+z' $\equiv [a-z]$
 - Excluded range: complement of $[a-z] = [^a-z]$

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate $s \in L(R)$
• But a yes/no answer is not enough!
• Instead: partition the input into tokens
• We will adapt regular expressions to this goal
Regular Expressions ⇒ Lexical Spec. (1)

1. Select a set of tokens
 - Integer, Keyword, Identifier, OpenPar, ...

2. Write a regular expression (pattern) for the lexemes of each token
 - Integer = digit +
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = '('
 - ...

Regular Expressions ⇒ Lexical Spec. (2)

3. Construct \(R \), matching all lexemes for all tokens
 \[
 R = \text{Keyword} + \text{Identifier} + \text{Integer} + \ldots \\
 = R_1 + R_2 + R_3 + \ldots
 \]

Facts: If \(s \in L(R) \) then \(s \) is a lexeme
- Furthermore \(s \in L(R_i) \) for some "i"
- This "i" determines the token that is reported

Regular Expressions ⇒ Lexical Spec. (3)

4. Let input be \(x_1 \ldots x_n \)
 - \(x_1 \ldots x_n \) are characters
 - For \(1 \leq i \leq n \) check
 \[x_1 \ldots x_i \in L(R) \? \]

5. It must be that
 \[x_1 \ldots x_i \in L(R_j) \] for some \(j \)
 (if there is a choice, pick a smallest such \(j \))

6. Remove \(x_1 \ldots x_i \) from input and go to previous step

How to Handle Spaces and Comments?

1. We could create a token Whitespace
 \[
 \text{Whitespace} = (\ ' + \text{'}\n + \text{'}\t)\]
 - We could also add comments in there
 - An input " \text{'}\t\n \text{'}5555 \text{'}" is transformed into \text{Whitespace Integer Whitespace}

2. Lexer skips spaces (preferred)
 - Modify step 5 from before as follows:
 It must be that \(x_k \ldots x_i \in L(R_j) \) for some \(j \) such that \(x_1 \ldots x_{k-1} \in L(\text{Whitespace}) \)
 - Parser is not bothered with spaces
Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if
 - $x_1...x_i \in L(R)$ and also
 - $x_1...x_K \in L(R)$
- Rule: Pick the longest possible substring
- The "maximal munch"

Ambiguities (2)

- Which token is used? What if
 - $x_1...x_i \in L(R_j)$ and also
 - $x_1...x_i \in L(R_k)$
 - Rule: use rule listed first (j if $j < k$)
- Example:
 - $R_1 = \text{Keyword}$ and $R_2 = \text{Identifier}$
 - “if” matches both
 - Treats “if” as a keyword not an identifier

Error Handling

- What if
 - No rule matches a prefix of input?
- Problem: Can’t just get stuck ...
- Solution:
 - Write a rule matching all "bad" strings
 - Put it last
- Lexer tools allow the writing of:
 - $R = R_1 + ... + R_n + \text{Error}$
 - Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Regular Languages & Finite Automata

Basic formal language theory result:
Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:
• Regular expressions for specification
• Finite automata for implementation
 (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a recognizer for the strings of a regular language

A finite automaton consists of
 - A finite input alphabet Σ
 - A set of states S
 - A start state q_0
 - A set of accepting states $F \subseteq S$
 - A set of transitions $state \rightarrow input$ state

Finite Automata

• Transition $s_1 \rightarrow^a s_2$

• Is read
 In state s_1 on input “a” go to state s_2

• If end of input (or no transition possible)
 - If in accepting state \Rightarrow accept
 - Otherwise \Rightarrow reject

Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
A Simple Example

- A finite automaton that accepts only “1”

Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: {0,1}

And Another Example

- Alphabet {0,1}
- What language does this recognize?

And Another Example

- Alphabet still { 0, 1 }
- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

• Another kind of transition: ε-moves

$A \xrightarrow{\varepsilon} B$

• Machine can move from state A to state B without reading input

Deterministic and Non-Deterministic Automata

• Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves

• Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

• Finite automata have finite memory
 - Enough to only encode the current state

Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

• An NFA can get into multiple states

• Input: 1 0 1

• Rule: NFA accepts an input if it can get in a final state
NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

Regular Expressions to Finite Automata

- High-level sketch

Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M

- For ε

- For input a
Regular Expressions to NFA (2)

- For AB
 - $A \xrightarrow{\varepsilon} B$

- For $A + B$
 - $A \xrightarrow{\varepsilon} B \xrightarrow{\varepsilon} A$

Regular Expressions to NFA (3)

- For A^*
 - $A \xrightarrow{\varepsilon} \varepsilon$

Example of Regular Expression → NFA conversion

- Consider the regular expression $(1+0)^*1$
- The NFA is

NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 = a non-empty subset of states of the NFA
- Start state
 = the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \xrightarrow{a} S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a
 - considering ε-moves as well
NFA to DFA. Remark

• An NFA may be in many states at any time
• How many different states?
• If there are N states, the NFA must be in some subset of those N states
• How many subsets are there?
 - \(2^N - 1\) = finitely many

Implementation

• A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition \(S_i \rightarrow a S_k\) define \(T[i,a] = k\)

• DFA “execution”
 - If in state \(S_i\) and input \(a\), read \(T[i,a] = k\) and skip to state \(S_k\)
 - Very efficient

Table Implementation of a DFA

\[
\begin{array}{c|cc}
S & 0 & 1 \\
\hline
T & 0 & 1 \\
U & 1 & 1 \\
\end{array}
\]
Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as lex, ML-Lex or flex

- But, DFAs can be huge

- In practice, lex/ML-Lex/flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice

Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.

- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.