
LR Parsing
 LALR Parser Generators



Compiler Design I (2011) 2

Outline

•
 

Review of bottom-up parsing

•
 

Computing the parsing DFA

•
 

Using parser generators
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Bottom-up Parsing (Review)

•
 

A bottom-up parser rewrites the input string 
to the start symbol 

•
 

The state of the parser is described as 
α

 
I γ

–
 

α
 

is a stack of terminals and non-terminals
–

 
γ

 
is the string of terminals not yet examined

•
 

Initially: I x1
 

x2
 

. . . xn
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The Shift and Reduce Actions (Review)

•
 

Recall the CFG:  E →
 

int
 

| E + (E)
•

 
A bottom-up parser uses two kinds of actions:

•
 

Shift
 

pushes a terminal from input on the 
stack

E + ( I int
 

)  ⇒
 

E + ( int
 

I )

•
 

Reduce
 

pops 0 or more symbols off of the 
stack (production RHS) and pushes a non-

 terminal on the stack (production LHS)
E + (E + ( E )

 
I )  ⇒

 
E + ( E

 
I )
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Key Issue: When to Shift or Reduce?

•
 

Idea: use a deterministic finite automaton 
(DFA) to decide when to shift or reduce
–

 
The input is the stack

–
 

The language consists of terminals and non-terminals

•
 

We run the DFA on the stack and we examine 
the resulting state X

 
and the token tok

 
after I

–
 

If X
 

has a transition labeled tok
 

then shift
–

 
If X

 
is labeled with “A → β on tok” then reduce



LR(1) Parsing: An Example 

int

E →
 

int
on $, +

accept
on $

E →
 

int
on ), +

E →
 

E + (E)
on $, +

E →
 

E + (E)
on ), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int
 

+ (int) + (int)$  shift
int

 
I + (int) + (int)$  E → int

E I + (int) + (int)$    shift (x3)
E + (int

 
I ) + (int)$   E →

 
int

E + (E I )
 

+ (int)$     shift
E + (E)

 
I + (int)$

 
E → E+(E)

E I + (int)$
 

shift (x3)
E + (int

 
I )$             E →

 
int

E + (E I )$               shift
E + (E)

 
I $               E → E+(E)

E I $                       accept

int

E

)
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Representing the DFA

•
 

Parsers represent the DFA as a 2D table
–

 
Recall table-driven lexical analysis

•
 

Lines correspond to DFA states
•

 
Columns correspond to terminals and non-

 terminals
•

 
Typically columns are split into:
–

 
Those for terminals: the action

 
table

–
 

Those for non-terminals: the goto
 

table
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Representing the DFA: Example

The table for a fragment of our DFA:
int + ( ) $ E

…
3 s4
4 s5 g6
5 rE

 

→

 
int rE

 

→

 
int

6 s8 s7
7 rE

 

→

 
E+(E) rE

 

→

 
E+(E)

…

E →
 

int
on ), +

E →
 

E + (E)
on $, +

(

int
3 4

56

7

)

E

sk
 

is shift and goto
 

state k
rX

 

→ α

 

is reduce
gk

 
is goto

 
state k
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The LR Parsing Algorithm

•
 

After a shift or reduce action we rerun the 
DFA on the entire stack
–

 
This is wasteful, since most of the work is repeated

•
 

Remember for each stack element on which 
state it brings the DFA

•
 

LR parser maintains a stack
〈

 
sym1

 

, state1
 

〉
 

. . . 〈
 

symn
 

, staten
 

〉
statek

 

is the final state of the DFA on sym1
 

… symk
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The LR Parsing Algorithm

let I = w$ be initial input
let j = 0
let DFA state 0 be the start state
let stack = 〈

 
dummy, 0 〉

repeat
case action[top_state(stack), I[j]] of

shift k:  push 〈
 

I[j++], k
 

〉
reduce X →

 
A: 

pop |A| pairs, 
push 〈

 
X, goto[top_state(stack), X] 〉

accept: halt normally
error: halt and report error
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Key Issue: How is the DFA Constructed?

•
 

The stack describes the context of the parse
–

 
What non-terminal we are looking for

–
 

What production RHS we are looking for
–

 
What we have seen so far from the RHS

•
 

Each DFA state describes several such 
contexts
–

 
E.g., when we are looking for non-terminal E, we 
might be looking either for an int

 
or an E + (E)

 
RHS
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LR(0) Items

•
 

An LR(0) item
 

is a production with a “I”
 somewhere on the RHS

•
 

The items for T →
 

(E) are
T → I  (E)
T → ( I E)
T → (E

 
I )

T → (E)
 

I

•
 

The only item for X → ε is X →
 

I
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LR(0) Items: Intuition

•
 

An item [X → α I β]
 

says that
–

 
the parser is looking for an X

–
 

it has an α
 

on top of the stack
–

 
Expects to find a string derived from β

 
next in the 

input

•
 

Notes:
–

 
[X → α I aβ]

 
means that a

 
should follow. Then we 

can shift it and still have a viable prefix
–

 
[X →α I]

 
means that we could reduce X

•
 

But this is not always a good idea !
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LR(1) Items

•
 

An LR(1) item
 

is a pair:
X → α I β,  a

–
 

X → αβ is a production
–

 
a

 
is a terminal (the lookahead

 
terminal)

–
 

LR(1) means 1
 

lookahead
 

terminal
•

 
[X → α I β, a] describes a context of the parser  
–

 
We are trying to find an X followed by an

 
a, and 

–
 

We have (at least) α
 

already on top of the stack
–

 
Thus we need to see next a prefix derived from βa
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Note

•
 

The symbol I was used before to separate the 
stack from the rest of input
–

 
α

 
I γ, where α

 
is the stack and γ

 
is the remaining 

string of terminals
•

 
In items I is used to mark a prefix of a 
production RHS:

X → α I β,   a
–

 
Here β

 
might contain terminals as well

•
 

In both case the stack is on the left of I
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Convention

•
 

We add to our grammar a fresh new start 
symbol S

 
and a production S →

 
E

–
 

Where E
 

is the old start symbol

•
 

The initial parsing context contains:
S →

 
I E  , $

–
 

Trying to find an S
 

as a string derived from E$
–

 
The stack is empty
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LR(1) Items (Cont.)

•
 

In context containing
E →

 
E + I ( E )  , +

–
 

If (
 

follows then we can perform a shift to context 
containing

E →
 

E + ( I E )  , +
•

 
In context containing

E →
 

E + ( E ) I    , +
–

 
We can perform a reduction with E → E + ( E )

–
 

But only if a +
 

follows



Compiler Design I (2011) 18

LR(1) Items (Cont.)

•
 

Consider the item
E →

 
E + ( I E )  , +

•
 

We expect a string derived from E ) +
•

 
There are two productions for E

E → int
 

and  E → E + ( E)
•

 
We describe this by extending the context  
with two more items:

E →
 

I int
 

, )
E →

 
I E + ( E )  , )
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The Closure Operation

•
 

The operation of extending the context with 
items is called the closure operation

Closure(Items) =
repeat

for each [X →
 

α
 

I Yβ, a] in Items
for each production Y → γ

for each b
 

in First(βa)
add [Y →

 
I γ, b] to Items

until Items is unchanged
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Constructing the Parsing DFA (1) 

•
 

Construct the start context: Closure({S → I E, $})

S → I E      , $
E → I E+(E), $
E → I int

 
, $

E → I E+(E), +
E → I int

 
, +

S → I E        , $
E → I E+(E)  , $/+
E → I int

 
, $/+

•
 

We abbreviate as:
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Constructing the Parsing DFA (2)

•
 

A DFA state is a closed set of LR(1) items

•
 

The start state contains [S →
 

I E  , $]

•
 

A state that contains [X → α I, b]
 

is labelled
 with “reduce with

 
X → α on

 
b”

•
 

And now the transitions …



Compiler Design I (2011) 22

The DFA Transitions

•
 

A state “State”
 

that contains [X → α I yβ, b]
 has a transition labeled y

 
to a state that 

contains the items “Transition(State, y)”
–

 
y

 
can be a terminal or a non-terminal

Transition(State, y) 
Items = ∅
for each [X →

 
α

 
I yβ, b]  in State 

add [X →
 

αy
 

I β, b] to Items
return Closure(Items)
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Constructing the Parsing DFA: Example

E → E+ I (E), $/+

E → int
on $, +

accept
on $

E → E+(I E) , $/+
E → I E+(E) , )/+
E → I int

 
, )/+

E →
 

int
 

I , )/+ E → int
on ), +

E → E+(E I ) , $/+
E → E I +(E) , )/+

and so on…

S → I E      , $
E → I E+(E), $/+
E → I int

 
, $/+

0

3

4

56

E →
 

int
 

I, $/+
1

S → E I         , $
E → E I +(E), $/+

2

int

E +
(

E

int

)+
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LR Parsing Tables: Notes

•
 

Parsing tables (i.e., the DFA) can be 
constructed automatically for a CFG

•
 

But we still need to understand the 
construction to work with parser generators
–

 
E.g., they report errors in terms of sets of items

•
 

What kind of errors can we expect?
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Shift/Reduce Conflicts

•
 

If a DFA state contains both
[X →

 
α I aβ, b]  and  [Y →

 
γ I, a]

•
 

Then on input “a”
 

we could either
–

 
Shift into state [X → αa

 
I β, b], or

–
 

Reduce with Y → γ

•
 

This is called a shift-reduce conflict
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Shift/Reduce Conflicts

•
 

Typically due to ambiguities in the grammar
•

 
Classic example: the dangling else

S → if E then S  |  if E then S else S  |  OTHER
•

 
Will have DFA state containing

[S →
 

if E then S I,               else]
[S →

 
if E then S I else S,    x]

•
 

If
 

else
 

follows then we can shift or reduce
•

 
Default (yacc, ML-yacc, etc.) is to shift
–

 
Default behavior is as needed in this case
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More Shift/Reduce Conflicts

•
 

Consider the ambiguous grammar
E → E + E  |  E * E  |  int

•
 

We will have the states containing
[E →

 
E * I E,  +]            [E → E * E I,  +]

[E → I E + E,  +]    ⇒E
 

[E → E I + E,  +]
… …

•
 

Again we have a shift/reduce on input +
–

 
We need to reduce (*

 
binds more tightly than +)

–
 

Recall solution: declare the precedence of *
 

and +
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More Shift/Reduce Conflicts

•
 

In yacc
 

declare precedence and associativity:       
%left +
%left *

•
 

Precedence of a rule = that of its last terminal
See yacc

 
manual for ways to override this default

•
 

Resolve shift/reduce conflict with a shift
 

if:
–

 
no precedence declared for either rule or terminal

–
 

input terminal has higher precedence than the rule
–

 
the precedences

 
are the same and right associative
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Using Precedence to Solve S/R Conflicts

•
 

Back to our example:
[E →

 
E * I E,  +]           [E →E * E I,  +]

[E → I E + E,  +]  ⇒E
 

[E →E I + E,  +]
… …

•
 

Will choose reduce because precedence of 
rule E →

 
E * E

 
is higher than of terminal +
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Using Precedence to Solve S/R Conflicts

•
 

Same grammar as before
E → E + E  |  E * E  |  int

•
 

We will also have the states
[E →

 
E + I E,  +]             [E → E + E I,  +]

[E → I E + E,  +]    ⇒E
 

[E → E I + E,  +]
… …

•
 

Now we also have a shift/reduce on input +
–

 
We choose reduce because E →

 
E + E

 
and +

 
have 

the same precedence and +
 

is left-associative
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Using Precedence to Solve S/R Conflicts

•
 

Back to our dangling else example
[S →

 
if E then S I,             else]

[S →
 

if E then S I else S,   x]
•

 
Can eliminate conflict by declaring else

 
having 

higher precedence than then
•

 
But this starts to look like “hacking the tables”

•
 

Best to avoid overuse of precedence 
declarations or we will end with unexpected 
parse trees
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Precedence Declarations Revisited

The term “precedence declaration”
 

is misleading!

These declarations do not define precedence: 
they define conflict resolutions
I.e., they instruct shift-reduce parsers to resolve 

conflicts in certain ways
The two are not quite the same thing!
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Reduce/Reduce Conflicts

•
 

If a DFA state contains both
[X →

 
α I, a]  and  [Y →

 
β I, a]

–
 

Then on input “a” we don’t know which 
production to reduce

•
 

This is called a reduce/reduce conflict
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Reduce/Reduce Conflicts

•
 

Usually due to gross ambiguity in the grammar
•

 
Example: a sequence of identifiers

S → ε |  id  |  id S

•
 

There are two parse trees for the string
 

id
S →

 
id

S →
 

id S →
 

id
•

 
How does this confuse the parser?
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More on Reduce/Reduce Conflicts

•
 

Consider the states            [S →
 

id I,     $]
[S’

 
→ I S,     $]                    [S → id I S,  $]

[S → I,         $]        ⇒id
 

[S → I,         $]
[S → I id,     $]                    [S → I id,     $]
[S → I id S,  $]                    [S → I id S,  $]

•
 

Reduce/reduce conflict on input $
S’

 
→ S →

 
id

S’
 

→ S →
 

id S → id
•

 
Better rewrite the grammar:

 
S → ε | id S
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Using Parser Generators

•
 

Parser generators automatically construct the 
parsing DFA given a CFG
–

 
Use precedence declarations and default 
conventions to resolve conflicts

–
 

The parser algorithm is the same for all grammars 
(and is provided as a library function)

•
 

But most parser generators do not construct 
the DFA as described before
–

 
Because the LR(1) parsing DFA has 1000s of states 
even for a simple language
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LR(1) Parsing Tables are Big

•
 

But many states are similar, e.g.

and

•
 

Idea: merge the DFA states whose items 
differ only in the lookahead

 
tokens

–
 

We say that such states have the same core

•
 

We obtain

E → int
on $, +

E →
 

int
 

I, $/+
1

E →
 

int
 

I, )/+ E → int
on ), +

5

E → int
on $, +, )

E →
 

int
 

I, $/+/)
1’
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The Core of a Set of LR Items

Definition: The core of a set of LR items is the 
set of first components
–

 
Without the lookahead

 
terminals

•
 

Example: the core of 
{[X → α I β, b], [Y → γ I δ, d]}

is
{X → α I β,  Y → γ I δ}
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LALR States

•
 

Consider for example the LR(1) states
{[X → α I, a], [Y → β I, c]}
{[X → α I, b], [Y → β I, d]}

•
 

They have the same core and can be merged
•

 
And the merged state contains:

{[X → α I, a/b], [Y → β I, c/d]}
•

 
These are called LALR(1)

 
states 

–
 

Stands for LookAhead
 

LR
–

 
Typically 10 times fewer LALR(1) states than LR(1)
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A LALR(1) DFA

•
 

Repeat until all states have distinct core
–

 
Choose two distinct states with same core

–
 

Merge the states by creating a new one with the 
union of all the items

–
 

Point edges from predecessors to new state
–

 
New state points to all the previous successors

A

ED

CB

F

A
BE

D

C

F



3

8

Conversion LR(1) to LALR(1): Example.

int

E → int
on $, +

E → int
on ), +

E → E + (E)
on $, +

E → E + (E)
on ), +

(+
E

int

10

9

11

0 1

2 4

567

+ E

+

)

(
int

E

)

accept
on $

int
E → int
on $, +, )

E → E + (E)
on $, +, )

(

E
int

0 1,5

2 3,8 4,9

6,107,11

+

+

)

E

accept
on $
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The LALR Parser Can Have Conflicts

•
 

Consider for example the LR(1) states
{[X → α I, a], [Y → β I, b]}
{[X → α I, b], [Y → β I, a]}

•
 

And the merged LALR(1) state
{[X → α I, a/b], [Y → β I, a/b]}

•
 

Has a new
 

reduce/reduce conflict

•
 

In practice such cases are rare
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LALR vs. LR Parsing: Things to keep in mind

•
 

LALR languages are not natural
–

 
They are an efficiency hack on LR languages

•
 

Any reasonable programming language has a 
LALR(1) grammar

•
 

LALR(1) parsing has become a standard for 
programming languages and for parser 
generators
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A Hierarchy of Grammar Classes

From Andrew Appel, 
“Modern Compiler 
Implementation in ML”
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Semantic Actions in LR Parsing

•
 

We can now illustrate how semantic actions 
are implemented for LR parsing

•
 

Keep attributes on the stack

•
 

On shifting a, push attribute for a
 

on stack
•

 
On reduce X → α
–

 
pop attributes for α

–
 

compute attribute for X
–

 
and push it on the stack 
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Performing Semantic Actions: Example

•
 

Recall the example

E →
 

T + E1
 

{ E.val
 

= T.val
 

+ E1
 

.val }
|   T             { E.val

 
= T.val

 
}

T →
 

int
 

* T1
 

{ T.val
 

= int.val
 

* T1
 

.val }
|  int

 
{ T.val

 
= int.val

 
}

•
 

Consider the parsing of the string 3 * 5 + 8
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Performing Semantic Actions: Example

|
 

int
 

* int
 

+ int
 

shift
int3

 

|
 

* int
 

+ int
 

shift
int3

 

* |
 

int
 

+ int
 

shift
int3

 

* int5
 

|
 

+ int
 

reduce T →
 

int
int3

 

* T5
 

|
 

+ int
 

reduce T →
 

int
 

* T
T15

 

|
 

+ int
 

shift
T15

 

+ |
 

int
 

shift
T15

 

+ int8
 

|                            reduce T →
 

int
T15

 

+ T8
 

|
 

reduce E → T
T15

 

+ E8
 

|
 

reduce E → T + E
E23

 

|
 

accept 

3 * 5 + 8
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Notes

•
 

The previous example shows how synthesized 
attributes are computed by LR parsers

•
 

It is also possible to compute inherited 
attributes in an LR parser
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Notes on Parsing

•
 

Parsing
–

 
A solid foundation: context-free grammars

–
 

A simple parser: LL(1)
–

 
A more powerful parser: LR(1)

–
 

An efficiency hack: LALR(1)
–

 
LALR(1) parser generators

•
 

Next time we move on to semantic analysis



Supplement to LR Parsing

Strange Reduce/Reduce Conflicts 
due to LALR Conversion

(and how to handle them)
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Strange Reduce/Reduce Conflicts

•
 

Consider the grammar
S →

 
P R ,                 NL →

 
N  |  N , NL

P →
 

T  |  NL : T       R →
 

T  | N : T
N →

 
id                    T → id

•
 

P    -
 

parameters specification
•

 
R    -

 
result specification

•
 

N   -
 

a parameter or result name 
•

 
T    - a type name

•
 

NL
 

-
 

a list of names
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Strange Reduce/Reduce Conflicts

•
 

In P
 

an id
 

is a
–

 
N

 
when followed by ,

 
or :

–
 

T
 

when followed by id
•

 
In R

 
an id

 
is a

–
 

N
 

when followed by :
–

 
T

 
when followed by ,

•
 

This is an LR(1) grammar
•

 
But it is not LALR(1). Why?
–

 
For obscure reasons
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A Few LR(1) States

P →
 

I T            id

P →
 

I NL : T     id

T →
 

I id           id 

NL →
 

I N           :

NL →
 

I N , NL   :

N →
 

I id            :

N →
 

I id            ,

1

R →
 

I T             ,

R →
 

I N : T       ,

T →
 

I id            ,

N →
 

I id           :

2

T →
 

id I id

N →
 

id I :

N →
 

id I ,
id

3

T →
 

id I ,

N →
 

id I :
id 4

T →
 

id I id/,

N →
 

id I :/,
LALR merge

LALR reduce/reduce 
conflict on

 
“,”
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What Happened?

•
 

Two distinct states were confused because 
they have the same core

•
 

Fix: add dummy productions to distinguish the 
two confused states

•
 

E.g., add
R →

 
id bogus

–
 

bogus is a terminal not used by the lexer
–

 
This production will never be used during parsing

–
 

But it distinguishes R
 

from P
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A Few LR(1) States After Fix

P →
 

I T            id

P →
 

I NL : T     id

NL →
 

I N           :

NL →
 

I N , NL   :

N →
 

I id            :

N →
 

I id            ,

T →
 

I id           id

R →
 

. T             ,

R →
 

. N : T       ,

R → . id bogus  ,

T →
 

. id            ,

N →
 

. id           :

T →
 

id I id

N →
 

id I :

N →
 

id I ,

T →
 

id I ,

N →
 

id I :

R → id I bogus ,

id

id

1

2

3

4

Different cores ⇒ no LALR merging
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