
LR Parsing
 LALR Parser Generators

Compiler Design I (2011) 2

Outline

•

Review of bottom-up parsing

•

Computing the parsing DFA

•

Using parser generators

Compiler Design I (2011) 3

Bottom-up Parsing (Review)

•

A bottom-up parser rewrites the input string
to the start symbol

•

The state of the parser is described as
α

I γ

–

α

is a stack of terminals and non-terminals
–

γ

is the string of terminals not yet examined

•

Initially: I x1

x2

. . . xn

Compiler Design I (2011) 4

The Shift and Reduce Actions (Review)

•

Recall the CFG: E →

int

| E + (E)
•

A bottom-up parser uses two kinds of actions:

•

Shift

pushes a terminal from input on the
stack

E + (I int

) ⇒

E + (int

I)

•

Reduce

pops 0 or more symbols off of the
stack (production RHS) and pushes a non-

 terminal on the stack (production LHS)
E + (E + (E)

I) ⇒

E + (E

I)

Compiler Design I (2011) 5

Key Issue: When to Shift or Reduce?

•

Idea: use a deterministic finite automaton
(DFA) to decide when to shift or reduce
–

The input is the stack

–

The language consists of terminals and non-terminals

•

We run the DFA on the stack and we examine
the resulting state X

and the token tok

after I

–

If X

has a transition labeled tok

then shift
–

If X

is labeled with “A → β on tok” then reduce

LR(1) Parsing: An Example

int

E →

int
on $, +

accept
on $

E →

int
on), +

E →

E + (E)
on $, +

E →

E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int

+ (int) + (int)$ shift
int

I + (int) + (int)$ E → int

E I + (int) + (int)$ shift (x3)
E + (int

I) + (int)$ E →

int

E + (E I)

+ (int)$ shift
E + (E)

I + (int)$

E → E+(E)

E I + (int)$

shift (x3)
E + (int

I)$ E →

int

E + (E I)$ shift
E + (E)

I $ E → E+(E)

E I $ accept

int

E

)

Compiler Design I (2011) 7

Representing the DFA

•

Parsers represent the DFA as a 2D table
–

Recall table-driven lexical analysis

•

Lines correspond to DFA states
•

Columns correspond to terminals and non-

 terminals
•

Typically columns are split into:
–

Those for terminals: the action

table

–

Those for non-terminals: the goto

table

Compiler Design I (2011) 8

Representing the DFA: Example

The table for a fragment of our DFA:
int + () $ E

…
3 s4
4 s5 g6
5 rE

→

int rE

→

int

6 s8 s7
7 rE

→

E+(E) rE

→

E+(E)

…

E →

int
on), +

E →

E + (E)
on $, +

(

int
3 4

56

7

)

E

sk

is shift and goto

state k
rX

→ α

is reduce
gk

is goto

state k

Compiler Design I (2011) 9

The LR Parsing Algorithm

•

After a shift or reduce action we rerun the
DFA on the entire stack
–

This is wasteful, since most of the work is repeated

•

Remember for each stack element on which
state it brings the DFA

•

LR parser maintains a stack
〈

sym1

, state1

〉

. . . 〈

symn

, staten

〉
statek

is the final state of the DFA on sym1

… symk

Compiler Design I (2011) 10

The LR Parsing Algorithm

let I = w$ be initial input
let j = 0
let DFA state 0 be the start state
let stack = 〈

dummy, 0 〉

repeat
case action[top_state(stack), I[j]] of

shift k: push 〈

I[j++], k

〉
reduce X →

A:

pop |A| pairs,
push 〈

X, goto[top_state(stack), X] 〉

accept: halt normally
error: halt and report error

Compiler Design I (2011) 11

Key Issue: How is the DFA Constructed?

•

The stack describes the context of the parse
–

What non-terminal we are looking for

–

What production RHS we are looking for
–

What we have seen so far from the RHS

•

Each DFA state describes several such
contexts
–

E.g., when we are looking for non-terminal E, we
might be looking either for an int

or an E + (E)

RHS

Compiler Design I (2011) 12

LR(0) Items

•

An LR(0) item

is a production with a “I”
 somewhere on the RHS

•

The items for T →

(E) are
T → I (E)
T → (I E)
T → (E

I)

T → (E)

I

•

The only item for X → ε is X →

I

Compiler Design I (2011) 13

LR(0) Items: Intuition

•

An item [X → α I β]

says that
–

the parser is looking for an X

–

it has an α

on top of the stack
–

Expects to find a string derived from β

next in the

input

•

Notes:
–

[X → α I aβ]

means that a

should follow. Then we

can shift it and still have a viable prefix
–

[X →α I]

means that we could reduce X

•

But this is not always a good idea !

Compiler Design I (2011) 14

LR(1) Items

•

An LR(1) item

is a pair:
X → α I β, a

–

X → αβ is a production
–

a

is a terminal (the lookahead

terminal)

–

LR(1) means 1

lookahead

terminal
•

[X → α I β, a] describes a context of the parser
–

We are trying to find an X followed by an

a, and

–

We have (at least) α

already on top of the stack
–

Thus we need to see next a prefix derived from βa

Compiler Design I (2011) 15

Note

•

The symbol I was used before to separate the
stack from the rest of input
–

α

I γ, where α

is the stack and γ

is the remaining

string of terminals
•

In items I is used to mark a prefix of a
production RHS:

X → α I β, a
–

Here β

might contain terminals as well

•

In both case the stack is on the left of I

Compiler Design I (2011) 16

Convention

•

We add to our grammar a fresh new start
symbol S

and a production S →

E

–

Where E

is the old start symbol

•

The initial parsing context contains:
S →

I E , $

–

Trying to find an S

as a string derived from E$
–

The stack is empty

Compiler Design I (2011) 17

LR(1) Items (Cont.)

•

In context containing
E →

E + I (E) , +

–

If (

follows then we can perform a shift to context
containing

E →

E + (I E) , +
•

In context containing

E →

E + (E) I , +
–

We can perform a reduction with E → E + (E)

–

But only if a +

follows

Compiler Design I (2011) 18

LR(1) Items (Cont.)

•

Consider the item
E →

E + (I E) , +

•

We expect a string derived from E) +
•

There are two productions for E

E → int

and E → E + (E)
•

We describe this by extending the context
with two more items:

E →

I int

,)
E →

I E + (E) ,)

Compiler Design I (2011) 19

The Closure Operation

•

The operation of extending the context with
items is called the closure operation

Closure(Items) =
repeat

for each [X →

α

I Yβ, a] in Items
for each production Y → γ

for each b

in First(βa)
add [Y →

I γ, b] to Items

until Items is unchanged

Compiler Design I (2011) 20

Constructing the Parsing DFA (1)

•

Construct the start context: Closure({S → I E, $})

S → I E , $
E → I E+(E), $
E → I int

, $

E → I E+(E), +
E → I int

, +

S → I E , $
E → I E+(E) , $/+
E → I int

, $/+

•

We abbreviate as:

Compiler Design I (2011) 21

Constructing the Parsing DFA (2)

•

A DFA state is a closed set of LR(1) items

•

The start state contains [S →

I E , $]

•

A state that contains [X → α I, b]

is labelled
 with “reduce with

X → α on

b”

•

And now the transitions …

Compiler Design I (2011) 22

The DFA Transitions

•

A state “State”

that contains [X → α I yβ, b]
 has a transition labeled y

to a state that

contains the items “Transition(State, y)”
–

y

can be a terminal or a non-terminal

Transition(State, y)
Items = ∅
for each [X →

α

I yβ, b] in State

add [X →

αy

I β, b] to Items
return Closure(Items)

Compiler Design I (2011) 23

Constructing the Parsing DFA: Example

E → E+ I (E), $/+

E → int
on $, +

accept
on $

E → E+(I E) , $/+
E → I E+(E) ,)/+
E → I int

,)/+

E →

int

I ,)/+ E → int
on), +

E → E+(E I) , $/+
E → E I +(E) ,)/+

and so on…

S → I E , $
E → I E+(E), $/+
E → I int

, $/+

0

3

4

56

E →

int

I, $/+
1

S → E I , $
E → E I +(E), $/+

2

int

E +
(

E

int

)+

Compiler Design I (2011) 24

LR Parsing Tables: Notes

•

Parsing tables (i.e., the DFA) can be
constructed automatically for a CFG

•

But we still need to understand the
construction to work with parser generators
–

E.g., they report errors in terms of sets of items

•

What kind of errors can we expect?

Compiler Design I (2011) 25

Shift/Reduce Conflicts

•

If a DFA state contains both
[X →

α I aβ, b] and [Y →

γ I, a]

•

Then on input “a”

we could either
–

Shift into state [X → αa

I β, b], or

–

Reduce with Y → γ

•

This is called a shift-reduce conflict

Compiler Design I (2011) 26

Shift/Reduce Conflicts

•

Typically due to ambiguities in the grammar
•

Classic example: the dangling else

S → if E then S | if E then S else S | OTHER
•

Will have DFA state containing

[S →

if E then S I, else]
[S →

if E then S I else S, x]

•

If

else

follows then we can shift or reduce
•

Default (yacc, ML-yacc, etc.) is to shift
–

Default behavior is as needed in this case

Compiler Design I (2011) 27

More Shift/Reduce Conflicts

•

Consider the ambiguous grammar
E → E + E | E * E | int

•

We will have the states containing
[E →

E * I E, +] [E → E * E I, +]

[E → I E + E, +] ⇒E

[E → E I + E, +]
… …

•

Again we have a shift/reduce on input +
–

We need to reduce (*

binds more tightly than +)

–

Recall solution: declare the precedence of *

and +

Compiler Design I (2011) 28

More Shift/Reduce Conflicts

•

In yacc

declare precedence and associativity:
%left +
%left *

•

Precedence of a rule = that of its last terminal
See yacc

manual for ways to override this default

•

Resolve shift/reduce conflict with a shift

if:
–

no precedence declared for either rule or terminal

–

input terminal has higher precedence than the rule
–

the precedences

are the same and right associative

Compiler Design I (2011) 29

Using Precedence to Solve S/R Conflicts

•

Back to our example:
[E →

E * I E, +] [E →E * E I, +]

[E → I E + E, +] ⇒E

[E →E I + E, +]
… …

•

Will choose reduce because precedence of
rule E →

E * E

is higher than of terminal +

Compiler Design I (2011) 30

Using Precedence to Solve S/R Conflicts

•

Same grammar as before
E → E + E | E * E | int

•

We will also have the states
[E →

E + I E, +] [E → E + E I, +]

[E → I E + E, +] ⇒E

[E → E I + E, +]
… …

•

Now we also have a shift/reduce on input +
–

We choose reduce because E →

E + E

and +

have

the same precedence and +

is left-associative

Compiler Design I (2011) 31

Using Precedence to Solve S/R Conflicts

•

Back to our dangling else example
[S →

if E then S I, else]

[S →

if E then S I else S, x]
•

Can eliminate conflict by declaring else

having

higher precedence than then
•

But this starts to look like “hacking the tables”

•

Best to avoid overuse of precedence
declarations or we will end with unexpected
parse trees

Compiler Design I (2011) 32

Precedence Declarations Revisited

The term “precedence declaration”

is misleading!

These declarations do not define precedence:
they define conflict resolutions
I.e., they instruct shift-reduce parsers to resolve

conflicts in certain ways
The two are not quite the same thing!

Compiler Design I (2011) 33

Reduce/Reduce Conflicts

•

If a DFA state contains both
[X →

α I, a] and [Y →

β I, a]

–

Then on input “a” we don’t know which
production to reduce

•

This is called a reduce/reduce conflict

Compiler Design I (2011) 34

Reduce/Reduce Conflicts

•

Usually due to gross ambiguity in the grammar
•

Example: a sequence of identifiers

S → ε | id | id S

•

There are two parse trees for the string

id
S →

id

S →

id S →

id
•

How does this confuse the parser?

Compiler Design I (2011) 35

More on Reduce/Reduce Conflicts

•

Consider the states [S →

id I, $]
[S’

→ I S, $] [S → id I S, $]

[S → I, $] ⇒id

[S → I, $]
[S → I id, $] [S → I id, $]
[S → I id S, $] [S → I id S, $]

•

Reduce/reduce conflict on input $
S’

→ S →

id

S’

→ S →

id S → id
•

Better rewrite the grammar:

S → ε | id S

Compiler Design I (2011) 36

Using Parser Generators

•

Parser generators automatically construct the
parsing DFA given a CFG
–

Use precedence declarations and default
conventions to resolve conflicts

–

The parser algorithm is the same for all grammars
(and is provided as a library function)

•

But most parser generators do not construct
the DFA as described before
–

Because the LR(1) parsing DFA has 1000s of states
even for a simple language

Compiler Design I (2011) 37

LR(1) Parsing Tables are Big

•

But many states are similar, e.g.

and

•

Idea: merge the DFA states whose items
differ only in the lookahead

tokens

–

We say that such states have the same core

•

We obtain

E → int
on $, +

E →

int

I, $/+
1

E →

int

I,)/+ E → int
on), +

5

E → int
on $, +,)

E →

int

I, $/+/)
1’

Compiler Design I (2011) 38

The Core of a Set of LR Items

Definition: The core of a set of LR items is the
set of first components
–

Without the lookahead

terminals

•

Example: the core of
{[X → α I β, b], [Y → γ I δ, d]}

is
{X → α I β, Y → γ I δ}

Compiler Design I (2011) 39

LALR States

•

Consider for example the LR(1) states
{[X → α I, a], [Y → β I, c]}
{[X → α I, b], [Y → β I, d]}

•

They have the same core and can be merged
•

And the merged state contains:

{[X → α I, a/b], [Y → β I, c/d]}
•

These are called LALR(1)

states

–

Stands for LookAhead

LR
–

Typically 10 times fewer LALR(1) states than LR(1)

Compiler Design I (2011) 40

A LALR(1) DFA

•

Repeat until all states have distinct core
–

Choose two distinct states with same core

–

Merge the states by creating a new one with the
union of all the items

–

Point edges from predecessors to new state
–

New state points to all the previous successors

A

ED

CB

F

A
BE

D

C

F

3

8

Conversion LR(1) to LALR(1): Example.

int

E → int
on $, +

E → int
on), +

E → E + (E)
on $, +

E → E + (E)
on), +

(+
E

int

10

9

11

0 1

2 4

567

+ E

+

)

(
int

E

)

accept
on $

int
E → int
on $, +,)

E → E + (E)
on $, +,)

(

E
int

0 1,5

2 3,8 4,9

6,107,11

+

+

)

E

accept
on $

Compiler Design I (2011) 42

The LALR Parser Can Have Conflicts

•

Consider for example the LR(1) states
{[X → α I, a], [Y → β I, b]}
{[X → α I, b], [Y → β I, a]}

•

And the merged LALR(1) state
{[X → α I, a/b], [Y → β I, a/b]}

•

Has a new

reduce/reduce conflict

•

In practice such cases are rare

Compiler Design I (2011) 43

LALR vs. LR Parsing: Things to keep in mind

•

LALR languages are not natural
–

They are an efficiency hack on LR languages

•

Any reasonable programming language has a
LALR(1) grammar

•

LALR(1) parsing has become a standard for
programming languages and for parser
generators

Compiler Design I (2011) 44

A Hierarchy of Grammar Classes

From Andrew Appel,
“Modern Compiler
Implementation in ML”

Compiler Design I (2011) 45

Semantic Actions in LR Parsing

•

We can now illustrate how semantic actions
are implemented for LR parsing

•

Keep attributes on the stack

•

On shifting a, push attribute for a

on stack
•

On reduce X → α
–

pop attributes for α

–

compute attribute for X
–

and push it on the stack

Compiler Design I (2011) 46

Performing Semantic Actions: Example

•

Recall the example

E →

T + E1

{ E.val

= T.val

+ E1

.val }
| T { E.val

= T.val

}

T →

int

* T1

{ T.val

= int.val

* T1

.val }
| int

{ T.val

= int.val

}

•

Consider the parsing of the string 3 * 5 + 8

Compiler Design I (2011) 47

Performing Semantic Actions: Example

|

int

* int

+ int

shift
int3

|

* int

+ int

shift
int3

* |

int

+ int

shift
int3

* int5

|

+ int

reduce T →

int
int3

* T5

|

+ int

reduce T →

int

* T
T15

|

+ int

shift
T15

+ |

int

shift
T15

+ int8

| reduce T →

int
T15

+ T8

|

reduce E → T
T15

+ E8

|

reduce E → T + E
E23

|

accept

3 * 5 + 8

Compiler Design I (2011) 48

Notes

•

The previous example shows how synthesized
attributes are computed by LR parsers

•

It is also possible to compute inherited
attributes in an LR parser

Compiler Design I (2011) 49

Notes on Parsing

•

Parsing
–

A solid foundation: context-free grammars

–

A simple parser: LL(1)
–

A more powerful parser: LR(1)

–

An efficiency hack: LALR(1)
–

LALR(1) parser generators

•

Next time we move on to semantic analysis

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
due to LALR Conversion

(and how to handle them)

Compiler Design I (2011) 51

Strange Reduce/Reduce Conflicts

•

Consider the grammar
S →

P R , NL →

N | N , NL

P →

T | NL : T R →

T | N : T
N →

id T → id

•

P -

parameters specification
•

R -

result specification

•

N -

a parameter or result name
•

T - a type name

•

NL

-

a list of names

Compiler Design I (2011) 52

Strange Reduce/Reduce Conflicts

•

In P

an id

is a
–

N

when followed by ,

or :

–

T

when followed by id
•

In R

an id

is a

–

N

when followed by :
–

T

when followed by ,

•

This is an LR(1) grammar
•

But it is not LALR(1). Why?
–

For obscure reasons

Compiler Design I (2011) 53

A Few LR(1) States

P →

I T id

P →

I NL : T id

T →

I id id

NL →

I N :

NL →

I N , NL :

N →

I id :

N →

I id ,

1

R →

I T ,

R →

I N : T ,

T →

I id ,

N →

I id :

2

T →

id I id

N →

id I :

N →

id I ,
id

3

T →

id I ,

N →

id I :
id 4

T →

id I id/,

N →

id I :/,
LALR merge

LALR reduce/reduce
conflict on

“,”

Compiler Design I (2011) 54

What Happened?

•

Two distinct states were confused because
they have the same core

•

Fix: add dummy productions to distinguish the
two confused states

•

E.g., add
R →

id bogus

–

bogus is a terminal not used by the lexer
–

This production will never be used during parsing

–

But it distinguishes R

from P

Compiler Design I (2011) 55

A Few LR(1) States After Fix

P →

I T id

P →

I NL : T id

NL →

I N :

NL →

I N , NL :

N →

I id :

N →

I id ,

T →

I id id

R →

. T ,

R →

. N : T ,

R → . id bogus ,

T →

. id ,

N →

. id :

T →

id I id

N →

id I :

N →

id I ,

T →

id I ,

N →

id I :

R → id I bogus ,

id

id

1

2

3

4

Different cores ⇒ no LALR merging

	LR Parsing� LALR Parser Generators
	Outline
	Bottom-up Parsing (Review)
	The Shift and Reduce Actions (Review)
	Key Issue: When to Shift or Reduce?
	LR(1) Parsing: An Example
	Representing the DFA
	Representing the DFA: Example
	The LR Parsing Algorithm
	The LR Parsing Algorithm
	Key Issue: How is the DFA Constructed?
	LR(0) Items
	LR(0) Items: Intuition
	LR(1) Items
	Note
	Convention
	LR(1) Items (Cont.)
	LR(1) Items (Cont.)
	The Closure Operation
	Constructing the Parsing DFA (1)
	Constructing the Parsing DFA (2)
	The DFA Transitions
	Constructing the Parsing DFA: Example
	LR Parsing Tables: Notes
	Shift/Reduce Conflicts
	Shift/Reduce Conflicts
	More Shift/Reduce Conflicts
	More Shift/Reduce Conflicts
	Using Precedence to Solve S/R Conflicts
	Using Precedence to Solve S/R Conflicts
	Using Precedence to Solve S/R Conflicts
	Precedence Declarations Revisited
	Reduce/Reduce Conflicts
	Reduce/Reduce Conflicts
	More on Reduce/Reduce Conflicts
	Using Parser Generators
	LR(1) Parsing Tables are Big
	The Core of a Set of LR Items
	LALR States
	A LALR(1) DFA
	Conversion LR(1) to LALR(1): Example.
	The LALR Parser Can Have Conflicts
	LALR vs. LR Parsing: Things to keep in mind
	A Hierarchy of Grammar Classes
	Semantic Actions in LR Parsing
	Performing Semantic Actions: Example
	Performing Semantic Actions: Example
	Notes
	Notes on Parsing
	Supplement to LR Parsing
	Strange Reduce/Reduce Conflicts
	Strange Reduce/Reduce Conflicts
	A Few LR(1) States
	What Happened?
	A Few LR(1) States After Fix

