Abstract Syntax Trees & Top-Down Parsing
Review of Parsing

• Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree

• Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes how $s \in L(G)$
 - Ambiguity: more than one parse tree (possible interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?
Abstract Syntax Trees

• So far, a parser traces the derivation of a sequence of tokens
• The rest of the compiler needs a structural representation of the program
• **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Trees (Cont.)

• Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]
• And the string
 \[5 + (2 + 3) \]
• After lexical analysis (a list of tokens)
 \[\text{int}_5 \ ' + ' \ (\ ' \text{int}_2 \ ' + ' \ \text{int}_3 \ ') \]
• During parsing we build a parse tree …
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes
Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 \[\leftrightarrow \text{more compact and easier to use} \]
- An important data structure in a compiler
Semantic Actions

• This is what we’ll use to construct ASTs

• Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an action
 - Written as: \[X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \]
 - That can refer to or compute symbol attributes
Semantic Actions: An Example

• Consider the grammar
 \[E \rightarrow \text{int} \mid E + E \mid (E) \]

• For each symbol \(X \) define an attribute \(X.\text{val} \)
 - For terminals, \(\text{val} \) is the associated lexeme
 - For non-terminals, \(\text{val} \) is the expression’s value
 (which is computed from values of subexpressions)

• We annotate the grammar with actions:
 \[
 E \rightarrow \text{int} \quad \{ \text{E.val = int.val} \} \\
 | \quad E_1 + E_2 \quad \{ \text{E.val = E}_1.\text{val} + E_2.\text{val} \} \\
 | \quad (E_1) \quad \{ \text{E.val = E}_1.\text{val} \}
 \]
Semantic Actions: An Example (Cont.)

- **String:** \(5 + (2 + 3)\)
- **Tokens:** `int5 '+' '(' int2 '+' int3 ')'`

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow E_1 + E_2)</td>
<td>(E).val = (E_1).val + (E_2).val</td>
</tr>
<tr>
<td>(E_1 \rightarrow \text{int}_5)</td>
<td>(E_1).val = \text{int}_5).val = 5</td>
</tr>
<tr>
<td>(E_2 \rightarrow (E_3))</td>
<td>(E_2).val = (E_3).val</td>
</tr>
<tr>
<td>(E_3 \rightarrow E_4 + E_5)</td>
<td>(E_3).val = (E_4).val + (E_5).val</td>
</tr>
<tr>
<td>(E_4 \rightarrow \text{int}_2)</td>
<td>(E_4).val = \text{int}_2).val = 2</td>
</tr>
<tr>
<td>(E_5 \rightarrow \text{int}_3)</td>
<td>(E_5).val = \text{int}_3).val = 3</td>
</tr>
</tbody>
</table>
Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

• Example:
 \[E_3.\text{val} = E_4.\text{val} + E_5.\text{val} \]
 - Must compute \(E_4.\text{val} \) and \(E_5.\text{val} \) before \(E_3.\text{val} \)
 - We say that \(E_3.\text{val} \) depends on \(E_4.\text{val} \) and \(E_5.\text{val} \)

• The parser must find the order of evaluation
Dependency Graph

- Each node labeled with a non-terminal E has one slot for its `val` attribute
- Note the dependencies
Evaluating Attributes

• An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

• Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

• **Synthesized** attributes
 - Calculated from attributes of descendents in the parse tree
 - \texttt{E.val} is a synthesized attribute
 - Can always be calculated in a bottom-up order

• **Grammars with only synthesized attributes** are called \textit{S-attributed} grammars
 - Most frequent kinds of grammars
Inherited Attributes

• Another kind of attributes
• Calculated from attributes of the parent node(s) and/or siblings in the parse tree

• Example: a line calculator
A Line Calculator

• Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]

• Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]

• In the second form, the value of evaluation of the previous line is used as starting value

• A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P \ L \]
Attributes for the Line Calculator

- Each E has a synthesized attribute val
 - Calculated as before
- Each L has a synthesized attribute val

 $L \rightarrow E =$ \{ $L.val = E.val$ \}

 $| + E =$ \{ $L.val = E.val + L.prev$ \}

- We need the value of the previous line
- We use an inherited attribute $L.prev$
Attributes for the Line Calculator (Cont.)

• Each P has a synthesized attribute val
 - The value of its last line
 $$ \begin{align*}
 P \rightarrow & \epsilon \quad \{ P.\text{val} = 0 \} \\
 | \quad P_1 L & \quad \{ P.\text{val} = L.\text{val} ; \\
 & \quad L.\text{prev} = P_1.\text{val} \}
 \end{align*} $$

• Each L has an inherited attribute prev
 - $L.\text{prev}$ is inherited from sibling $P_1.\text{val}$

• Example ...
Example of Inherited Attributes

- **val** synthesized

- **prev** inherited

- All can be computed in depth-first order

```
P + L = E4
```

```
P + E3 + =
```

```
P + E4 + =
```

```
P + E5 + =
```

```
P + 0 + =
```

```
P + int2 + =
```

```
P + int3 + =
```

```
P + 2 + =
```

```
P + 3 + =
```

```
P + int2 + =
```

```
P + int3 + =
```

```
P + 2 + =
```

```
P + 3 + =
```

```
P + int2 + =
```

```
P + int3 + =
```

```
P + 2 + =
```

```
P + 3 + =
```
Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 – Also used for type checking, code generation, ...

• Process is called syntax-directed translation
 – Substantial generalization over CFGs
Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

\[
\text{mkleaf}(n) = \begin{cases}
\text{n}
\end{cases}
\]

\[
\text{mkplus}(\begin{cases}
\end{cases} , \end{cases}) = \begin{cases}
\begin{array}{c}
\text{PLUS} \\
\downarrow \\
T_1 \\
\end{array} & \begin{array}{c}
\downarrow \\
T_2 \\
\end{array}
\end{cases}
\]
Constructing a Parse Tree

• We define a synthesized attribute \(\text{ast} \)
 - Values of \(\text{ast} \) values are ASTs
 - We assume that \(\text{int.lexval} \) is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad \{ \text{E.ast} = \text{mkleaf(\text{int.lexval})} \}
\]
\[
| \quad E_1 + E_2 \quad \{ \text{E.ast} = \text{mkplus(E}_1\text{.ast, E}_2\text{.ast)} \}
\]
\[
| \quad (E_1) \quad \{ \text{E.ast} = E_1\text{.ast} \}
\]
Parse Tree Example

- Consider the string `int_5 + (int_2 + int_3)`
- A bottom-up evaluation of the ast attribute:
 \[E.\text{ast} = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3))) \]
Review of Abstract Syntax Trees

• We can specify language syntax using CFG
• A parser will answer whether $s \in L(G)$
• ... and will build a parse tree
• ... which we convert to an AST
• ... and pass on to the rest of the compiler

• Next two & a half lectures:
 - How do we answer $s \in L(G)$ and build a parse tree?
• After that: from AST to assembly language
Second-Half of Lecture 5: Outline

• Implementation of parsers
• Two approaches
 - Top-down
 - Bottom-up
• Today: Top-Down
 - Easier to understand and program manually
• Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

• Terminals are seen in order of appearance in the token stream:

 \(t_2 \ t_5 \ t_6 \ t_8 \ t_9 \)

• The parse tree is constructed
 - From the top
 - From left to right
Recursive Descent Parsing

- Consider the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]
- Token stream is: \(\text{int}_5 \ast \text{int}_2 \)
- Start with top-level non-terminal \(E \)
- Try the rules for \(E \) in order
Recursive Descent Parsing. Example (Cont.)

- Try \(E_0 \rightarrow T_1 + E_2 \)
- Then try a rule for \(T_1 \rightarrow (E_3) \)
 - But \((\) does not match input token \(\text{int}_5 \)
- Try \(T_1 \rightarrow \text{int} \). Token matches.
 - But \(+ \) after \(T_1 \) does not match input token \(* \)
- Try \(T_1 \rightarrow \text{int} * T_2 \)
 - This will match but \(+ \) after \(T_1 \) will be unmatched
- Has exhausted the choices for \(T_1 \)
 - Backtrack to choice for \(E_0 \)

Token stream: \(\text{int}_5 * \text{int}_2 \)

\[
E \rightarrow T + E \mid T \\
T \rightarrow (E) \mid \text{int} \mid \text{int} * T
\]
Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow \text{int}_5 \ast T_2$ and $T_2 \rightarrow \text{int}_2$
 - With the following parse tree

```
E_0
  |
  T_1
  |
int_5 * T_2
```

Token stream: int5 * int2

```
E \rightarrow T + E \mid T
T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T
```
Recursive Descent Parsing. Notes.

• Easy to implement by hand

• Somewhat inefficient (due to backtracking)

• But does not always work ...
When Recursive Descent Does Not Work

• Consider a production $S \rightarrow S \, a$

  ```
  bool S1() { return S() && term(a); }
  bool S() { return S1(); }
  ```

• $S()$ will get into an infinite loop

• A left-recursive grammar has a non-terminal S

 $$S \rightarrow^* S\alpha \text{ for some } \alpha$$

• Recursive descent does not work in such cases
Elimination of Left Recursion

• Consider the left-recursive grammar
 \[S \rightarrow S \alpha \mid \beta \]

• \(S \) generates all strings starting with a \(\beta \) and followed by any number of \(\alpha \)'s

• The grammar can be rewritten using right-recursion
 \[S \rightarrow \beta \ S' \]
 \[S' \rightarrow \alpha \ S' \mid \varepsilon \]
More Elimination of Left-Recursion

• In general

\[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

• Rewrite as

\[S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S' \]
\[S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \epsilon \]
General Left Recursion

- The grammar

\[
S \rightarrow A \alpha | \delta \\
A \rightarrow S \beta
\]

is also left-recursive because

\[
S \rightarrow S \beta \alpha
\]

- This left-recursion can also be eliminated
- See a Compilers book for a general algorithm
Summary of Recursive Descent

• Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically

• Unpopular because of backtracking
 - Thought to be too inefficient

• In practice, backtracking is eliminated by restricting the grammar
Predictive Parsers

• Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking

• Predictive parsers accept $LL(k)$ grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”

• In practice, $LL(1)$ is used
LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

- Recall the grammar for arithmetic expressions
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

- Hard to predict because
 - For \(T \) two productions start with \text{int} \n - For \(E \) it is not clear how to predict

- A grammar must be left-factored before it is used for predictive parsing
Left-Factoring Example

• Recall the grammar
 \[E \to T + E \mid T \]
 \[T \to (E) \mid \text{int} \mid \text{int} \ast T \]

• Factor out common prefixes of productions
 \[E \to T X \]
 \[X \to + E \mid \varepsilon \]
 \[T \to (E) \mid \text{int} Y \]
 \[Y \to \ast T \mid \varepsilon \]
LL(1) Parsing Table Example

- **Left-factored grammar**

 \[
 E \rightarrow T \cdot X \\
 T \rightarrow (E) \mid \text{int } Y \\
 X \rightarrow + E \mid \varepsilon \\
 Y \rightarrow \ast T \mid \varepsilon
 \]

- **The LL(1) parsing table:**

 \[
 \begin{array}{|c|c|c|c|c|c|}
 \hline
 & \text{int} & \ast & + & (&) & $ \\
 \hline
 E & T \cdot X & T \cdot X & & & & \\
 \hline
 X & & + E & \varepsilon & \varepsilon & & \\
 \hline
 T & \text{int } Y & & (E) & & & \\
 \hline
 Y & & \ast T & \varepsilon & \varepsilon & \varepsilon & \\
 \hline
 \end{array}
 \]
LL(1) Parsing Table Example (Cont.)

- **Consider the [E, int] entry**
 - “When current non-terminal is E and next input is int, use production $E \rightarrow T \times$
 - This production can generate an int in the first place

- **Consider the [Y,+] entry**
 - “When current non-terminal is Y and current token is +, get rid of Y”
 - Y can be followed by + only in a derivation in which $Y \rightarrow \varepsilon$
LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the \([E,*]\) entry
 - “There is no way to derive a string starting with * from non-terminal \(E\)”
Using Parsing Tables

• Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at $[S,a]$

• We use a stack to keep track of pending non-terminals

• We reject when we encounter an error state

• We accept when we encounter end-of-input
LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y₁...Yₙ
 then stack ← <Y₁...Yₙ rest>;
 else error();
 <t, rest> : if t == *next++
 then stack ← <rest>;
 else error();

until stack == <>
LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>TX</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

Input Productions:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>int</td>
</tr>
<tr>
<td>X</td>
<td>int</td>
</tr>
<tr>
<td>(</td>
<td></td>
</tr>
<tr>
<td>)</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>int</td>
</tr>
<tr>
<td>*</td>
<td>int</td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

Production Table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>+E</td>
<td>ε</td>
<td>ε</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td>(E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* T</td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

• LL(1) languages are those defined by a parsing table for the LL(1) algorithm
• No table entry can be multiply defined

• We want to generate parsing tables from CFG
Constructing Parsing Tables (Cont.)

• If $A \rightarrow \alpha$, where in the line of A we place α?
• In the column of t where t can start a string derived from α
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in \text{First}(\alpha)$
• In the column of t if α is ϵ and t can follow an A
 - $S \rightarrow^* \beta A t \delta$
 - We say $t \in \text{Follow}(A)$
Computing First Sets

Definition

\[\text{First}(X) = \{ t \mid X \rightarrow^* t \alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \} \]

Algorithm sketch

1. \(\text{First}(t) = \{ t \} \)
2. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow \varepsilon \) is a production
3. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
First Sets: Example

• Recall the grammar

\[
\begin{align*}
E & \rightarrow T X \\
T & \rightarrow (E) | \text{int } Y \\
X & \rightarrow + E | \varepsilon \\
Y & \rightarrow * T | \varepsilon
\end{align*}
\]

• First sets

\[
\begin{align*}
\text{First(())} & = \{ () \} \\
\text{First(+) } & = \{ + \} \\
\text{First(int) } & = \{ \text{int} \} \\
\text{First(T) } & = \{ \text{int}, () \} \\
\text{First(E) } & = \{ \text{int}, () \} \\
\text{First(X) } & = \{ +, \varepsilon \} \\
\text{First(Y) } & = \{ *, \varepsilon \}
\end{align*}
\]
Computing Follow Sets

• **Definition**
 \[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta \ X \ t \ \delta \} \]

• **Intuition**
 - If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \)
 and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
 - Also if \(B \rightarrow^* \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
 - If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)
Computing Follow Sets (Cont.)

Algorithm sketch

1. $\$ \in \text{Follow}(S)$
2. $\text{First}(\beta) - \{\varepsilon\} \subseteq \text{Follow}(X)$
 - For each production $A \rightarrow \alpha X \beta$
3. $\text{Follow}(A) \subseteq \text{Follow}(X)$
 - For each production $A \rightarrow \alpha X \beta$ where $\varepsilon \in \text{First}(\beta)$
Follow Sets: Example

• Recall the grammar

\[E \rightarrow T \ X \]
\[T \rightarrow (\ E\) \mid \text{int} \ Y \]

\[X \rightarrow + \ E \mid \varepsilon \]
\[Y \rightarrow * \ T \mid \varepsilon \]

• Follow sets

\[\text{Follow}(\ +\) = \{\ \text{int}, (\)\} \]
\[\text{Follow}(\ *\) = \{\ \text{int}, (\)\} \]
\[\text{Follow}(\ (\) = \{\ \text{int}, (\)\} \]
\[\text{Follow}(\ (\ X\)) = \{\ , \}$\} \]
\[\text{Follow}(\ (\)) = \{\ , \}$\} \]
\[\text{Follow}(\ (\ int) = \{\ , \}$\} \]
Constructing LL(1) Parsing Tables

• **Construct a parsing table T for CFG G**

• **For each production** $A \rightarrow \alpha$ **in G do:**
 - **For each terminal** $t \in \text{First}(\alpha)$ **do**
 • $T[A, t] = \alpha$
 - **If** $\varepsilon \in \text{First}(\alpha)$, **for each** $t \in \text{Follow}(A)$ **do**
 • $T[A, t] = \alpha$
 - **If** $\varepsilon \in \text{First}(\alpha)$ **and** $\$ \in \text{Follow}(A)$ **do**
 • $T[A, \$] = \alpha$
Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well

• Most programming language grammars are not LL(1)

• There are tools that build LL(1) tables
Review

• For some grammars there is a simple parsing strategy

 Predictive parsing

• Next time: a more powerful parsing strategy