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Review of Parsing

•
 

Given a language L(G), a parser consumes a 
sequence of tokens s

 
and produces a parse tree

•
 

Issues:
–

 
How do we recognize that s ∈

 
L(G)

 
?

–
 

A parse tree of s
 

describes how
 

s ∈
 

L(G) 
–

 
Ambiguity: more than one parse tree (possible 
interpretation) for some string s

–
 

Error: no parse tree for some string s
–

 
How do we construct the parse tree?
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Abstract Syntax Trees

•
 

So far, a parser traces the derivation of a 
sequence of tokens

•
 

The rest of the compiler needs a structural 
representation of the program

•
 

Abstract syntax trees
–

 
Like parse trees but ignore some details

–
 

Abbreviated as AST
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Abstract Syntax Trees (Cont.)

•
 

Consider the grammar
E →

 
int | ( E ) | E + E 

•
 

And the string
5 + (2 + 3)

•
 

After lexical analysis (a list of tokens)
int5

 

‘+’
 

‘(‘
 

int2
 

‘+’
 

int3
 

‘)’
•

 
During parsing we build a parse tree …
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Example of Parse Tree

E

E E

( E )

+

E +

int5

int2

E

int3

•
 

Traces the operation 
of the parser

•
 

Captures the nesting 
structure

•
 

But too much info
–

 
Parentheses

–
 

Single-successor nodes
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Example of Abstract Syntax Tree

•
 

Also captures the nesting structure
•

 
But abstracts

 
from the concrete syntax

a
 

more compact and easier to use
•

 
An important data structure in a compiler

PLUS

PLUS

25 3



Compiler Design 1 (2011) 7

Semantic Actions

•
 

This is what we’ll use to construct ASTs

•
 

Each grammar symbol may have attributes
–

 
An attribute is a property of a programming 
language construct

–
 

For terminal symbols (lexical tokens) attributes can 
be calculated by the lexer

•
 

Each production may have an action
–

 
Written as:    X → Y1

 

… Yn
 

{
 

action }
–

 
That can refer to or compute symbol attributes
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Semantic Actions: An Example

•
 

Consider the grammar
E → int | E + E | ( E )

•
 

For each symbol X
 

define an attribute X.val
–

 
For terminals, val

 
is the associated lexeme

–
 

For non-terminals, val
 

is the expression’s value  
(which is computed from values of subexpressions)

•
 

We annotate the grammar with actions:
E →

 
int                  { E.val

 
= int.val

 
}

|  E1
 

+ E2
 

{
 

E.val
 

= E1
 

.val
 

+ E2
 

.val
 

}
|  ( E1

 

)               {
 

E.val
 

= E1
 

.val
 

}
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Semantic Actions: An Example (Cont.)

Productions
 

Equations
E  → E1

 

+ E2                                E.val
 

= E1
 

.val
 

+ E2
 

.val
E1

 

→ int5
 

E1
 

.val
 

= int5
 

.val
 

= 5
E2

 

→
 

(E3
 

)                         E2
 

.val
 

= E3
 

.val
E3

 

→
 

E4
 

+ E5
 

E3
 

.val
 

= E4
 

.val
 

+ E5
 

.val
E4

 

→
 

int2
 

E4
 

.val
 

= int2
 

.val
 

= 2
E5

 

→
 

int3
 

E5
 

.val
 

= int3
 

.val = 3

•
 

String:    5 + (2 + 3)
•

 
Tokens:   int5

 

‘+’
 

‘(‘
 

int2
 

‘+’
 

int3
 

‘)’
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Semantic Actions: Dependencies

Semantic actions specify a system of equations
–

 
Order of executing the actions is not specified

•
 

Example:
E3

 

.val
 

= E4
 

.val
 

+ E5
 

.val
–

 
Must compute

 
E4

 

.val and E5
 

.val
 

before E3
 

.val
–

 
We say that

 
E3

 

.val
 

depends on E4
 

.val and E5
 

.val

•
 

The parser must find the order of evaluation
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Dependency Graph

E

E1 E2

( E3 )

+

E4
+

int5

int2

E5

int3

+ 

+ 

2 

5

•
 

Each node labeled with 
a non-terminal E

 
has 

one slot for its val
 attribute

•
 

Note the dependencies

3



Compiler Design 1 (2011) 12

Evaluating Attributes

•
 

An attribute must be computed after all its 
successors in the dependency graph have been 
computed 
–

 
In the previous example attributes can be 
computed bottom-up

•
 

Such an order exists when there are no cycles
–

 
Cyclically defined attributes are not legal
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Semantic Actions: Notes (Cont.)

•
 

Synthesized
 

attributes
–

 
Calculated from attributes of descendents in the 
parse tree

–
 

E.val
 

is a synthesized attribute
–

 
Can always be calculated in a bottom-up order

•
 

Grammars with only synthesized attributes 
are called S-attributed

 
grammars

–
 

Most frequent kinds of grammars
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Inherited Attributes

•
 

Another kind of attributes
•

 
Calculated from attributes of the parent 
node(s) and/or siblings in the parse tree

•
 

Example: a line calculator
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A Line Calculator

•
 

Each line contains an expression
E →

 
int  |  E + E

•
 

Each line is terminated with the
 

= sign
L →

 
E =  |  + E =

•
 

In the second form, the value of evaluation of 
the previous line is used as starting value

•
 

A program is a sequence of lines
P → ε |  P L
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Attributes for the Line Calculator

•
 

Each E
 

has a synthesized attribute val
–

 
Calculated as before

•
 

Each
 

L
 

has a synthesized attribute val
L → E =        {

 
L.val

 
= E.val

 
}

|  + E =
 

{
 

L.val
 

= E.val
 

+ L.prev
 

}
•

 
We need the value of the previous line

•
 

We use an inherited attribute
 

L.prev
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Attributes for the Line Calculator (Cont.)

•
 

Each P
 

has a synthesized attribute val
–

 
The value of its last line
P → ε

 
{ P.val

 
= 0 }

|  P1
 

L            {
 

P.val
 

= L.val; 
L.prev

 
= P1

 

.val
 

}
•

 
Each L

 
has an inherited attribute prev

–
 

L.prev
 

is inherited from sibling P1
 

.val

•
 

Example …
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Example of Inherited Attributes

•
 

val
 

synthesized

•
 

prev
 

inherited

•
 

All can be 
computed in 
depth-first 
order 

P

ε

L

+ E3
=

E4
+

int2

E5

int3

+ 

+  

2 

0

3

P
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Semantic Actions: Notes (Cont.)

•
 

Semantic actions can be used to build ASTs

•
 

And many other things as well
–

 
Also used for type checking, code generation, …

•
 

Process is called syntax-directed translation
–

 
Substantial generalization over CFGs
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Constructing an AST

•
 

We first define the AST data type
•

 
Consider an abstract tree type with two 
constructors:

mkleaf(n) 

mkplus(

T1

)    =,

T2

=

PLUS

T1 T2

n
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Constructing a Parse Tree

•
 

We define a synthesized attribute ast
–

 
Values of

 
ast

 
values are ASTs

–
 

We assume that int.lexval
 

is the value of the 
integer lexeme

–
 

Computed using semantic actions

E →
 

int               { E.ast
 

= mkleaf(int.lexval) }
|  E1

 

+ E2
 

{
 

E.ast
 

= mkplus(E1
 

.ast, E2
 

.ast) }
|  ( E1

 

)            { E.ast
 

= E1
 

.ast }



Compiler Design 1 (2011) 22

Parse Tree Example

•
 

Consider the string int5
 

‘+’
 

‘(‘
 

int2
 

‘+’
 

int3
 

‘)’
•

 
A bottom-up evaluation of the ast

 
attribute:

E.ast
 

= mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))

PLUS

PLUS

25 3
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Review of Abstract Syntax Trees

•
 

We can specify language syntax using CFG
•

 
A parser will answer whether s ∈

 
L(G)

•
 

…
 

and will build a parse tree
•

 
…

 
which we convert to an AST

•
 

…
 

and pass on to the rest of the compiler

•
 

Next two & a half lectures:
–

 
How do we answer s ∈

 
L(G)

 
and build a parse tree?

•
 

After that: from AST to assembly language
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Second-Half of Lecture 5: Outline

•
 

Implementation of parsers
•

 
Two approaches
–

 
Top-down

–
 

Bottom-up
•

 
Today: Top-Down
–

 
Easier to understand and program manually

•
 

Then: Bottom-Up
–

 
More powerful and used by most parser generators
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Introduction to Top-Down Parsing

•
 

Terminals are seen in order of 
appearance in the token 
stream: 

t2
 

t5
 

t6
 

t8
 

t9

•
 

The parse tree is constructed
–

 
From the top

–
 

From left to right

1

t2 3

4

t5

7

t6

t9

t8
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Recursive Descent Parsing

•
 

Consider the grammar
E →

 
T + E  |  T

T →
 

int  |  int * T  |  ( E )
•

 
Token stream is:   int5

 

* int2
•

 
Start with top-level non-terminal E

•
 

Try the rules for
 

E in order
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Recursive Descent Parsing. Example (Cont.)

•
 

Try E0
 

→
 

T1
 

+ E2
•

 
Then try a rule for T1 →

 
( E3 )

–
 

But
 

( does not match input token
 

int5

•
 

Try
 

T1 →
 

int . Token matches. 
–

 
But +

 
after T1

 

does not match input token *
•

 
Try T1 →

 
int * T2

–
 

This will match but +
 

after T1
 

will be unmatched
•

 
Has exhausted the choices for T1
–

 
Backtrack to choice for E0

Token stream:   int5 * int2

E → T + E  |  T
T → (E)  | int | int * T
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Recursive Descent Parsing. Example (Cont.)

•
 

Try E0
 

→
 

T1
•

 
Follow same steps as before for T1
–

 
And succeed with T1 → int5

 

* T2
 

and
 

T2 →
 

int2

–
 

With
 

the following parse tree

E0

T1

int5 * T2

int2

Token stream:   int5 * int2

E → T + E  |  T
T → (E)  | int | int * T
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Recursive Descent Parsing. Notes.

•
 

Easy to implement by hand

•
 

Somewhat inefficient (due to backtracking)

•
 

But does not always work …
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When Recursive Descent Does Not Work

•
 

Consider a production S →
 

S a
bool

 
S1

 

() { return S() && term(a); } 
bool

 
S() { return  S1

 

(); }
•

 
S()

 
will get into an infinite loop

•
 

A left-recursive grammar
 

has a non-terminal S
S →+

 
Sα

 
for some

 
α

•
 

Recursive descent does not work in such cases
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Elimination of Left Recursion

•
 

Consider the left-recursive grammar
S

 
→ S α

 
| β

•
 

S
 

generates all strings starting with a β
 

and 
followed by any number of

 
α’s

•
 

The grammar can be rewritten using right-
 recursion

S
 

→ β S’
S’

 
→ α S’

 
| ε



Compiler Design 1 (2011) 32

More Elimination of Left-Recursion

•
 

In general
S

 
→

 
S α1

 

| …
 

| S αn
 

| β1
 

| …
 

| βm

•
 

All strings derived from S
 

start with one of 
β1

 

,…,βm
 

and continue with several instances of
 α1

 

,…,αn
•

 
Rewrite as

S
 

→ β1
 

S’
 

| …
 

| βm
 

S’
S’

 
→ α1

 

S’
 

| …
 

| αn S’
 

| ε
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General Left Recursion

•
 

The grammar 
S

 
→

 
A α

 
| δ

A →
 

S β
is also left-recursive because

S
 

→+
 

S β α

•
 

This left-recursion can also be eliminated
•

 
See a Compilers book for a general algorithm
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Summary of Recursive Descent

•
 

Simple and general parsing strategy
–

 
Left-recursion must be eliminated first

–
 

…
 

but that can be done automatically
•

 
Unpopular because of backtracking
–

 
Thought to be too inefficient

•
 

In practice, backtracking is eliminated by 
restricting the grammar
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Predictive Parsers

•
 

Like recursive-descent but parser can 
“predict”

 
which production to use

–
 

By looking at the next few tokens
–

 
No backtracking 

•
 

Predictive parsers accept LL(k)
 

grammars
–

 
L

 
means “left-to-right”

 
scan of input

–
 

L
 

means “leftmost derivation”
–

 
k

 
means “predict based on k tokens of lookahead”

•
 

In practice, LL(1)
 

is used
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LL(1) Languages

•
 

In recursive-descent, for each non-terminal 
and input token there may be a choice of 
production

•
 

LL(1) means that for each non-terminal and 
token there is only one production

•
 

Can be specified via 2D tables
–

 
One dimension for current non-terminal to expand

–
 

One dimension for next token
–

 
A table entry contains one production
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Predictive Parsing and Left Factoring

•
 

Recall the grammar for arithmetic expressions
E →

 
T + E  |  T

T → ( E )  |  int  |  int * T

•
 

Hard to predict because
–

 
For T

 
two productions start with int

–
 

For E
 

it is not clear how to predict

•
 

A grammar must be left-factored
 

before it is 
used for predictive parsing
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Left-Factoring Example

•
 

Recall the grammar
E →

 
T + E  |  T

T → ( E )  |  int  |  int * T

•
 

Factor out common prefixes of productions
E →

 
T X

X
 

→ + E  |  ε
T → ( E )  |  int Y
Y

 
→

 
* T  |  ε
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LL(1) Parsing Table Example

•
 

Left-factored grammar
E →

 
T X                               X → + E  |  ε

T → ( E )  |  int Y                 Y →
 

* T  |  ε

•
 

The LL(1) parsing table:

int * + ( ) $
E T X T X
X + E ε ε
T int Y ( E )
Y * T ε ε ε



Compiler Design 1 (2011) 40

LL(1) Parsing Table Example (Cont.)

•
 

Consider the [E, int] entry
–

 
“When current non-terminal is E

 
and next input is 

int, use production  E →
 

T X
–

 
This production can generate an int

 
in the first 

place
•

 
Consider the [Y,+] entry
–

 
“When current non-terminal is Y

 
and current token 

is +, get rid of Y”
–

 
Y

 
can be followed by +

 
only in a derivation in which  

Y → ε
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LL(1) Parsing Tables: Errors

•
 

Blank entries indicate error situations
–

 
Consider the [E,*] entry

–
 

“There is no way to derive a string starting with *
 from non-terminal E”
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Using Parsing Tables

•
 

Method similar to recursive descent, except
–

 
For each non-terminal S

–
 

We look at the next token a
–

 
And chose the production shown at [S,a]

•
 

We use a stack to keep track of pending non-
 terminals

•
 

We reject when we encounter an error state
•

 
We accept when we encounter end-of-input  
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LL(1) Parsing Algorithm

initialize stack = <S $> and next 
repeat

case stack of
<X, rest>  : if T[X,*next] = Y1 …Yn

then stack ←
 

<Y1 …Yn rest>;
else  error();   

<t, rest>  : if t == *next++ 
then stack ←

 
<rest>;

else  error();
until stack == <>
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LL(1) Parsing Example

Stack                Input                Action
E $                    int * int

 
$         T X

T X $                int * int
 

$         int Y
int Y X $           int * int

 
$         terminal

Y X $                * int $               * T
* T X $             * int $               terminal
T X $                int $                  int Y
int Y X $           int $                  terminal
Y X $                $                       ε
X $                   $                       ε
$                      $                   ACCEPT

int * + ( ) $

E T X T X

X + E ε ε

T int Y ( E )

Y * T ε ε ε
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Constructing Parsing Tables

•
 

LL(1) languages are those defined by a parsing 
table for the LL(1) algorithm

•
 

No table entry can be multiply defined

•
 

We want to generate parsing tables from CFG
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Constructing Parsing Tables (Cont.)

•
 

If A → α, where in the line of A
 

we place α
 

?
•

 
In the column of t

 
where t

 
can start a string 

derived from α
–

 
α →*

 
t β

–
 

We say that
 

t ∈
 

First(α)
•

 
In the column of t

 
if α

 
is ε

 
and t

 
can follow an 

A
–

 
S →*

 
β

 
A t δ

–
 

We say
 

t ∈
 

Follow(A)
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Computing First Sets

Definition
First(X) = { t | X →*

 
tα} ∪

 
{ε

 
| X →*

 
ε}

Algorithm sketch
1.

 
First(t) = { t }

2.
 

ε ∈ First(X)
 

if X → ε is a production
3.

 
ε ∈ First(X)

 
if X →

 
A1

 

… An
and ε ∈ First(Ai

 

)
 

for each 1 ≤
 

i ≤
 

n
4.

 
First(α) ⊆

 
First(X)

 
if X →

 
A1

 

… An
 

α
and ε ∈ First(Ai

 

)
 

for each 1 ≤
 

i ≤
 

n
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First Sets: Example

•
 

Recall the grammar 
E →

 
T X                               X → + E | ε

T → ( E ) | int Y                   Y → * T | ε
•

 
First sets

First( (
 

) = { (
 

}            First( )
 

) = { )
 

}
First( +

 
) = { +

 
}           First( *

 
) = { *

 
}

First( int) = { int
 

}
First( T

 
) = { int,

 
(

 
}

First( E
 

) = { int, (
 

}
First( X

 
) = { +, ε

 
}

First( Y
 

) = { *, ε
 

}
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Computing Follow Sets

•
 

Definition
Follow(X) = { t | S →*

 
β

 
X t δ

 
}

•
 

Intuition
–

 
If X → A B then

 
First(B) ⊆

 
Follow(A)                       

and
 

Follow(X) ⊆
 

Follow(B)
–

 
Also if B →*

 
ε

 
then

 
Follow(X) ⊆

 
Follow(A)

–
 

If
 

S is the start symbol then $ ∈
 

Follow(S)
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Computing Follow Sets (Cont.)

Algorithm sketch
1.

 
$ ∈

 
Follow(S)

2.
 

First(β) -
 

{ε} ⊆
 

Follow(X)
For each production A → α X β

3.
 

Follow(A) ⊆
 

Follow(X)
For each production A → α X β

 
where ε ∈ First(β)
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Follow Sets: Example

•
 

Recall the grammar 
E →

 
T X                               X → + E | ε

T → ( E ) | int Y                   Y → * T | ε
•

 
Follow sets
Follow( +

 
) = { int, (

 
}    Follow( *

 
) = { int, ( } 

Follow( (
 

) = { int, (
 

}     Follow( E ) = { ), $ } 
Follow( X

 
) = { $, )

 
}      Follow( T ) = { +, ) , $ }

Follow( )
 

) = { +, ) , $ }   Follow( Y
 

) = { +, ) , $ }
Follow( int) = { *, +, ) , $ }
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Constructing LL(1) Parsing Tables

•
 

Construct a parsing table T for CFG G

•
 

For each production  A → α in G do:
–

 
For each terminal t ∈

 
First(α)

 
do

•
 

T[A, t] = α
–

 
If ε ∈ First(α), for each t ∈

 
Follow(A)

 
do

•
 

T[A, t] = α
–

 
If ε ∈ First(α)

 
and $ ∈

 
Follow(A)

 
do

•
 

T[A, $] = α
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Notes on LL(1) Parsing Tables

•
 

If any entry is multiply defined then G is not 
LL(1)
–

 
If G is ambiguous

–
 

If G is left recursive
–

 
If G is not left-factored

–
 

And in other cases as well
•

 
Most programming language grammars are not 
LL(1)

•
 

There are tools that build LL(1) tables
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Review

•
 

For some grammars there is a simple parsing 
strategy

Predictive parsing

•
 

Next time: a more powerful parsing strategy


	Abstract Syntax Trees�&�Top-Down Parsing
	Review of Parsing
	Abstract Syntax Trees
	Abstract Syntax Trees (Cont.)
	Example of Parse Tree
	Example of Abstract Syntax Tree
	Semantic Actions
	Semantic Actions: An Example
	Semantic Actions: An Example (Cont.)
	Semantic Actions: Dependencies
	Dependency Graph
	Evaluating Attributes
	Semantic Actions: Notes (Cont.)
	Inherited Attributes
	A Line Calculator
	Attributes for the Line Calculator
	Attributes for the Line Calculator (Cont.)
	Example of Inherited Attributes
	Semantic Actions: Notes (Cont.)
	Constructing an AST
	Constructing a Parse Tree
	Parse Tree Example
	Review of Abstract Syntax Trees
	Second-Half of Lecture 5: Outline
	Introduction to Top-Down Parsing
	Recursive Descent Parsing
	Recursive Descent Parsing. Example (Cont.)
	Recursive Descent Parsing. Example (Cont.)
	Recursive Descent Parsing. Notes.
	When Recursive Descent Does Not Work
	Elimination of Left Recursion
	More Elimination of Left-Recursion
	General Left Recursion
	Summary of Recursive Descent
	Predictive Parsers
	LL(1) Languages
	Predictive Parsing and Left Factoring
	Left-Factoring Example
	LL(1) Parsing Table Example
	LL(1) Parsing Table Example (Cont.)
	LL(1) Parsing Tables: Errors
	Using Parsing Tables
	LL(1) Parsing Algorithm
	LL(1) Parsing Example
	Constructing Parsing Tables
	Constructing Parsing Tables (Cont.)
	Computing First Sets
	First Sets: Example
	Computing Follow Sets
	Computing Follow Sets (Cont.)
	Follow Sets: Example
	Constructing LL(1) Parsing Tables
	Notes on LL(1) Parsing Tables
	Review

