
Implementation of Lexical Analysis

Compiler Design 1 (2011) 2

Outline

• Specifying lexical structure using regular
expressions

• Finite automata
– Deterministic Finite Automata (DFAs)
– Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
RegExp ⇒ NFA ⇒ DFA ⇒ Tables

Compiler Design 1 (2011) 3

Notation

• For convenience, we use a variation (allow user-
defined abbreviations) in regular expression
notation

• Union: A + B ≡ A | B
• Option: A + ε ≡ A?
• Range: ‘a’+’b’+…+’z’ ≡ [a-z]
• Excluded range:

complement of [a-z] ≡ [^a-z]

Compiler Design 1 (2011) 4

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate
s ∈ L(R)

• But a yes/no answer is not enough !
• Instead: partition the input into tokens

• We will adapt regular expressions to this goal

Compiler Design 1 (2011) 5

Regular Expressions ⇒ Lexical Spec. (1)

1. Select a set of tokens
• Integer, Keyword, Identifier, OpenPar, ...

2. Write a regular expression (pattern) for the
lexemes of each token
• Integer = digit +
• Keyword = ‘if’ + ‘else’ + …
• Identifier = letter (letter + digit)*
• OpenPar = ‘(‘
• …

Compiler Design 1 (2011) 6

Regular Expressions ⇒ Lexical Spec. (2)

3. Construct R, matching all lexemes for all
tokens

R = Keyword + Identifier + Integer + …
= R1 + R2 + R3 + …

Facts: If s ∈ L(R) then s is a lexeme
– Furthermore s ∈ L(Ri) for some “i”
– This “i” determines the token that is reported

Compiler Design 1 (2011) 7

Regular Expressions ⇒ Lexical Spec. (3)

4. Let input be x1…xn
• (x1 ... xn are characters)
• For 1 ≤ i ≤ n check

x1…xi ∈ L(R) ?

5. It must be that
x1…xi ∈ L(Rj) for some j
(if there is a choice, pick a smallest such j)

6. Remove x1…xi from input and go to previous step

Compiler Design 1 (2011) 8

How to Handle Spaces and Comments?

1. We could create a token Whitespace
Whitespace = (‘ ’ + ‘\n’ + ‘\t’)+

– We could also add comments in there
– An input “ \t\n 5555 “ is transformed into

Whitespace Integer Whitespace
2. Lexer skips spaces (preferred)

• Modify step 5 from before as follows:
It must be that xk ... xi ∈ L(Rj) for some j such
that x1 ... xk-1 ∈ L(Whitespace)

• Parser is not bothered with spaces

Compiler Design 1 (2011) 9

Ambiguities (1)

• There are ambiguities in the algorithm

• How much input is used? What if
• x1…xi ∈ L(R) and also
• x1…xK ∈ L(R)

– Rule: Pick the longest possible substring
– The “maximal munch”

Compiler Design 1 (2011) 10

Ambiguities (2)

• Which token is used? What if
• x1…xi ∈ L(Rj) and also
• x1…xi ∈ L(Rk)

– Rule: use rule listed first (j if j < k)

• Example:
– R1 = Keyword and R2 = Identifier
– “if” matches both
– Treats “if” as a keyword not an identifier

Compiler Design 1 (2011) 11

Error Handling

• What if
No rule matches a prefix of input ?

• Problem: Can’t just get stuck …
• Solution:

– Write a rule matching all “bad” strings
– Put it last

• Lexer tools allow the writing of:
R = R1 + ... + Rn + Error
– Token Error matches if nothing else matches

Compiler Design 1 (2011) 12

Summary

• Regular expressions provide a concise notation
for string patterns

• Use in lexical analysis requires small extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (next)
– Require only single pass over the input
– Few operations per character (table lookup)

Compiler Design 1 (2011) 13

Regular Languages & Finite Automata

Basic formal language theory result:
Regular expressions and finite automata both
define the class of regular languages.

Thus, we are going to use:
• Regular expressions for specification
• Finite automata for implementation

(automatic generation of lexical analyzers)

Compiler Design 1 (2011) 14

Finite Automata

A finite automaton is a recognizer for the
strings of a regular language

A finite automaton consists of
– A finite input alphabet Σ
– A set of states S
– A start state n
– A set of accepting states F ⊆ S
– A set of transitions state →input state

Compiler Design 1 (2011) 15

Finite Automata

• Transition
s1 →a s2

• Is read
In state s1 on input “a” go to state s2

• If end of input (or no transition possible)
– If in accepting state ⇒ accept
– Otherwise ⇒ reject

Compiler Design 1 (2011) 16

Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
a

Compiler Design 1 (2011) 17

A Simple Example

• A finite automaton that accepts only “1”

1

Compiler Design 1 (2011) 18

Another Simple Example

• A finite automaton accepting any number of 1’s
followed by a single 0

• Alphabet: {0,1}

0

1

Compiler Design 1 (2011) 19

And Another Example

• Alphabet {0,1}
• What language does this recognize?

0

1

0

1

0

1

Compiler Design 1 (2011) 20

And Another Example

• Alphabet still { 0, 1 }

• The operation of the automaton is not
completely defined by the input
– On input “11” the automaton could be in either state

1

1

Compiler Design 1 (2011) 21

Epsilon Moves

• Another kind of transition: ε-moves

ε

• Machine can move from state A to state B
without reading input

A B

Compiler Design 1 (2011) 22

Deterministic and Non-Deterministic Automata

• Deterministic Finite Automata (DFA)
– One transition per input per state
– No ε-moves

• Non-deterministic Finite Automata (NFA)
– Can have multiple transitions for one input in a

given state
– Can have ε-moves

• Finite automata have finite memory
– Enough to only encode the current state

Compiler Design 1 (2011) 23

Execution of Finite Automata

• A DFA can take only one path through the
state graph
– Completely determined by input

• NFAs can choose
– Whether to make ε-moves
– Which of multiple transitions for a single input to

take

Compiler Design 1 (2011) 24

Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts an input if it can get in a
final state

Compiler Design 1 (2011) 25

NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of
languages (regular languages)

• DFAs are easier to implement
– There are no choices to consider

Compiler Design 1 (2011) 26

NFA vs. DFA (2)

• For a given language the NFA can be simpler
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

Compiler Design 1 (2011) 27

Regular Expressions to Finite Automata

• High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

Compiler Design 1 (2011) 28

Regular Expressions to NFA (1)

• For each kind of reg. expr, define an NFA
– Notation: NFA for regular expression M

M

• For ε
ε

• For input a
a

Compiler Design 1 (2011) 29

Regular Expressions to NFA (2)

• For AB

A Bε

• For A + B

A

B

ε
ε

ε

ε

Compiler Design 1 (2011) 30

Regular Expressions to NFA (3)

• For A*

Aε

ε

ε

Compiler Design 1 (2011) 31

Example of Regular Expression → NFA conversion

• Consider the regular expression
(1+0)*1

• The NFA is

ε

1C E
0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1I J

Compiler Design 1 (2011) 32

NFA to DFA. The Trick

• Simulate the NFA
• Each state of DFA

= a non-empty subset of states of the NFA
• Start state

= the set of NFA states reachable through ε-moves
from NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from any

state in S after seeing the input a
• considering ε-moves as well

Compiler Design 1 (2011) 33

NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states ?

• If there are N states, the NFA must be in
some subset of those N states

• How many subsets are there?
– 2N - 1 = finitely many

Compiler Design 1 (2011) 34

NFA to DFA Example

1
0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

Compiler Design 1 (2011) 35

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”
– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip to

state Sk

– Very efficient

Compiler Design 1 (2011) 36

Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10

Compiler Design 1 (2011) 37

Implementation (Cont.)

• NFA → DFA conversion is at the heart of
tools such as lex, ML-Lex or flex

• But, DFAs can be huge

• In practice, lex/ML-Lex/flex-like tools trade
off speed for space in the choice of NFA and
DFA representations

Compiler Design 1 (2011) 38

Theory vs. Practice

Two differences:

• DFAs recognize lexemes. A lexer must return
a type of acceptance (token type) rather than
simply an accept/reject indication.

• DFAs consume the complete string and accept
or reject it. A lexer must find the end of the
lexeme in the input stream and then find the
next one, etc.

