
Introduction to Lexical

Analysis

Compiler Design 1 (2011) 2

Outline

•

Informal sketch of lexical analysis
–

Identifies tokens in input string

•

Issues in lexical analysis
–

Lookahead

–

Ambiguities

•

Specifying lexers
–

Regular expressions

–

Examples of regular expressions

Compiler Design 1 (2011) 3

Lexical Analysis

•

What do we want to do? Example:
if (i == j)
then

Z = 0;
else

Z = 1;
•

The input is just a string of characters:
\tif

(i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Goal: Partition input string into substrings
–

Where the substrings are tokens

Compiler Design 1 (2011) 4

What’s a Token?

•

A syntactic category
–

In English:

noun, verb, adjective, …

–

In a programming language:
Identifier, Integer, Keyword, Whitespace, …

Compiler Design 1 (2011) 5

Tokens

•

Tokens correspond to sets of strings.

•

Identifier: strings of letters or digits,
starting with a letter

•

Integer: a non-empty string of digits
•

Keyword: “else” or “if” or “begin” or …

•

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

Compiler Design 1 (2011) 6

What are Tokens used for?

•

Classify program substrings according to role

•

Output of lexical analysis is a stream of
tokens . . .

•

. . . which is input to the parser

•

Parser relies on token distinctions
–

An identifier is treated differently than a keyword

Compiler Design 1 (2011) 7

Designing a Lexical Analyzer: Step 1

•

Define a finite set of tokens
–

Tokens describe all items of interest

–

Choice of tokens depends on language, design of
parser

•

Recall
\tif

(i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Useful tokens for this expression:
Integer, Keyword, Relation, Identifier, Whitespace,

(,), =, ;

Compiler Design 1 (2011) 8

Designing a Lexical Analyzer: Step 2

•

Describe which strings belong to each token

•

Recall:
–

Identifier: strings of letters or digits, starting
with a letter

–

Integer: a non-empty string of digits
–

Keyword: “else” or “if” or “begin” or …

–

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

Compiler Design 1 (2011) 9

Lexical Analyzer: Implementation

An implementation must do two things:

1.

Recognize substrings corresponding to tokens

2.

Return the value or lexeme of the token
–

The lexeme is the substring

Compiler Design 1 (2011) 10

Example

•

Recall:
\tif (i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Token-lexeme groupings:
–

Identifier: i, j, z

–

Keyword: if, then, else
–

Relation: ==

–

Integer: 0, 1
–

(,), =, ;

single character of the same name

Compiler Design 1 (2011) 11

Why do Lexical Analysis?

•

Dramatically simplify parsing
–

The lexer usually discards “uninteresting”

tokens

that don’t contribute to parsing
•

E.g. Whitespace, Comments

–

Converts data early
•

Separate out logic to read source files
–

Potentially an issue on multiple platforms

–

Can optimize reading code independently of parser

Compiler Design 1 (2011) 12

True Crimes of Lexical Analysis

•

Is it as easy as it sounds?

•

Not quite!

•

Look at some programming language history . . .

Compiler Design 1 (2011) 13

Lexical Analysis in FORTRAN

•

FORTRAN rule: Whitespace is insignificant

•

E.g., VAR1 is the same as VA R1

•

Footnote: FORTRAN whitespace rule was motivated
by inaccuracy of punch card operators

Compiler Design 1 (2011) 14

A terrible design! Example

•

Consider
– DO 5 I = 1,25
– DO 5 I = 1.25

•

The first is DO 5 I = 1 , 25
•

The second is DO5I = 1.25

•

Reading left-to-right, cannot tell if DO5I is a
variable or DO stmt. until after “,”

is reached

Compiler Design 1 (2011) 15

Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1.

The goal is to partition the string. This is
implemented by reading left-to-write, recognizing
one token at a time

2.

“Lookahead”

may be required to decide where one
token ends and the next token begins

–

Even our simple example has lookahead

issues
i vs. if
= vs. ==

Compiler Design 1 (2011) 16

Another Great Moment in Scanning

•

PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

can be difficult to determine how to label lexemes

Compiler Design 1 (2011) 17

More Modern True Crimes in Scanning

•

Nested template declarations in C++

vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))

Compiler Design 1 (2011) 18

Review

•

The goal of lexical analysis is to
–

Partition the input string into lexemes (the smallest
program units that are individually meaningful)

–

Identify the token of each lexeme

•

Left-to-right scan ⇒

lookahead sometimes
required

Compiler Design 1 (2011) 19

Next

•

We still need
–

A way to describe the lexemes of each token

–

A way to resolve ambiguities
•

Is if two variables i and f?

•

Is == two equal signs = =?

Compiler Design 1 (2011) 20

Regular Languages

•

There are several formalisms for specifying
tokens

•

Regular languages are the most popular
–

Simple and useful theory

–

Easy to understand
–

Efficient implementations

Compiler Design 1 (2011) 21

Languages

Def. Let Σ

be a set of characters. A language Λ
 over Σ

is a set of strings of characters drawn

from Σ
(Σ

is called the alphabet of Λ)

Compiler Design 1 (2011) 22

Examples of Languages

•

Alphabet = English
characters

•

Language = English
sentences

•

Not every string on
English characters is an
English sentence

•

Alphabet = ASCII

•

Language = C programs

•

Note: ASCII character
set is different from
English character set

Compiler Design 1 (2011) 23

Notation

•

Languages are sets of strings

•

Need some notation for specifying which sets
of strings we want our language to contain

•

The standard notation for regular languages is
regular expressions

Compiler Design 1 (2011) 24

Atomic Regular Expressions

•

Single character

•

Epsilon

{ }' ' " "c c=

{ }""ε =

Compiler Design 1 (2011) 25

Compound Regular Expressions

•

Union

•

Concatenation

•

Iteration

{ }| or A B s s A s B+ = ∈ ∈

{ }| and AB ab a A b B= ∈ ∈

*
0

 where ... times ...i i
i

A A A A i A
≥

= =U

Compiler Design 1 (2011) 26

Regular Expressions

•

Def.

The regular expressions over Σ

are the
smallest set of expressions including

*

' ' where
where , are rexp over
" " "
where is a rexp over

c c
A B A B
AB
A A

ε
∈∑

+ ∑

∑

Compiler Design 1 (2011) 27

Syntax vs. Semantics

•

To be careful, we should distinguish syntax
and semantics (meaning)

of regular expressions

{ }

*
0

() ""
(' ') {" "}
() () ()
() { | () and ()}
() ()i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=
=

+ = ∪
= ∈ ∈
= U

Compiler Design 1 (2011) 28

Example: Keyword

Keyword: “else” or “if” or “begin” or …

else' + 'if' + 'begi' n' + L

Note: abbrev'else' 'e''l''siates ''e'

Compiler Design 1 (2011) 29

Example: Integers

Integer: a non-empty string of digits

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation: A AA+ =

Compiler Design 1 (2011) 30

Example: Identifier

Identifier: strings of letters or digits,
starting with a letter

*

letter = 'A' 'Z' 'a' 'z'
identifier = letter (letter digit)

+ + + + +
+

K K

* *(letter + diIs the sgit) ame?

Compiler Design 1 (2011) 31

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

()' ' + '\n' + '\t' +

Compiler Design 1 (2011) 32

Example 1: Phone Numbers

•

Regular expressions are all around you!
•

Consider +46(0)18-471-1056

Σ

= digits ∪

{+,−,(,)}
country = digit digit
city = digit digit
univ = digit digit digit
extension = digit digit digit digit
phone_num = ‘+’country’(’0‘)’city’−’univ’−’extension

Compiler Design 1 (2011) 33

Example 2: Email Addresses

•

Consider kostis@it.uu.se

{ }
+name = letter

address = name '@' name '.'

letters

name '.

'

.,@

name

∑ = ∪

Compiler Design 1 (2011) 34

Summary

•

Regular expressions describe many useful
languages

•

Regular languages are a language specification
–

We still need an implementation

•

Next time: Given a string s and a regular
expression R, is

()?s L R∈

	Introduction to Lexical Analysis
	Outline
	Lexical Analysis
	What’s a Token?
	Tokens
	What are Tokens used for?
	Designing a Lexical Analyzer: Step 1
	Designing a Lexical Analyzer: Step 2
	Lexical Analyzer: Implementation
	Example
	Why do Lexical Analysis?
	True Crimes of Lexical Analysis
	Lexical Analysis in FORTRAN
	A terrible design! Example
	Lexical Analysis in FORTRAN. Lookahead.
	Another Great Moment in Scanning
	More Modern True Crimes in Scanning
	Review
	Next
	Regular Languages
	Languages
	Examples of Languages
	Notation
	Atomic Regular Expressions
	Compound Regular Expressions
	Regular Expressions
	Syntax vs. Semantics
	Example: Keyword
	Example: Integers
	Example: Identifier
	Example: Whitespace
	Example 1: Phone Numbers
	Example 2: Email Addresses
	Summary

