
Introduction to Lexical
 

Analysis
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Outline

•
 

Informal sketch of lexical analysis
–

 
Identifies tokens in input string

•
 

Issues in lexical analysis
–

 
Lookahead

–
 

Ambiguities

•
 

Specifying lexers
–

 
Regular expressions

–
 

Examples of regular expressions
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Lexical Analysis

•
 

What do we want to do?  Example:
if (i == j)
then

Z = 0;
else

Z = 1;
•

 
The input is just a string of characters:
\tif

 
(i == j)\nthen\n\tz

 
= 0;\n\telse\n\t\tz = 1;

•
 

Goal: Partition input string into substrings
–

 
Where the substrings are tokens
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What’s a Token?

•
 

A syntactic category
–

 
In English:

noun, verb, adjective, …

–
 

In a programming language:
Identifier, Integer, Keyword, Whitespace, …
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Tokens

•
 

Tokens correspond to sets of strings.

•
 

Identifier: strings of letters or digits, 
starting with a letter

•
 

Integer: a non-empty string of digits
•

 
Keyword: “else” or “if” or “begin” or …

•
 

Whitespace: a non-empty sequence of blanks, 
newlines, and tabs
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What are Tokens used for?

•
 

Classify program substrings according to role

•
 

Output of lexical analysis is a stream of 
tokens . . .

•
 

. . . which is input to the parser

•
 

Parser relies on token distinctions
–

 
An identifier is treated differently than a keyword



Compiler Design 1 (2011) 7

Designing a Lexical Analyzer: Step 1

•
 

Define a finite set of tokens
–

 
Tokens describe all items of interest

–
 

Choice of tokens depends on language, design of 
parser

•
 

Recall
\tif

 
(i == j)\nthen\n\tz

 
= 0;\n\telse\n\t\tz = 1;

•
 

Useful tokens for this expression:
Integer, Keyword, Relation, Identifier, Whitespace, 

(, ), =, ;
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Designing a Lexical Analyzer: Step 2

•
 

Describe which strings belong to each token

•
 

Recall:
–

 
Identifier: strings of letters or digits, starting 
with a letter

–
 

Integer: a non-empty string of digits
–

 
Keyword: “else” or “if” or “begin” or …

–
 

Whitespace: a non-empty sequence of blanks, 
newlines, and tabs
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Lexical Analyzer: Implementation

An implementation must do two things:

1.
 

Recognize substrings corresponding to tokens

2.
 

Return the value or lexeme of the token
–

 
The lexeme is the substring
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Example

•
 

Recall:
\tif (i == j)\nthen\n\tz

 
= 0;\n\telse\n\t\tz = 1;

•
 

Token-lexeme groupings:
–

 
Identifier: i, j, z

–
 

Keyword: if, then, else
–

 
Relation: ==

–
 

Integer: 0, 1
–

 
(, ), =, ;

 
single character of the same name
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Why do Lexical Analysis?

•
 

Dramatically simplify parsing
–

 
The lexer usually discards “uninteresting”

 
tokens 

that don’t contribute to parsing
•

 
E.g. Whitespace, Comments

–
 

Converts data early
•

 
Separate out logic to read source files
–

 
Potentially an issue on multiple platforms

–
 

Can optimize reading code independently of parser
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True Crimes of Lexical Analysis

•
 

Is it as easy as it sounds?

•
 

Not quite!

•
 

Look at some programming language history . . .
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Lexical Analysis in FORTRAN

•
 

FORTRAN rule: Whitespace is insignificant

•
 

E.g., VAR1 is the same as VA    R1

•
 

Footnote: FORTRAN whitespace rule was motivated 
by inaccuracy of punch card operators



Compiler Design 1 (2011) 14

A terrible design! Example

•
 

Consider
– DO 5  I = 1,25
– DO 5  I = 1.25

•
 

The first is DO  5  I = 1  ,  25
•

 
The second is DO5I = 1.25

•
 

Reading left-to-right, cannot tell if DO5I is a 
variable or DO stmt. until after “,”

 
is reached
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Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1.

 
The goal is to partition the string.  This is 
implemented by reading left-to-write, recognizing 
one token at a time

2.
 

“Lookahead”
 

may be required to decide where one 
token ends and the next token begins

–
 

Even our simple example has lookahead
 

issues
i vs. if
= vs. ==
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Another Great Moment in Scanning

•
 

PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

can be difficult to determine how to label lexemes
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More Modern True Crimes in Scanning

•
 

Nested template declarations in C++

vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))
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Review

•
 

The goal of lexical analysis is to
–

 
Partition the input string into lexemes (the smallest 
program units that are individually meaningful)

–
 

Identify the token of each lexeme

•
 

Left-to-right scan ⇒
 

lookahead sometimes 
required
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Next

•
 

We still need
–

 
A way to describe the lexemes of each token

–
 

A way to resolve ambiguities
•

 
Is if two variables i and f?

•
 

Is == two equal signs =  =?
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Regular Languages

•
 

There are several formalisms for specifying 
tokens

•
 

Regular languages are the most popular
–

 
Simple and useful theory

–
 

Easy to understand
–

 
Efficient implementations
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Languages

Def. Let Σ
 

be a set of characters.  A language Λ
 over Σ

 
is a set of strings of characters drawn 

from Σ
(Σ

 
is called the alphabet of Λ)
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Examples of Languages

•
 

Alphabet = English 
characters

•
 

Language = English 
sentences

•
 

Not every string on 
English characters is an 
English sentence

•
 

Alphabet = ASCII

•
 

Language = C programs

•
 

Note: ASCII character 
set is different from 
English character set
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Notation

•
 

Languages are sets of strings

•
 

Need some notation for specifying which sets 
of strings we want our language to contain

•
 

The standard notation for regular languages is 
regular expressions
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Atomic Regular Expressions

•
 

Single character

•
 

Epsilon

{ }' ' " "c c=

{ }""ε =
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Compound Regular Expressions

•
 

Union

•
 

Concatenation

•
 

Iteration

{ }|  or A B s s A s B+ = ∈ ∈

{ }|  and AB ab a A b B= ∈ ∈

*
0

  where  ...  times ...i i
i

A A A A i A
≥

= =U
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Regular Expressions

•
 

Def.
 

The regular expressions over Σ
 

are the 
smallest set of expressions including

*

' ' where 
where ,  are rexp over 
"                 "                    "
where  is a rexp over 

c c
A B A B
AB
A A

ε
∈∑

+ ∑

∑
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Syntax vs. Semantics

•
 

To be careful, we should distinguish syntax 
and semantics (meaning)

 
of regular expressions

{ }

*
0

( ) ""
(' ') {" "}
( ) ( ) ( )
( ) { | ( ) and ( )}
( ) ( )i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=
=

+ = ∪
= ∈ ∈
= U
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Example: Keyword

Keyword: “else” or “if” or “begin” or …

else' + 'if' + 'begi' n' + L

Note:  abbrev'else'  'e''l''siates ''e'
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Example: Integers

Integer: a non-empty string of digits

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation:    A AA+ =
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Example: Identifier

Identifier: strings of letters or digits, 
starting with a letter

*

letter = 'A' 'Z' 'a' 'z'
identifier = letter (letter  digit)

+ + + + +
+

K K

* *(letter  + diIs    the sgit ) ame?
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Example: Whitespace

Whitespace: a non-empty sequence of blanks, 
newlines, and tabs

( )'  ' + '\n' + '\t' +
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Example 1: Phone Numbers

•
 

Regular expressions are all around you!
•

 
Consider +46(0)18-471-1056

Σ
 

= digits ∪
 

{+,−,(,)}
country       = digit  digit
city             = digit  digit
univ = digit  digit  digit
extension    = digit  digit  digit  digit
phone_num = ‘+’country’(’0‘)’city’−’univ’−’extension
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Example 2: Email Addresses

•
 

Consider kostis@it.uu.se

{ }
+name = letter

address = name '@' name '.' 

letters

name '.

 

'

.,@

name

∑ = ∪
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Summary

•
 

Regular expressions describe many useful 
languages

•
 

Regular languages are a language specification
–

 
We still need an implementation

•
 

Next time: Given a string s and a regular 
expression R, is

( )?s L R∈
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