
Intermediate Code &
 Local Optimizations

Compiler Design I (2011) 2

Lecture Outline

•

Intermediate code

•

Local optimizations

Compiler Design I (2011) 3

Code Generation Summary

•

We have so far discussed
–

Runtime organization

–

Simple stack machine code generation
–

Improvements to stack machine code generation

•

Our compiler goes directly from the abstract
syntax tree (AST) to assembly language
–

And does not perform optimizations

–

(optimization is the last compiler phase, which is by
far the largest and most complex these days)

•

Most real compilers use intermediate
languages

Compiler Design I (2011) 4

Why Intermediate Languages?

ISSUE:ISSUE:

When to perform optimizations
–

On abstract syntax trees

•

Pro: Machine independent
•

Con: Too high level

–

On assembly language
•

Pro: Exposes most optimization opportunities

•

Con: Machine dependent
•

Con: Must re-implement optimizations when re-targeting

–

On an intermediate language
•

Pro: Exposes optimization opportunities

•

Pro: Machine independent

Compiler Design I (2011) 5

Why Intermediate Languages?

•

Have many front-ends into a single back-end
–

gcc

can handle C, C++, Java, Fortran, Ada, ...

–

each front-end translates source to the same
generic language (called GENERIC)

•

Have many back-ends from a single front-end
–

Do most optimization on intermediate representation
before emitting code targeted at a single machine

Compiler Design I (2011) 6

Kinds of Intermediate Languages

High-level intermediate representations:
–

closer to the source language; e.g., syntax trees

–

easy to generate from the input program
–

code optimizations may not be straightforward

Low-level intermediate representations:
–

closer to target machine; e.g., P-Code, U-Code (used
in PA-RISC and MIPS), GCC’s

RTL, 3-address code

–

easy to generate code from
–

generation from input program may require effort

“Mid”-level intermediate representations:
–

Java bytecode, Microsoft CIL, LLVM IR, ...

Compiler Design I (2011) 7

Intermediate Code Languages: Design Issues

•

Designing a good ICode

language is not trivial
•

The set of operators in ICode

must be rich

enough to allow the implementation of source
language operations

•

ICode

operations that are closely tied to a
particular machine or architecture, make
retargeting harder

•

A small set of operations
–

may lead to long instruction sequences for some
source language constructs,

–

but on the other hand makes retargeting easier

Compiler Design I (2011) 8

Intermediate Languages

•

Each compiler uses its own intermediate
language
–

IL design is still an active area of research

•

Nowadays, usually an intermediate language is
a high-level assembly language
–

Uses register names, but has an unlimited number

–

Uses control structures like assembly language
–

Uses opcodes

but some are higher level

•

E.g., push

translates to several assembly instructions
•

Most opcodes

correspond directly to assembly opcodes

Compiler Design I (2011) 9

Architecture of gcc

Compiler Design I (2011) 10

Three-Address Intermediate Code

•

Each instruction is of the form
x := y op z

–

y

and z can be only registers or constants
–

Just like assembly

•

Common form of intermediate code
•

The expression x + y * z

is translated as

t1

:= y * z
t2

:= x + t1
–

temporary names are made up for internal nodes

–

each sub-expression has a “home”

Compiler Design I (2011) 11

Generating Intermediate Code

•

Similar to assembly code generation
•

Major difference
–

Use any number of IL registers to hold
intermediate results

Example: if (x + 2 > 3 * (y - 1) + 42) then z := 0;
t1 := x + 2
t2 := y -

1

t3 := 3 * t2
t4 := t3 + 42
if t1 =< t4 goto

L

z := 0
L:

Compiler Design I (2011) 12

Generating Intermediate Code (Cont.)

•

igen(e, t)

function generates code to compute
the value of e

in register t

•

Example:
igen(e1

+ e2

, t) =
igen(e1

, t1

) (t1

is a fresh register)
igen(e2

, t2

) (t2

is a fresh register)
t := t1

+ t2

•

Unlimited number of registers
⇒ simple code generation

Compiler Design I (2011) 13

An Intermediate Language

P → S P | ε
S →

id := id op id

| id := op id
| id := id
| push id
| id := pop
| if id relop

id goto

L

| L:
| goto

L

•

id’s are register names
•

Constants can replace id’s

•

Typical operators: +, -, *

Compiler Design I (2011) 14

From 3-address code to machine code

This is almost a macro expansion process
3-address code MIPS assembly code
x := A[i] load i into r1

la r2, A
add r2, r2, r1
lw r2, (r2)
sw r2, x

x := y + z load y into r1
load z into r2
add r3, r1, r2
sw r3, x

if x >= y goto L load x into r1
load y into r2
bge r1, r2, L

Compiler Design I (2011) 15

Basic Blocks

•

A basic block is a maximal sequence of
instructions with:
–

no labels (except at the first instruction), and

–

no jumps (except in the last instruction)

•

Idea:
–

Cannot jump into a basic block (except at beginning)

–

Cannot jump out of a basic block (except at end)
–

Each instruction in a basic block is executed after
all the preceding instructions have been executed

Compiler Design I (2011) 16

Basic Block Example

Consider the basic block
L: (1)

t := 2 * x

(2)
w := t + x

(3)

if w > 0 goto

L’

(4)

•

No way for (3) to be executed without (2)
having been executed right before
–

We can change (3) to w := 3 * x

–

Can we eliminate (2) as well?

Compiler Design I (2011) 17

Identifying Basic Blocks

•

Determine the set of leaders, i.e., the first
instruction of each basic block:
–

The first instruction of a function is a leader

–

Any instruction that is a target of a branch is a
leader

–

Any instruction immediately following a (conditional
or unconditional) branch is a leader

•

For each leader, its basic block consists of
itself and all instructions upto, but not
including, the next leader (or end of function)

Compiler Design I (2011) 18

Control-Flow Graphs

A control-flow graph is a directed graph with
–

Basic blocks as nodes

–

An edge from block A to block B if the execution
can flow from the last instruction in A to the first
instruction in B

E.g., the last instruction in A is goto

LB

E.g., the execution can fall-through from block A to block B

Frequently abbreviated as CFGs

Compiler Design I (2011) 19

Control-Flow Graphs: Example

•

The body of a function
(or procedure) can be
represented as a control-

 flow graph

•

There is one initial node

•

All “return”

nodes are
terminal

x := 1
i := 1

L:
x := x * x
i := i + 1
if i < 42 goto

L

Compiler Design I (2011) 20

Constructing the Control Flow Graph

•

Identify the basic blocks of the function
•

There is a directed edge between block B1

to
block B2

if
–

there is a (conditional or unconditional) jump from
the last instruction of B1 to the first instruction of
B2

or
–

B2 immediately follows B1 in the textual order of
the program, and B1 does not end in an unconditional
jump.

Compiler Design I (2011) 21

Optimization Overview

•

Optimization seeks to improve a program’s
utilization of some resource
–

Execution time (most often)

–

Code size
–

Network messages sent

–

(Battery) power used, etc.

•

Optimization should not alter what the program
computes
–

The answer must still be the same

–

Observable behavior must be the same
•

this typically also includes termination behavior

Compiler Design I (2011) 22

A Classification of Optimizations

For languages like C there are three granularities
of optimizations
(1) Local optimizations

•

Apply to a basic block in isolation
(2) Global optimizations

•

Apply to a control-flow graph (function body) in isolation
(3) Inter-procedural optimizations

•

Apply across method boundaries

Most compilers do (1), many do (2) and very few do (3)

Compiler Design I (2011) 23

Cost of Optimizations

•

In practice, a conscious decision is made not
 to implement the fanciest optimization known

•

Why?
–

Some optimizations are hard to implement

–

Some optimizations are costly in terms of
compilation time

–

Some optimizations have low benefit
–

Many fancy optimizations are all three!

•

Goal: maximum benefit for minimum cost

Compiler Design I (2011) 24

Local Optimizations

•

The simplest form of optimizations
•

No need to analyze the whole procedure body
–

Just the basic block in question

•

Example: algebraic simplification

Compiler Design I (2011) 25

Algebraic Simplification

•

Some statements can be deleted
x := x + 0
x := x * 1

•

Some statements can be simplified
x := x * 0

⇒

x := 0

y := y ** 2

⇒

y := y * y

x := x * 8

⇒

x := x << 3

x := x * 15

⇒

t := x << 4; x := t -

x

(on some machines <<

is faster than *; but not on all!)

Compiler Design I (2011) 26

Constant Folding

•

Operations on constants can be computed at
compile time

•

In general, if there is a statement
x := y op z

–

And y

and z

are constants
–

Then y op z can be computed at compile time

•

Example: x := 2 + 2

⇒

x := 4
•

Example:

if 2 < 0 goto

L can be deleted

•

When might constant folding be dangerous?

Compiler Design I (2011) 27

Flow of Control Optimizations

•

Eliminating unreachable code:
–

Code that is unreachable in the control-flow graph

–

Basic blocks that are not the target of any jump or
“fall through”

from a conditional

–

Such basic blocks can be eliminated

•

Why would such basic blocks occur?

•

Removing unreachable code makes the
program smaller
–

And sometimes also faster

•

Due to memory cache effects (increased spatial locality)

Compiler Design I (2011) 28

Single Assignment Form

•

Some optimizations are simplified if each
register occurs only once on the left-hand
side of an assignment

•

Intermediate code can be rewritten to be in
single assignment form

x := z + y b

:= z + y
a := x ⇒

a := b

x := 2 * x x := 2 * b
(b

is a fresh temporary)

•

More complicated in general, due to control
flow (e.g. loops)

Compiler Design I (2011) 29

Common Subexpression

Elimination

•

Assume
–

A basic block is in single assignment form

–

A definition x :=

is the first use of x

in a block
•

All assignments with same RHS compute the
same value

•

Example:
x := y + z x := y + z
…

⇒

…

w := y + z w := x
(the values of x,

y, and

z

do not change in the

…

code)

Compiler Design I (2011) 30

Copy Propagation

•

If w := x

appears in a block, all subsequent
uses of w

can be replaced with uses of x

•

Example:
b := z + y b := z + y
a := b ⇒

a := b

x := 2 * a x := 2 * b

•

This does not make the program smaller or
faster but might enable other optimizations
–

Constant folding

–

Dead code elimination

Compiler Design I (2011) 31

Copy Propagation and Constant Folding

•

Example:
a := 5 a := 5
x := 2 * a ⇒

x := 10

y := x + 6 y := 16
t := x * y t := x << 4

Compiler Design I (2011) 32

Copy Propagation and Dead Code Elimination

If
w := RHS

appears in a basic block

w

does not appear anywhere else in the program
Then

the statement w := RHS

is dead and can be eliminated
–

Dead

= does not contribute to the program’s result

Example: (a

is not used anywhere else)
x := z + y b := z + y b := z + y
a := x ⇒

a := b ⇒

x := 2 * b

x := 2 * x x := 2 * b

Compiler Design I (2011) 33

Applying Local Optimizations

•

Each local optimization does very little by
itself

•

Typically optimizations interact
–

Performing one optimization enables other opt.

•

Optimizing compilers repeatedly perform
optimizations until no improvement is possible
–

The optimizer can also be stopped at any time to
limit the compilation time

Compiler Design I (2011) 34

An Example

Initial code:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

assume that only f

and g

are used in the rest of program

Compiler Design I (2011) 35

An Example

Algebraic simplification:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

Compiler Design I (2011) 36

An Example

Algebraic simplification:
a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f

Compiler Design I (2011) 37

An Example

Copy and constant propagation:
a := x * x
b := 3
c := x
d := c

* c

e := b

<< 1
f := a + d
g := e * f

Compiler Design I (2011) 38

An Example

Copy and constant propagation:
a := x * x
b := 3
c := x
d := x

* x

e := 3

<< 1
f := a + d
g := e * f

Compiler Design I (2011) 39

An Example

Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f

Compiler Design I (2011) 40

An Example

Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

Compiler Design I (2011) 41

An Example

Common subexpression

elimination:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

Compiler Design I (2011) 42

An Example

Common subexpression

elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f

Compiler Design I (2011) 43

An Example

Copy and constant propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e

* f

Compiler Design I (2011) 44

An Example

Copy and constant propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6

* f

Compiler Design I (2011) 45

An Example

Dead code elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

Compiler Design I (2011) 46

An Example

Dead code elimination:
a := x * x

f := a + a
g := 6 * f

This is the final form

Compiler Design I (2011) 47

Peephole Optimizations on Assembly Code

•

The optimizations presented before work on
intermediate code
–

They are target independent

–

But they can be applied on assembly language also

Peephole optimization is an effective technique
for improving assembly code
–

The “peephole”

is a short sequence of (usually

contiguous) instructions
–

The optimizer replaces the sequence with another
equivalent one (but faster)

Compiler Design I (2011) 48

Implementing Peephole Optimizations

•

Write peephole optimizations as replacement
rules

i1

, …, in

→ j1

, …, jm
where the RHS is the improved version of the LHS

•

Example:
move $a $b, move $b $a

→

move $a $b

–

Works if move $b $a

is not the target of a jump
•

Another example:

addiu

$a $a i, addiu

$a $a j

→ addiu

$a $a i+j

Compiler Design I (2011) 49

Peephole Optimizations

•

Redundant instruction elimination, e.g.:
.
goto

L ⇒

L:

L: . . .
. . .

•

Flow of control optimizations, e.g.:
.
goto

L1 ⇒

goto

L2

.
L1: goto

L2 L1: goto

L2

.

Compiler Design I (2011) 50

Peephole Optimizations (Cont.)

•

Many (but not all) of the basic block
optimizations can be cast as peephole
optimizations
–

Example: addiu

$a $b 0

→ move $a $b

–

Example: move $a $a

→
–

These two together eliminate addiu

$a $a 0

•

Just like for local optimizations, peephole
optimizations need to be applied repeatedly to
get maximum effect

Compiler Design I (2011) 51

Local Optimizations: Concluding Remarks

•

Intermediate code is helpful for many
optimizations

•

Many simple optimizations can still be applied
on assembly language

•

“Program optimization”

is grossly misnamed
–

Code produced by “optimizers”

is not optimal in any

reasonable sense
–

“Program improvement”

is a more appropriate term

•

Next time: global optimizations

