
Code Generation &
Parameter Passing

Compiler Design I (2011) 2

Lecture Outline

1. Allocating temporaries in the activation record
– Let’s optimize our code generator a bit

2. A deeper look into calling sequences
– Caller/Callee responsibilities

3. Parameter passing mechanisms
– call-by-value, call-by-reference, call-by-value-result,

call-by-name and call-by-need

Compiler Design I (2011) 3

Extra Material in the Appendix (not covered in lecture)

4. Code generation for OO languages
– Object memory layout
– Dynamic dispatch

5. Code generation of data structure references
– Address calculations
– Array references

6. Code generation for logical expressions
– Short-circuiting

Topic 1

An Optimization:
Temporaries in the Activation Record

Compiler Design I (2011) 5

Review

• The stack machine has activation records and
intermediate results interleaved on the stack

• The code generator must assign a location in
the AR for each temporary

AR
Temporaries

AR
Temporaries

These get put here when
we evaluate compound
expressions like e1 + e2
(need to store e1 while
evaluating e2)

Compiler Design I (2011) 6

Review (Cont.)

• Advantage: Simple code generation
• Disadvantage: Slow code

– Storing/loading temporaries requires a store/load
and $sp adjustment

cgen(e1) ; eval e1
sw $a0 0($sp) ; save its value
addiu $sp $sp-4 ; adjust $sp (!)
cgen(e2) ; eval e2
lw $t1 4($sp) ; get e1
add $a0 $t1 $a0 ; $a0 = e1 + e2
addiu $sp $sp-4 ; adjust $sp (!)

cgen(e1 + e2) =

Compiler Design I (2011) 7

An Optimization

• Idea: Predict how $sp will move at run time
– Do this prediction at compile time
– Move $sp to its limit, at the beginning

• The code generator must statically assign a
location in the AR for each temporary

Compiler Design I (2011) 8

Improved Code

cgen(e1)
sw $a0 0($sp)
addiu $sp $sp-4
cgen(e2)
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp-4

cgen(e1 + e2) =
Old method

cgen(e1)
sw $a0 ?($fp)

cgen(e2)
lw $t1 ?($fp)
add $a0 $t1 $a0

cgen(e1 + e2) =
New idea

statically
allocate

Compiler Design I (2011) 9

Example

add(w,x,y,z)
begin

x + (y + (z + (w + 42)))
end

• What intermediate values are placed on the
stack?

• How many slots are needed in the AR to hold
these values?

Compiler Design I (2011) 10

How Many Stack Slots?

• Let NS(e) = # of slots needed to evaluate e
– Includes slots for arguments to functions

• E.g: NS(e1 + e2)
– Needs at least as many slots as NS(e1)
– Needs at least one slot to hold e1, plus as many slots

as NS(e2), i.e. 1 + NS(e2)

• Space used for temporaries in e1 can be reused
for temporaries in e2

Compiler Design I (2011) 11

The Equations for Mini Bar

NS(e1 + e2) = max(NS(e1), 1 + NS(e2))
NS(e1 - e2) = max(NS(e1), 1 + NS(e2))
NS(if e1 = e2 then e3 else e4) =

max(NS(e1), 1 + NS(e2), NS(e3), NS(e4))
NS(f(e1,…,en)) =

max(NS(e1), 1 + NS(e2), 2 + NS(e3), … , (n-1) + NS(en), n)
NS(int) = 0
NS(id) = 0

Rule for f(e1, … , en): Each time we evaluate an
argument, we put it on the stack.

Compiler Design I (2011) 12

The Revised Activation Record

• For a function definition f(x1,…,xn) begin e end
the AR has 2 + NS(e) elements
– Return address
– Frame pointer
– NS(e) locations for intermediate results

• Note that f’s arguments are now considered to
be part of its caller’s AR

Compiler Design I (2011) 13

Picture: Activation Record

Return Addr.
Temp NS(e)

. . .
Temp 1

Old FP

. . .
x1

xn
pushed by
caller

saved by
callee

popped
by callee

FP

increasing
values of
addresses

FP−4

(this diagram disagrees
slightly with lecture 12:
here, the callee saves FP)

direction of stack growth

Compiler Design I (2011) 14

Revised Code Generation

• Code generation must know how many slots are
in use at each point

• Add a new argument to code generation: the
position of the next available slot

Compiler Design I (2011) 15

Improved Code

cgen(e1)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e2)
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

cgen(e1 + e2) =
Old method

cgen(e1, ns)
sw $a0 ns($fp)

cgen(e2, ns+4)
lw $t1 ns($fp)
add $a0 $t1 $a0

cgen(e1 + e2, ns) =
New method

compile-time
prediction

static
allocation

Compiler Design I (2011) 16

Notes

• The slots for temporary values are still used
like a stack, but we predict usage at compile
time
– This saves us from doing that work at run time
– Allocate all needed slots at start of a function

Exerc. Write some code which runs slower after
performing the optimization just presented
– Hint: Think about memory usage (& caches, etc.)

Topic 2

A Deeper Look into Calling Sequences

Compiler Design I (2011) 18

Handling Procedure Calls and Returns

Calling sequence: a code sequence that sets up a
procedure call
– allocates an activation record (model-dependent)
– loads actual parameters
– saves machine state (return address, etc.)
– transfers control to callee

Return sequence: a code sequence that handles
the return from a procedure call
– deallocates the activation record
– sets up return value (if any)
– restores machine state (stack pointer, PC, etc.)

Compiler Design I (2011) 19

Calling Sequences: Division of Responsibilities

• The code in a calling sequence is often divided
up between the caller and the callee

• If there are m calls to a procedure, the instructions in
the caller’s part of the calling sequence is repeated m
times, while the callee’s part is repeated exactly once
– This suggests that we should try to put as much of

the calling sequence as possible in the callee
– However, it may be possible to carry out more call-

specific optimization by putting more of the code
into the caller instead of the callee

caller

callee

Calling
sequence

code

Compiler Design I (2011) 20

Calling Sequences: Layout Issues

General rule of thumb: Fields that are fixed early,
are placed near the middle of the activation
record

• The caller has to evaluate the actual
parameters, and retrieve the return value
– these fields should be located near the caller’s

activation record
• The callee has to fill in machine status fields so

that the callee can restore state on return
– the caller should have easy access to this part of the

callee’s activation record

Compiler Design I (2011) 21

Calling/Return Sequences: Typical Actions

Typical calling sequence:
1. caller evaluates actuals; pushes them on the stack
2. caller saves machine status on the stack (in the

callee’s AR) and updates the stack pointer
3. caller transfers control to the callee
4. callee saves registers, initializes local data, and

begins execution

Typical return sequence:
1. callee stores return value in the appropriate place
2. callee restores registers and old stack pointer
3. callee branches to the return address

Compiler Design I (2011) 22

Example Activation Record: The SPARC

Registers
g0-g7 global registers
o0-o7 outgoing args
l0-l7 local registers
i0-i7 incoming args

function return address
caller’s o7/callee’s i7

caller’s frame
locals and
temporaries

outgoing args
not in o0-o5

space to save
o0-05

if necessary
addr of return value

space to save
i0-i7 and l0-l7
if necessary

callee’s frame

varies

varies

6 words

1 word

16 words

current fp
caller’s sp

current sp
callee’s fp

stack
growth

high addresses

low addresses

Compiler Design I (2011) 23

Example Activation Record: Intel x86

caller’s frame
incoming
arguments

return address

saved
registers

saved ebp

locals and
temporaries

callee’s frame

frame ptr
ebp

stack ptr
esp

stack
growth

high addresses

low addresses

Compiler Design I (2011) 24

Example Activation Record: MIPS R3000

caller’s frame
incoming
arguments

callee-save
registers

outgoing
arguments

locals and
temporaries

callee’s frame
stack ptr

$sp

stack
growth

high addresses

low addresses

Parameter Passing Mechanisms

Topic 3

Compiler Design I (2011) 26

Parameter Passing Mechanisms

• There are many semantic issues in
programming languages centering on when
values are computed, and the scopes of names
– Evaluation is the heart of computation
– Names are most primitive abstraction mechanism

• We will focus on parameter passing
– When are arguments of function calls evaluated?
– What are formal parameters bound to?

Compiler Design I (2011) 27

Parameter Passing Mechanisms (Cont.)

First, an issue not discussed much…

Order of argument evaluation
- “Usually” not important for the execution of a

program
– However, in languages that permit side-effects in

call arguments, different evaluation orders may
give different results

e.g. a call f(++x,x) in C
– A “standard” evaluation order is then specified

C compilers typically evaluate their arguments right-to-left.
Why?

Compiler Design I (2011) 28

Call-by-value

C uses call-by-value everywhere (except macros...)
Default mechanism in Pascal and in Ada

callByValue(int y)
{

y = y + 1;
print(y);

}

main()
{

int x = 42;
print(x);
callByValue(x);
print(x);

}

output:
x = 42
y = 43
x = 42

x’s value does not
change when y’s
value is changed

Compiler Design I (2011) 29

Call-by-reference

Available in C++ with the ‘&’ type constructor
(and in Pascal with the var keyword)

callByRef(int &y)
{

y = y + 1;
print(y);

}

main()
{

int x = 42;
print(x);
callByRef(x);
print(x);

}

output:
x = 42
y = 43
x = 43

x’s value changes
when y’s value
is changed

Compiler Design I (2011) 30

Call-by-reference can be faked with pointers

C++: C:
callByRef(int &y)
{

y = y + 1;
print(y);

}

main()
{

int x = 42;
print(x);
callByRef(x);
print(x);

}

fakeCallByRef(int *y)
{

*y = *y + 1;
print(*y);

}

main()
{

int x = 42;
print(x);
fakeCallByRef(&x);
print(x);

}

must explicitly
pass the address
of a local variable

Compiler Design I (2011) 31

Pointers to fake call-by-reference (cont.)

• It’s not quite the same
– A pointer can be reassigned to point at something

else; a C++ reference cannot

• The pointer itself was passed by value

• This is how you pass arrays (they are implicitly
pointers) and structures in C

Compiler Design I (2011) 32

Call-by-value-result

Available in Ada for in out parameters
(code below in C syntax)

callByValueResult(int y, int z)
{

y = y + 1; z = z + 1;
print(y); print(z);

}

main()
{

int x = 42;
print(x);
callByValueResult(x, x);
print(x);

}

output:
x = 42
y = 43
z = 43
x = 43

Note that x’s value
is different from both
using call-by-value
and call-by-reference

Compiler Design I (2011) 33

What about Java?

• Primitive types (int, boolean, etc.) are always
passed by value

• Objects are not quite -by-value nor
-by-reference:
– If you reassign an object reference, the caller’s

argument does not get reassigned (like -by-value)
– But if the object referred-to is modified, that

modification is visible to the caller (like -by-
reference)

• It’s really ordinary call-by-value with pointers,
but the pointers are not syntactically obvious

Compiler Design I (2011) 34

Implementing Parameter Passing

CallCall--byby--valuevalue (easy, no special compiler effort)
The arguments are evaluated at the time of the call

and the value parameters are copied and either
• behave as constant values during the execution of the

procedure (i.e., cannot be assigned to as in Ada), or
• are viewed as initialized local variables (in C or in Pascal)

CallCall--byby--referencereference
The arguments must have allocated memory locations
The compiler passes the address of the variable, and

the parameter becomes an alias for the argument
Local accesses to the parameter are turned into

indirect accesses

Compiler Design I (2011) 35

Implementing Parameter Passing (Cont.)

CallCall--byby--valuevalue--resultresult
The arguments are evaluated at call time and the

value parameters are copied (as in call-by-value)
and used as a local variables

The final values of these variables are copied back to
the location of the arguments when the procedure
exits (note that the activation record cannot be
freed by the callee!)

Issues left unspecified:
– the order in which the results are copied back
– whether the locations of the arguments are calculated only on

entry and stored, or whether they are recalculated on exit

Compiler Design I (2011) 36

Call-by-name

• Whole different ballgame: it’s like passing the
text of the argument expression, unevaluated
– The text of the argument is viewed as a function in

its own right
– Also passes the environment, so free variables are

still bound according to rules of static scoping
• The argument is not evaluated until it is

actually used, inside the callee
– Might not get evaluated at all!

• An optimized version of call-by-name is used in some
functional languages (e.g. Haskell, Miranda, Lazy-ML)
under the names lazy evaluation (or call-by-need)

Compiler Design I (2011) 37

Call-by-name example (in “C++-Extra”)

callByName(int closure y)
{

print(y);
print(y);

}

main()
{

int x = 42;
print(x);
callByName([[x = x+1]]);
print(x);

} closure

code + environment
(env has just ‘x’ here)

eval

// => print(x = x+1)
output:

x = 42
y = 43
y = 44
x = 44

both evals
have side
effects

x’s value changes
when y is evaluated

Topic 4
(probably not covered in lecture)

Code Generation for OO Languages

Compiler Design I (2011) 39

Object Layout

• Object-Oriented (OO) code generation and
memory layout

• OO Slogan: If C (child) is a subclass of P
(parent), then an instance of class C can be
used wherever an instance of class P is
expected

• This means that P’s methods should work with
an instance of class C

Compiler Design I (2011) 40

Two Issues

• How are objects represented in memory?

• How is dynamic dispatch implemented?

Compiler Design I (2011) 41

Object Representation

class P {
x : Int <- 3;
y : String <- "Hi";
f() : Int { x };
z : Bool <- true;
g() : String { y };

};

• Why method
pointers?

• Why the tag?

tag: P
x
y

f()
z

g()

0

1

2

3

4

5

3
“Hi”

true
P.f: “return self [1]”

P.g: “return self [2]”

dynamic dispatch
“case”

To call f:
lw $t1 12($s0)
jalr $t1

self

self

Compiler Design I (2011) 42

overridden

inherited

Subclass Representation

class P { .. (same) .. };

class C inherits P {
w : Int <- 42; // new
f() : Int { w }; // override
h() : Bool { z }; // new

};

• Idea: Append new fields

tag: C
x
y

f()
z

g()

0

1

2

3

4

5

3
“Hi”

true
C.f: “return self [6]”

P.g: “return self [2]”

self

w6

h()7
42
C.h: “return self [4]”

P

C

To call f:
lw $t1 12($s0)
jalr $t1

Compiler Design I (2011) 43

Subclasses (Cont.)

• The offset for an attribute is the same in a
class and all of its subclasses
– Any method for an A1 can be used on a subclass A2

• Consider layout for An < … < A3 < A2 < A1

A2 attrs
A3 attrs

. . .

Header
A1 attrs

A1 object

A2 object

A3 object

What about
multiple
inheritance?

Compiler Design I (2011) 44

What’s the point?

• Simple
– Just append subclass fields

• Efficient
– Code can ignore dynamic type -- just act as if it is

the static type
• Supports overriding of methods

– Just replace the appropriate dispatch pointers
• We implement type conformance (compile-time

concept) with representation conformance
(run-time concept)

Compiler Design I (2011) 45

An optimization: Dispatch Tables

tag: C
x
y

f()
z

g()
w

h()

tag: C
x
y

f()
z

g()
w

h()

tag: C
x
y

f()
z

g()
w

h()

C.f: “return self [6]”

P.g: “return self [2]”C.h: “return self [4]”

Consider 3 instances
of class C:

Compiler Design I (2011) 46

Observation

• Every instance of a given class has the same
values for all of its method pointers

• Space optimization: Put all method pointers
for a given class into a common table, called
the “dispatch table”
– Each instance has a pointer to the dispatch table

Compiler Design I (2011) 47

Picture with Dispatch Table

• Consider again 3 instances of C:

• Objects are smaller
• Dispatch is slower

tag: C
dispPtr

x

z
w

y

tag: C
dispPtr

x

z
w

y

tag: C
dispPtr

x

z
w

y

g()
h()

f() C.f: “return self [5]”

P.g: “return self [3]”

C.h: “return self [4]”

0

1

2

3

4

5

minor point: the
offsets have changed
since we removed
the method ptrs

Compiler Design I (2011) 48

Subclassing Again

tag: C
dispPtr

x

z
w

y

g()
h()

f() C.f: “return self [5]”

P.g: “return self [3]”

C.h: “return self [4]”

tag: P
dispPtr

x

z
y

g()
f()

P.f: “return self [2]”

0

1

2

3

4

5

call f:
lw $t1 4($s0)
lw $t1 0($t1)
jalr $t1

0

1

2

3

4

0

1

Compiler Design I (2011) 49

Real Object Layout

• Actually, the first 3 words of objects contain
header information:

Dispatch Ptr
Attribute 1
Attribute 2

. . .

Class Tag
Object Size

Offset
(in bytes)

0

4

8

12

16

Needed for
garbage
collector

Compiler Design I (2011) 50

Summary of Dispatch Tables

Pulled method pointers out, into separate table
– Makes objects smaller
– Makes (dynamic) dispatch slower

Q: Why don’t we do this for attributes?

Exerc. Write some code that is slower with dispatch
tables (instead of embedded method pointers)

Exerc. Write some code that is faster with dispatch
tables

