
Semantic Analysis

Outline

- The role of semantic analysis in a compiler
 - A laundry list of tasks
- · Scope
 - Static vs. Dynamic scoping
 - Implementation: symbol tables
- Types
 - Statically vs. Dynamically typed languages

Compile Design I (2011)

Where we are

The Compiler so far

Lexical analysis: program is lexically well-formed

- Tokens are legal (e.g. identifiers have valid names, no stray characters, etc.)
- Detects inputs with illegal tokens

Parsing: program is syntactically well-formed

- Declarations have correct structure, expressions are syntactically valid, etc.
- Detects inputs with ill-formed syntax

Semantic analysis:

- Last "front end" compilation phase
- Catches all remaining errors

Compile Design I (2011)

3 | Compile Design I (2011)

Machine Code

Why have a Separate Semantic Analysis?

Parsing cannot catch some errors

Some language constructs are not context-free

- Example: Identifier declaration and use
- An abstract version of the problem is:

$$\{ wcw \mid w \in (a + b)^* \}$$

- The 1st w represents the identifier's declaration; the 2nd w represents a use of the identifier

What Does Semantic Analysis Do?

Performs checks of many kinds ...

Examples:

- 1. All used identifiers are declared
- 2. Identifiers declared only once
- 3. Types
- 4. Procedures and functions defined only once
- 5. Procedures and functions used with the right number and type of arguments

And others . . .

The requirements depend on the language

Compile Design I (2011)

5

Compile Design I (2011)

, |

What's Wrong?

Example 1

let string
$$y \leftarrow$$
 "abc" in $y + 42$

Example 2

let integer y in x + 42

Semantic Processing: Syntax-Directed Translation

Basic idea: Associate information with language constructs by attaching *attributes* to the grammar symbols that represent these constructs

- Values for attributes are computed using semantic rules associated with grammar productions
- An attribute can represent anything (reasonable) that we choose; e.g. a string, number, type, etc.
- A parse tree showing the values of attributes at each node is called an *annotated parse tree*

Compile Design I (2011) 7 Compile Design I (2011)

Attributes of an Identifier

name: character string (obtained from scanner)

scope:

- integer
- array:
 - number of dimensions
 - · upper and lower bounds for each dimension
 - · type of elements
- function:
 - number and type of parameters (in order)
 - type of returned value
 - · size of stack frame

Scope

- The scope of an identifier (a binding of a name to the entity it names) is the textual part of the program in which the binding is active
- Scope matches identifier declarations with uses
 - Important static analysis step in most languages

Compile Design I (2011)

9 (

Compile Design I (2011)

Scope (Cont.)

- The scope of an identifier is the portion of a program in which that identifier is accessible
- The same identifier may refer to different things in different parts of the program
 - Different scopes for same name don't overlap
- An identifier may have restricted scope

Static vs. Dynamic Scope

- Most languages have static (lexical) scope
 - Scope depends only on the physical structure of program text, not its run-time behavior
 - The determination of scope is made by the compiler
 - C, Java, ML have static scope; so do most languages
- A few languages are dynamically scoped
 - Lisp, SNOBOL
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program

Static Scoping Example

```
let integer x ← 0 in
{
          x;
          let integer x ← 1 in
          x;
          x;
     }
```

Uses of x refer to closest enclosing definition

Dynamic Scope

 A dynamically-scoped variable refers to the closest enclosing binding in the execution of the program

Example

```
g(y) = let integer a \leftarrow 42 in f(3);

f(x) = a;
```

- When invoking g(54) the result will be 42

Compile Design I (2011)

Compile Design I (2011)

Static vs. Dynamic Scope Dyna

Dynamic Scope (Cont.)

- With dynamic scope, bindings cannot always be resolved by examining the program because they are dependent on calling sequences
- Dynamic scope rules are usually encountered in interpreted languages
- Also, usually these languages do not normally have static type checking as type determination is not always possible when dynamic rules are in effect

Compile Design I (2011) 15 Compile Design I (2011) 16

Scope of Identifiers

- In most programming languages identifier bindings are introduced by
 - Function declarations (introduce function names)
 - Procedure definitions (introduce procedure names)
 - Identifier declarations (introduce identifiers)
 - Formal parameters (introduce identifiers)

Scope of Identifiers (Cont.)

- Not all kinds of identifiers follow the mostclosely nested scope rule
- For example, function declarations
 - often cannot be nested
 - are *globally visible* throughout the program
- In other words, a function name can be used before it is defined

Compile Design I (2011)

Example: Use Before Definition

```
foo (integer x)
{
  integer y
  y ← bar(x)
  ...
}
bar (integer i): integer
{
  ...
}
```

Other kinds of Scope

Compile Design I (2011)

- In O-O languages, method and attribute names have more sophisticated (static) scope rules
- A method need not be defined in the class in which it is used, but in some parent class
- Methods may also be redefined (overridden)

Compile Design I (2011)

19 Compile Design I (2011)

Implementing the Most-Closely Nested Rule

- Much of semantic analysis can be expressed as a recursive descent of an AST
 - Process an AST node n
 - Process the children of n
 - Finish processing the AST node n
- When performing semantic analysis on a portion of the AST, we need to know which identifiers are defined

Implementing Most-Closely Nesting (Cont.)

 Example: the scope of variable declarations is one subtree

let integer $x \leftarrow 42$ in E

• x can be used in subtree E

Compile Design I (2011) 21 | Compile Design I (2011) 22

Symbol Tables

Purpose: To hold information about identifiers that is computed at some point and looked up at later times during compilation

Examples:

- type of a variable
- entry point for a function

Operations: insert, lookup, delete

Common implementations: linked lists, hash tables

Symbol Tables

Consider again:

let integer $x \leftarrow 42$ in E

- · Idea:
 - Before processing E, add definition of x to current definitions, overriding any other definition of x
 - After processing E, remove definition of x and restore old definition of x
- A symbol table is a data structure that tracks the current bindings of identifiers

Compile Design I (2011) 23 | Compile Design I (2011) 24

A Simple Symbol Table Implementation

- Structure is a stack
- Operations

```
add_symbol(x) push x and associated info, such as
   x's type, on the stack
find_symbol(x) search stack, starting from top, for
   x. Return first x found or NULL if none found
remove_symbol() pop the stack
```

Why does this work?

Limitations

- The simple symbol table works for variable declarations
 - Symbols added one at a time
 - Declarations are perfectly nested
- Doesn't work for

```
foo(x: integer, x: float);
```

· Other problems?

Compile Design I (2011) 25 Compile Design I (2011)

A Fancier Symbol Table

- enter_scope()
 start/push a new nested scope
- find_symbol(x)
 finds current x (or null)
- add_symbol(x) add a symbol x to the table
- check_scope(x) true if x defined in current scope
- exit_scope()
 exits/pops the current scope

Function/Procedure Definitions

- Function names can be used prior to their definition
- We can't check that for function names
 - using a symbol table
 - or even in one pass
- Solution
 - Pass 1: Gather all function/procedure names
 - Pass 2: Do the checking
- Semantic analysis requires multiple passes
 - Probably more than two

Compile Design I (2011) 27 Compile Design I (2011) 7

Types

- · What is a type?
 - This is a subject of some debate
 - The notion varies from language to language
- Consensus
 - A type is a set of values and
 - A set of operations on those values
- Type errors arise when operations are performed on values that do not support that operation

Why Do We Need Type Systems?

Consider the assembly language fragment

What are the types of \$r1, \$r2, \$r3?

Compile Design I (2011) 29 Compile Design I (2011) 3

Types and Operations

- Certain operations are legal for values of each type
 - It doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!
- Type systems provide a concise formalization of the semantic checking rules

Compile Design I (2011) 31 | Compile Design I (2011) 3

What Can Types do For Us?

- · Can detect certain kinds of errors
 - Memory errors:
 - · Reading from an invalid pointer, etc.
 - Violation of abstraction boundaries.
- Allow for a more efficient compilation of programs

Compile Design I (2011) 33 Compile Design I (2011)

The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks
- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping easier in a dynamic type system

Type Checking Overview

Three kinds of languages:

Statically typed: All or almost all checking of types is done as part of compilation (C, ML, Java)

Dynamically typed: Almost all checking of types is done as part of program execution (Scheme, Prolog)

Untyped: No type checking (machine code)

The Type Wars (Cont.)

- In practice, most code is written in statically typed languages with an "escape" mechanism
 - Unsafe casts in C, Java
- It is debatable whether this compromise represents the best or worst of both worlds

Compile Design I (2011) 35 | Compile Design I (2011)