
LR Parsing
 LALR Parser Generators

Compiler Design I (2011) 2

Outline

•

Review of bottom-up parsing

•

Computing the parsing DFA

•

Using parser generators

Compiler Design I (2011) 3

Bottom-up Parsing (Review)

•

A bottom-up parser rewrites the input string
to the start symbol

•

The state of the parser is described as
α

I γ

–

α

is a stack of terminals and non-terminals
–

γ

is the string of terminals not yet examined

•

Initially: I x1

x2

. . . xn

Compiler Design I (2011) 4

The Shift and Reduce Actions (Review)

•

Recall the CFG: E →

int

| E + (E)
•

A bottom-up parser uses two kinds of actions:

•

Shift

pushes a terminal from input on the
stack

E + (I int

) ⇒

E + (int

I)

•

Reduce

pops 0 or more symbols off of the
stack (production RHS) and pushes a non-

 terminal on the stack (production LHS)
E + (E + (E)

I) ⇒

E + (E

I)

Compiler Design I (2011) 5

Key Issue: When to Shift or Reduce?

•

Idea: use a deterministic finite automaton
(DFA) to decide when to shift or reduce
–

The input is the stack

–

The language consists of terminals and non-terminals

•

We run the DFA on the stack and we examine
the resulting state X

and the token tok

after I

–

If X

has a transition labeled tok

then shift
–

If X

is labeled with “A → β on tok” then reduce

LR(1) Parsing: An Example

int

E →

int
on $, +

accept
on $

E →

int
on), +

E →

E + (E)
on $, +

E →

E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int

+ (int) + (int)$ shift
int

I + (int) + (int)$ E → int

E I + (int) + (int)$ shift (x3)
E + (int

I) + (int)$ E →

int

E + (E I)

+ (int)$ shift
E + (E)

I + (int)$

E → E+(E)

E I + (int)$

shift (x3)
E + (int

I)$ E →

int

E + (E I)$ shift
E + (E)

I $ E → E+(E)

E I $ accept

int

E

)

Compiler Design I (2011) 7

Representing the DFA

•

Parsers represent the DFA as a 2D table
–

Recall table-driven lexical analysis

•

Lines correspond to DFA states
•

Columns correspond to terminals and non-

 terminals
•

Typically columns are split into:
–

Those for terminals: the action

table

–

Those for non-terminals: the goto

table

Compiler Design I (2011) 8

Representing the DFA: Example

The table for a fragment of our DFA:
int + () $ E

…
3 s4
4 s5 g6
5 rE

→

int rE

→

int

6 s8 s7
7 rE

→

E+(E) rE

→

E+(E)

…

E →

int
on), +

E →

E + (E)
on $, +

(

int
3 4

56

7

)

E

sk

is shift and goto

state k
rX

→ α

is reduce
gk

is goto

state k

Compiler Design I (2011) 9

The LR Parsing Algorithm

•

After a shift or reduce action we rerun the
DFA on the entire stack
–

This is wasteful, since most of the work is repeated

•

Remember for each stack element on which
state it brings the DFA

•

LR parser maintains a stack
〈

sym1

, state1

〉

. . . 〈

symn

, staten

〉
statek

is the final state of the DFA on sym1

… symk

Compiler Design I (2011) 10

The LR Parsing Algorithm

let I = w$ be initial input
let j = 0
let DFA state 0 be the start state
let stack = 〈

dummy, 0 〉

repeat
case action[top_state(stack), I[j]] of

shift k: push 〈

I[j++], k

〉
reduce X →

A:

pop |A| pairs,
push 〈

X, goto[top_state(stack), X] 〉

accept: halt normally
error: halt and report error

Compiler Design I (2011) 11

Key Issue: How is the DFA Constructed?

•

The stack describes the context of the parse
–

What non-terminal we are looking for

–

What production RHS we are looking for
–

What we have seen so far from the RHS

•

Each DFA state describes several such
contexts
–

E.g., when we are looking for non-terminal E, we
might be looking either for an int

or an E + (E)

RHS

Compiler Design I (2011) 12

LR(0) Items

•

An LR(0) item

is a production with a “I”
 somewhere on the RHS

•

The items for T →

(E) are
T → I (E)
T → (I E)
T → (E

I)

T → (E)

I

•

The only item for X → ε is X →

I

Compiler Design I (2011) 13

LR(0) Items: Intuition

•

An item [X → α I β]

says that
–

the parser is looking for an X

–

it has an α

on top of the stack
–

Expects to find a string derived from β

next in the

input

•

Notes:
–

[X → α I aβ]

means that a

should follow. Then we

can shift it and still have a viable prefix
–

[X →α I]

means that we could reduce X

•

But this is not always a good idea !

Compiler Design I (2011) 14

LR(1) Items

•

An LR(1) item

is a pair:
X → α I β, a

–

X → αβ is a production
–

a

is a terminal (the lookahead

terminal)

–

LR(1) means 1

lookahead

terminal
•

[X → α I β, a] describes a context of the parser
–

We are trying to find an X followed by an

a, and

–

We have (at least) α

already on top of the stack
–

Thus we need to see next a prefix derived from βa

Compiler Design I (2011) 15

Note

•

The symbol I was used before to separate the
stack from the rest of input
–

α

I γ, where α

is the stack and γ

is the remaining

string of terminals
•

In items I is used to mark a prefix of a
production RHS:

X → α I β, a
–

Here β

might contain terminals as well

•

In both case the stack is on the left of I

Compiler Design I (2011) 16

Convention

•

We add to our grammar a fresh new start
symbol S

and a production S →

E

–

Where E

is the old start symbol

•

The initial parsing context contains:
S →

I E , $

–

Trying to find an S

as a string derived from E$
–

The stack is empty

Compiler Design I (2011) 17

LR(1) Items (Cont.)

•

In context containing
E →

E + I (E) , +

–

If (

follows then we can perform a shift to context
containing

E →

E + (I E) , +
•

In context containing

E →

E + (E) I , +
–

We can perform a reduction with E → E + (E)

–

But only if a +

follows

Compiler Design I (2011) 18

LR(1) Items (Cont.)

•

Consider the item
E →

E + (I E) , +

•

We expect a string derived from E) +
•

There are two productions for E

E → int

and E → E + (E)
•

We describe this by extending the context
with two more items:

E →

I int

,)
E →

I E + (E) ,)

Compiler Design I (2011) 19

The Closure Operation

•

The operation of extending the context with
items is called the closure operation

Closure(Items) =
repeat

for each [X →

α

I Yβ, a] in Items
for each production Y → γ

for each b

in First(βa)
add [Y →

I γ, b] to Items

until Items is unchanged

Compiler Design I (2011) 20

Constructing the Parsing DFA (1)

•

Construct the start context: Closure({S → I E, $})

S → I E , $
E → I E+(E), $
E → I int

, $

E → I E+(E), +
E → I int

, +

S → I E , $
E → I E+(E) , $/+
E → I int

, $/+

•

We abbreviate as:

Compiler Design I (2011) 21

Constructing the Parsing DFA (2)

•

A DFA state is a closed set of LR(1) items

•

The start state contains [S →

I E , $]

•

A state that contains [X → α I, b]

is labelled
 with “reduce with

X → α on

b”

•

And now the transitions …

Compiler Design I (2011) 22

The DFA Transitions

•

A state “State”

that contains [X → α I yβ, b]
 has a transition labeled y

to a state that

contains the items “Transition(State, y)”
–

y

can be a terminal or a non-terminal

Transition(State, y)
Items = ∅
for each [X →

α

I yβ, b] in State

add [X →

αy

I β, b] to Items
return Closure(Items)

Compiler Design I (2011) 23

Constructing the Parsing DFA: Example

E → E+ I (E), $/+

E → int
on $, +

accept
on $

E → E+(I E) , $/+
E → I E+(E) ,)/+
E → I int

,)/+

E →

int

I ,)/+ E → int
on), +

E → E+(E I) , $/+
E → E I +(E) ,)/+

and so on…

S → I E , $
E → I E+(E), $/+
E → I int

, $/+

0

3

4

56

E →

int

I, $/+
1

S → E I , $
E → E I +(E), $/+

2

int

E +
(

E

int

)+

Compiler Design I (2011) 24

LR Parsing Tables: Notes

•

Parsing tables (i.e., the DFA) can be
constructed automatically for a CFG

•

But we still need to understand the
construction to work with parser generators
–

E.g., they report errors in terms of sets of items

•

What kind of errors can we expect?

Compiler Design I (2011) 25

Shift/Reduce Conflicts

•

If a DFA state contains both
[X →

α I aβ, b] and [Y →

γ I, a]

•

Then on input “a”

we could either
–

Shift into state [X → αa

I β, b], or

–

Reduce with Y → γ

•

This is called a shift-reduce conflict

Compiler Design I (2011) 26

Shift/Reduce Conflicts

•

Typically due to ambiguities in the grammar
•

Classic example: the dangling else

S → if E then S | if E then S else S | OTHER
•

Will have DFA state containing

[S →

if E then S I, else]
[S →

if E then S I else S, x]

•

If

else

follows then we can shift or reduce
•

Default (yacc, ML-yacc, etc.) is to shift
–

Default behavior is as needed in this case

Compiler Design I (2011) 27

More Shift/Reduce Conflicts

•

Consider the ambiguous grammar
E → E + E | E * E | int

•

We will have the states containing
[E →

E * I E, +] [E → E * E I, +]

[E → I E + E, +] ⇒E

[E → E I + E, +]
… …

•

Again we have a shift/reduce on input +
–

We need to reduce (*

binds more tightly than +)

–

Recall solution: declare the precedence of *

and +

Compiler Design I (2011) 28

More Shift/Reduce Conflicts

•

In yacc

declare precedence and associativity:
%left +
%left *

•

Precedence of a rule = that of its last terminal
See yacc

manual for ways to override this default

•

Resolve shift/reduce conflict with a shift

if:
–

no precedence declared for either rule or terminal

–

input terminal has higher precedence than the rule
–

the precedences

are the same and right associative

Compiler Design I (2011) 29

Using Precedence to Solve S/R Conflicts

•

Back to our example:
[E →

E * I E, +] [E →E * E I, +]

[E → I E + E, +] ⇒E

[E →E I + E, +]
… …

•

Will choose reduce because precedence of
rule E →

E * E

is higher than of terminal +

Compiler Design I (2011) 30

Using Precedence to Solve S/R Conflicts

•

Same grammar as before
E → E + E | E * E | int

•

We will also have the states
[E →

E + I E, +] [E → E + E I, +]

[E → I E + E, +] ⇒E

[E → E I + E, +]
… …

•

Now we also have a shift/reduce on input +
–

We choose reduce because E →

E + E

and +

have

the same precedence and +

is left-associative

Compiler Design I (2011) 31

Using Precedence to Solve S/R Conflicts

•

Back to our dangling else example
[S →

if E then S I, else]

[S →

if E then S I else S, x]
•

Can eliminate conflict by declaring else

having

higher precedence than then
•

But this starts to look like “hacking the tables”

•

Best to avoid overuse of precedence
declarations or we will end with unexpected
parse trees

Compiler Design I (2011) 32

Precedence Declarations Revisited

The term “precedence declaration”

is misleading!

These declarations do not define precedence:
they define conflict resolutions
I.e., they instruct shift-reduce parsers to resolve

conflicts in certain ways
The two are not quite the same thing!

Compiler Design I (2011) 33

Reduce/Reduce Conflicts

•

If a DFA state contains both
[X →

α I, a] and [Y →

β I, a]

–

Then on input “a” we don’t know which
production to reduce

•

This is called a reduce/reduce conflict

Compiler Design I (2011) 34

Reduce/Reduce Conflicts

•

Usually due to gross ambiguity in the grammar
•

Example: a sequence of identifiers

S → ε | id | id S

•

There are two parse trees for the string

id
S →

id

S →

id S →

id
•

How does this confuse the parser?

Compiler Design I (2011) 35

More on Reduce/Reduce Conflicts

•

Consider the states [S →

id I, $]
[S’

→ I S, $] [S → id I S, $]

[S → I, $] ⇒id

[S → I, $]
[S → I id, $] [S → I id, $]
[S → I id S, $] [S → I id S, $]

•

Reduce/reduce conflict on input $
S’

→ S →

id

S’

→ S →

id S → id
•

Better rewrite the grammar:

S → ε | id S

Compiler Design I (2011) 36

Using Parser Generators

•

Parser generators automatically construct the
parsing DFA given a CFG
–

Use precedence declarations and default
conventions to resolve conflicts

–

The parser algorithm is the same for all grammars
(and is provided as a library function)

•

But most parser generators do not construct
the DFA as described before
–

Because the LR(1) parsing DFA has 1000s of states
even for a simple language

Compiler Design I (2011) 37

LR(1) Parsing Tables are Big

•

But many states are similar, e.g.

and

•

Idea: merge the DFA states whose items
differ only in the lookahead

tokens

–

We say that such states have the same core

•

We obtain

E → int
on $, +

E →

int

I, $/+
1

E →

int

I,)/+ E → int
on), +

5

E → int
on $, +,)

E →

int

I, $/+/)
1’

Compiler Design I (2011) 38

The Core of a Set of LR Items

Definition: The core of a set of LR items is the
set of first components
–

Without the lookahead

terminals

•

Example: the core of
{[X → α I β, b], [Y → γ I δ, d]}

is
{X → α I β, Y → γ I δ}

Compiler Design I (2011) 39

LALR States

•

Consider for example the LR(1) states
{[X → α I, a], [Y → β I, c]}
{[X → α I, b], [Y → β I, d]}

•

They have the same core and can be merged
•

And the merged state contains:

{[X → α I, a/b], [Y → β I, c/d]}
•

These are called LALR(1)

states

–

Stands for LookAhead

LR
–

Typically 10 times fewer LALR(1) states than LR(1)

Compiler Design I (2011) 40

A LALR(1) DFA

•

Repeat until all states have distinct core
–

Choose two distinct states with same core

–

Merge the states by creating a new one with the
union of all the items

–

Point edges from predecessors to new state
–

New state points to all the previous successors

A

ED

CB

F

A
BE

D

C

F

3

8

Conversion LR(1) to LALR(1): Example.

int

E → int
on $, +

E → int
on), +

E → E + (E)
on $, +

E → E + (E)
on), +

(+
E

int

10

9

11

0 1

2 4

567

+ E

+

)

(
int

E

)

accept
on $

int
E → int
on $, +,)

E → E + (E)
on $, +,)

(

E
int

0 1,5

2 3,8 4,9

6,107,11

+

+

)

E

accept
on $

Compiler Design I (2011) 42

The LALR Parser Can Have Conflicts

•

Consider for example the LR(1) states
{[X → α I, a], [Y → β I, b]}
{[X → α I, b], [Y → β I, a]}

•

And the merged LALR(1) state
{[X → α I, a/b], [Y → β I, a/b]}

•

Has a new

reduce/reduce conflict

•

In practice such cases are rare

Compiler Design I (2011) 43

LALR vs. LR Parsing: Things to keep in mind

•

LALR languages are not natural
–

They are an efficiency hack on LR languages

•

Any reasonable programming language has a
LALR(1) grammar

•

LALR(1) parsing has become a standard for
programming languages and for parser
generators

Compiler Design I (2011) 44

A Hierarchy of Grammar Classes

From Andrew Appel,
“Modern Compiler
Implementation in ML”

Compiler Design I (2011) 45

Semantic Actions in LR Parsing

•

We can now illustrate how semantic actions
are implemented for LR parsing

•

Keep attributes on the stack

•

On shifting a, push attribute for a

on stack
•

On reduce X → α
–

pop attributes for α

–

compute attribute for X
–

and push it on the stack

Compiler Design I (2011) 46

Performing Semantic Actions: Example

•

Recall the example

E →

T + E1

{ E.val

= T.val

+ E1

.val }
| T { E.val

= T.val

}

T →

int

* T1

{ T.val

= int.val

* T1

.val }
| int

{ T.val

= int.val

}

•

Consider the parsing of the string 3 * 5 + 8

Compiler Design I (2011) 47

Performing Semantic Actions: Example

|

int

* int

+ int

shift
int3

|

* int

+ int

shift
int3

* |

int

+ int

shift
int3

* int5

|

+ int

reduce T →

int
int3

* T5

|

+ int

reduce T →

int

* T
T15

|

+ int

shift
T15

+ |

int

shift
T15

+ int8

| reduce T →

int
T15

+ T8

|

reduce E → T
T15

+ E8

|

reduce E → T + E
E23

|

accept

3 * 5 + 8

Compiler Design I (2011) 48

Notes

•

The previous example shows how synthesized
attributes are computed by LR parsers

•

It is also possible to compute inherited
attributes in an LR parser

Compiler Design I (2011) 49

Notes on Parsing

•

Parsing
–

A solid foundation: context-free grammars

–

A simple parser: LL(1)
–

A more powerful parser: LR(1)

–

An efficiency hack: LALR(1)
–

LALR(1) parser generators

•

Next time we move on to semantic analysis

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
due to LALR Conversion

(and how to handle them)

Compiler Design I (2011) 51

Strange Reduce/Reduce Conflicts

•

Consider the grammar
S →

P R , NL →

N | N , NL

P →

T | NL : T R →

T | N : T
N →

id T → id

•

P -

parameters specification
•

R -

result specification

•

N -

a parameter or result name
•

T - a type name

•

NL

-

a list of names

Compiler Design I (2011) 52

Strange Reduce/Reduce Conflicts

•

In P

an id

is a
–

N

when followed by ,

or :

–

T

when followed by id
•

In R

an id

is a

–

N

when followed by :
–

T

when followed by ,

•

This is an LR(1) grammar
•

But it is not LALR(1). Why?
–

For obscure reasons

Compiler Design I (2011) 53

A Few LR(1) States

P →

I T id

P →

I NL : T id

T →

I id id

NL →

I N :

NL →

I N , NL :

N →

I id :

N →

I id ,

1

R →

I T ,

R →

I N : T ,

T →

I id ,

N →

I id :

2

T →

id I id

N →

id I :

N →

id I ,
id

3

T →

id I ,

N →

id I :
id 4

T →

id I id/,

N →

id I :/,
LALR merge

LALR reduce/reduce
conflict on

“,”

Compiler Design I (2011) 54

What Happened?

•

Two distinct states were confused because
they have the same core

•

Fix: add dummy productions to distinguish the
two confused states

•

E.g., add
R →

id bogus

–

bogus is a terminal not used by the lexer
–

This production will never be used during parsing

–

But it distinguishes R

from P

Compiler Design I (2011) 55

A Few LR(1) States After Fix

P →

I T id

P →

I NL : T id

NL →

I N :

NL →

I N , NL :

N →

I id :

N →

I id ,

T →

I id id

R →

. T ,

R →

. N : T ,

R → . id bogus ,

T →

. id ,

N →

. id :

T →

id I id

N →

id I :

N →

id I ,

T →

id I ,

N →

id I :

R → id I bogus ,

id

id

1

2

3

4

Different cores ⇒ no LALR merging

