Bottom-up Parsing (Review)

- A bottom-up parser rewrites the input string to the start symbol.
- The state of the parser is described as
 \[\alpha \mid \gamma \]
 - \(\alpha \) is a stack of terminals and non-terminals
 - \(\gamma \) is the string of terminals not yet examined
- Initially: \(I \ x_1 x_2 \ldots x_n \)

The Shift and Reduce Actions (Review)

- Recall the CFG: \(E \rightarrow \text{int} \mid E + (E) \)
- A bottom-up parser uses two kinds of actions:
 - **Shift** pushes a terminal from input on the stack
 \[E + (\text{int}) \Rightarrow E + (\text{int} \ 1) \]
 - **Reduce** pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)
 \[E + (E + (E) \ 1) \Rightarrow E + (E \ 1) \]
Key Issue: When to Shift or Reduce?

- Idea: use a deterministic finite automaton (DFA) to decide when to shift or reduce
 - The input is the stack
 - The language consists of terminals and non-terminals

- We run the DFA on the stack and we examine the resulting state X and the token tok after I
 - If X has a transition labeled tok then shift
 - If X is labeled with “$A \rightarrow \beta$ on tok” then reduce

 LR(1) Parsing: An Example

Representing the DFA

- Parsers represent the DFA as a 2D table
 - Recall table-driven lexical analysis
- Lines correspond to DFA states
- Columns correspond to terminals and non-terminals
- Typically columns are split into:
 - Those for terminals: the action table
 - Those for non-terminals: the goto table

Representing the DFA: Example

The table for a fragment of our DFA:
The LR Parsing Algorithm

• After a shift or reduce action we rerun the DFA on the entire stack
 - This is wasteful, since most of the work is repeated

• Remember for each stack element on which state it brings the DFA

• LR parser maintains a stack
 \langle sym_1, state_1 \rangle \ldots \langle sym_n, state_n \rangle
 state_k is the final state of the DFA on sym_1 \ldots sym_k

Key Issue: How is the DFA Constructed?

• The stack describes the context of the parse
 - What non-terminal we are looking for
 - What production RHS we are looking for
 - What we have seen so far from the RHS

• Each DFA state describes several such contexts
 - E.g., when we are looking for non-terminal E, we might be looking either for an int or an E + (E) RHS

LR(0) Items

• An LR(0) item is a production with a "I" somewhere on the RHS

• The items for T → (E) are
 T → I (E)
 T → (I E)
 T → (E I)
 T → (E)

• The only item for X → ε is X → I
LR(0) Items: Intuition

- An item \([X \rightarrow \alpha \ I \beta]\) says that
 - the parser is looking for an \(X\)
 - it has an \(\alpha\) on top of the stack
 - Expects to find a string derived from \(\beta\) next in the input

- Notes:
 - \([X \rightarrow \alpha \ I a\beta]\) means that \(a\) should follow. Then we can shift it and still have a viable prefix
 - \([X \rightarrow \alpha \ I]\) means that we could reduce \(X\)
 - But this is not always a good idea!

LR(1) Items

- An LR(1) item is a pair:
 \(X \rightarrow \alpha \ I \beta, \ a\)
 - \(X \rightarrow \alpha \beta\) is a production
 - \(\alpha\) is a terminal (the lookahead terminal)
 - LR(1) means 1 lookahead terminal

- \([X \rightarrow \alpha \ I \beta, \ a]\) describes a context of the parser
 - We are trying to find an \(X\) followed by an \(a\), and
 - We have (at least) \(\alpha\) already on top of the stack
 - Thus we need to see next a prefix derived from \(\beta a\)

Note

- The symbol \(I\) was used before to separate the stack from the rest of input
 - \(\alpha \ I \gamma\), where \(\alpha\) is the stack and \(\gamma\) is the remaining string of terminals

- In items \(I\) is used to mark a prefix of a production RHS:
 \(X \rightarrow \alpha \ I \beta, \ a\)
 - Here \(\beta\) might contain terminals as well

- In both case the stack is on the left of \(I\)

Convention

- We add to our grammar a fresh new start symbol \(S\) and a production \(S \rightarrow E\)
 - Where \(E\) is the old start symbol

- The initial parsing context contains:
 \(S \rightarrow I \ E, \ $\)
 - Trying to find an \(S\) as a string derived from \(E\$\)
 - The stack is empty
LR(1) Items (Cont.)

- In context containing
 \(E \rightarrow E + (E) \), +
 - If (follows then we can perform a shift to context containing
 \(E \rightarrow E + (E) \), +
- In context containing
 \(E \rightarrow E + (E) \), +
 - We can perform a reduction with \(E \rightarrow E + (E) \)
 - But only if a + follows

Consider the item
\(E \rightarrow E + (E) \), +

We expect a string derived from \(E) + \)

There are two productions for \(E \)

\(E \rightarrow \text{int} \) and \(E \rightarrow E + (E) \)

We describe this by extending the context with two more items:

\(E \rightarrow \text{int} \)
\(E \rightarrow E + (E) \)

The Closure Operation

- The operation of extending the context with items is called the closure operation

\(\text{Closure}(\text{Items}) = \)
 \[
 \text{repeat}
 \begin{align*}
 &\text{for each } [X \rightarrow \alpha I \gamma, a] \text{ in Items} \\
 &\text{for each production } Y \rightarrow \gamma \\
 &\text{for each } b \text{ in First}(\beta a) \\
 &\text{add } [Y \rightarrow \beta, b] \text{ to Items} \end{align*}
 \]
 \text{until Items is unchanged}

Constructing the Parsing DFA (1)

- Construct the start context: \(\text{Closure}([S \rightarrow I E, $]) \)

\[
\begin{align*}
S &\rightarrow I E , $ \\
E &\rightarrow I E+(E), $ \\
E &\rightarrow I \text{int} , $ \\
E &\rightarrow I E+(E) , + \\
E &\rightarrow I \text{int} , + \\
\end{align*}
\]

- We abbreviate as:

\[
\begin{align*}
S &\rightarrow I E , $ \\
E &\rightarrow I E+(E) , $/+ \\
E &\rightarrow I \text{int} , $/+ \\
\end{align*}
\]
Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items
- The start state contains \([S \rightarrow I \ E, \$]\)
- A state that contains \([X \rightarrow \alpha \ I, b]\) is labelled with “reduce with \(X \rightarrow \alpha\) on \(b\)"
- And now the transitions …

The DFA Transitions

- A state “State” that contains \([X \rightarrow \alpha \ I \ y\beta, b]\) has a transition labelled \(y\) to a state that contains the items “Transition(State, \(y\))”
 - \(y\) can be a terminal or a non-terminal

LR Parsing Tables: Notes

- Parsing tables (i.e., the DFA) can be constructed automatically for a CFG
- But we still need to understand the construction to work with parser generators
 - E.g., they report errors in terms of sets of items
- What kind of errors can we expect?
Shift/Reduce Conflicts

- If a DFA state contains both
 \[X \rightarrow \alpha I a \beta, b \] and \[Y \rightarrow \gamma I, a \]

- Then on input “a” we could either
 - Shift into state \[X \rightarrow \alpha a I \beta, b \], or
 - Reduce with \[Y \rightarrow \gamma \]

- This is called a shift-reduce conflict

More Shift/Reduce Conflicts

- Consider the ambiguous grammar
 \[E \rightarrow E + E \mid E * E \mid \text{int} \]

- We will have the states containing
 \[E \rightarrow E * I E, + \] \[E \rightarrow E * E I, + \]
 \[E \rightarrow I E + E, + \] \[E \rightarrow E I + E, + \]

- Again we have a shift/reduce on input +
 - We need to reduce (* binds more tightly than +)
 - Recall solution: declare the precedence of * and +

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar

- Classic example: the dangling else
 \[S \rightarrow \text{if E then S} \mid \text{if E then S else S} \mid \text{OTHER} \]

- Will have DFA state containing
 \[[S \rightarrow \text{if E then S I, else}] \]
 \[[S \rightarrow \text{if E then S I else S, x}] \]

- If else follows then we can shift or reduce

- Default (yacc, ML-yacc, etc.) is to shift
 - Default behavior is as needed in this case

More Shift/Reduce Conflicts

- In yacc declare precedence and associativity:
 \[
 \%left + \\
 \%left *
 \]

- Precedence of a rule = that of its last terminal
 See yacc manual for ways to override this default

- Resolve shift/reduce conflict with a shift if:
 - no precedence declared for either rule or terminal
 - input terminal has higher precedence than the rule
 - the precedences are the same and right associative
Using Precedence to Solve S/R Conflicts

- Back to our example:
 \[E → E * I E, + \] \[E → E * E I, + \]
 \[E → I E + E, + \] \[E → E I + E, + \]
 ⇒ \[E \]
 …

- Will choose reduce because precedence of rule \(E → E * E \) is higher than of terminal +

- Same grammar as before:
 \[E → E + E \mid E * E \mid \text{int} \]

- We will also have the states
 \[E → E + I E, + \] \[E → E + E I, + \]
 \[E → I E + E, + \] \[E → E I + E, + \]
 ⇒ \[E \]
 …

- Now we also have a shift/reduce on input +
 - We choose reduce because \(E → E + E \) and + have the same precedence and + is left-associative

Using Precedence to Solve S/R Conflicts

- Back to our dangling else example
 \[S → \text{if } E \text{ then } S \mid \text{else} \]
 \[S → \text{if } E \text{ then } S \mid \text{else } S \mid x \]

- Can eliminate conflict by declaring \text{else} having higher precedence than \text{then}

- But this starts to look like “hacking the tables”

- Best to avoid overuse of precedence declarations or we will end with unexpected parse trees

Precedence Declarations Revisited

The term “precedence declaration” is misleading!

These declarations do not define precedence:
they define conflict resolutions
I.e., they instruct shift-reduce parsers to resolve conflicts in certain ways
The two are not quite the same thing!
Reduce/Reduce Conflicts

- If a DFA state contains both
 \[X \rightarrow \alpha \ I, \ a \] and \[Y \rightarrow \beta \ I, \ a \]
 - Then on input “a” we don’t know which production to reduce

- This is called a reduce/reduce conflict

More on Reduce/Reduce Conflicts

- Consider the states
 \[S \rightarrow \text{id} \ I, \ $ \]
 \[S' \rightarrow \ I \ S, \ $ \]
 \[S \rightarrow \ I, \ $ \] \xrightarrow{\text{id}} \[S \rightarrow \ I, \ $ \]
 \[S \rightarrow \ I \ \text{id}, \ $ \] \xrightarrow{\text{id}} \[S \rightarrow \ I \ \text{id}, \ $ \]
 \[S \rightarrow \ I \ \text{id} \ S, \ $ \] \xrightarrow{\text{id}} \[S \rightarrow \ I \ \text{id} \ S, \ $ \]

- Reduce/reduce conflict on input $
 S' \rightarrow S \rightarrow \text{id}
 S' \rightarrow S \rightarrow \text{id} \ S \rightarrow \text{id}

- Better rewrite the grammar: \[S \rightarrow \varepsilon \ | \ \text{id} \ S \]

Using Parser Generators

- Parser generators automatically construct the parsing DFA given a CFG
 - Use precedence declarations and default conventions to resolve conflicts
 - The parser algorithm is the same for all grammars (and is provided as a library function)

- But most parser generators do not construct the DFA as described before
 - Because the LR(1) parsing DFA has 1000s of states even for a simple language
LR(1) Parsing Tables are Big

- But many states are similar, e.g.
 \[
 E \rightarrow \text{int}, (+) E \rightarrow \text{int} \quad \text{and} \quad E \rightarrow \text{int}, (+) E \rightarrow \text{int}
 \]

- Idea: merge the DFA states whose items differ only in the lookahead tokens
 - We say that such states have the same core

- We obtain
 \[
 E \rightarrow \text{int}, (+) E \rightarrow \text{int}
 \]

The Core of a Set of LR Items

Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals

- Example: the core of
 \[
 \{[X \rightarrow \alpha \beta, b], [Y \rightarrow \gamma \delta, d]\}
 \]
 is
 \[
 \{X \rightarrow \alpha \beta, Y \rightarrow \gamma \delta\}
 \]

LALR States

- Consider for example the LR(1) states
 \[
 \{[X \rightarrow \alpha, a], [Y \rightarrow \beta, c]\}
 \{[X \rightarrow \alpha, b], [Y \rightarrow \beta, d]\}
 \]
- They have the same core and can be merged
- And the merged state contains:
 \[
 \{[X \rightarrow \alpha \beta, a/b], [Y \rightarrow \beta, c/d]\}
 \]
- These are called LALR(1) states
 - Stands for LookAhead LR
 - Typically 10 times fewer LALR(1) states than LR(1)

A LALR(1) DFA

- Repeat until all states have distinct core
 - Choose two distinct states with same core
 - Merge the states by creating a new one with the union of all the items
 - Point edges from predecessors to new state
 - New state points to all the previous successors
Conversion LR(1) to LALR(1): Example.

The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states
 - \([X \rightarrow \alpha I, a], [Y \rightarrow \beta I, b]\)
 - \([X \rightarrow \alpha I, b], [Y \rightarrow \beta I, a]\)

- And the merged LALR(1) state
 - \([X \rightarrow \alpha I, a/b], [Y \rightarrow \beta I, a/b]\)

- Has a new reduce/reduce conflict

- In practice such cases are rare

LALR vs. LR Parsing: Things to keep in mind

- LALR languages are not natural
 - They are an efficiency hack on LR languages

- Any reasonable programming language has a LALR(1) grammar

- LALR(1) parsing has become a standard for programming languages and for parser generators

A Hierarchy of Grammar Classes

From Andrew Appel, "Modern Compiler Implementation in ML"
Semantic Actions in LR Parsing

- We can now illustrate how semantic actions are implemented for LR parsing
- Keep attributes on the stack
- On shifting a, push attribute for a on stack
- On reduce $X \rightarrow \alpha$
 - pop attributes for α
 - compute attribute for X
 - and push it on the stack

Performing Semantic Actions: Example

- Recall the example

 $E \rightarrow T + E_1 \quad \{ E.val = T.val + E_1.val \}$

 $\mid T \quad \quad \quad \quad \{ E.val = T.val \}$

 $T \rightarrow int \ast T_1 \quad \{ T.val = int.val \ast T_1.val \}$

 $\mid int \quad \quad \quad \quad \{ T.val = int.val \}$

- Consider the parsing of the string $3 \ast 5 + 8$

```
| int \ast int + int     | shift     | 3 \ast 5 + 8 |
| int_3 \ast int + int   | shift     |
| int_3 \ast T_5 \ast int| shift     |
| T_15 \ast int          | reduce $T \rightarrow int$ |
| T_15 + int             | reduce $T \rightarrow int \ast T$ |
| T_15 + T_8             | shift     |
| T_15 + E_8             | reduce $T \rightarrow int$ |
| T_15 + E_8             | reduce $E \rightarrow T$ |
| T_15 + E_8             | reduce $E \rightarrow T + E$ |
| E_23                   | accept    |
```

Notes

- The previous example shows how synthesized attributes are computed by LR parsers
- It is also possible to compute inherited attributes in an LR parser
Notes on Parsing

- Parsing
 - A solid foundation: context-free grammars
 - A simple parser: LL(1)
 - A more powerful parser: LR(1)
 - An efficiency hack: LALR(1)
 - LALR(1) parser generators

- Next time we move on to semantic analysis

Strange Reduce/Reduce Conflicts

- Consider the grammar
 \[S \rightarrow PR, \quad NL \rightarrow N \mid N,NL \]
 \[P \rightarrow T \mid NL:T \quad R \rightarrow T \mid N:T \]
 \[N \rightarrow \text{id} \quad T \rightarrow \text{id} \]

- P - parameters specification
- R - result specification
- N - a parameter or result name
- T - a type name
- NL - a list of names

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts due to LALR Conversion (and how to handle them)

- In P an id is a
 - N when followed by , or :
 - T when followed by id

- In R an id is a
 - N when followed by :
 - T when followed by ,

- This is an LR(1) grammar
- But it is not LALR(1). Why?
 - For obscure reasons
A Few LR(1) States

What Happened?

- Two distinct states were confused because they have the same core
- Fix: add dummy productions to distinguish the two confused states
- E.g., add $R \rightarrow \text{id} \text{bogus}$
 - bogus is a terminal not used by the lexer
 - This production will never be used during parsing
 - But it distinguishes R from P

A Few LR(1) States After Fix

Different cores \Rightarrow no LALR merging