LR Parsing
LALR Parser Generators

Outline

* Review of bottom-up parsing
« Computing the parsing DFA

* Using parser generators

Compiler Design | (2011)

Bottom-up Parsing (Review)

* A bottom-up parser rewrites the input string
to the start symbol

* The state of the parser is described as
oy
- ais a stack of terminals and non-terminals
- v is the string of terminals not yet examined

* Tnitially: 1 ;x5 . . . X,

Compiler Design | (2011)

The Shift and Reduce Actions (Review)

- Recall the CFG: E — int | E + (E)
- A bottom-up parser uses two kinds of actions:

» Shift pushes a terminal from input on the
stack

E+(iint) = E+(int1)

» Reduce pops O or more symbols of f of the
stack (production RHS) and pushes a non-
terminal on the stack (production LHS)

E+(E+(E)) =E+(E)

Compiler Design | (2011)

Key Issue: When to Shift or Reduce?

LR(1) Parsing: An Example

+ Idea: use a deterministic finite automaton E @ ' ' nt+ (_'m) " (_'"T)$;h'ﬁ_
(DFA) to decide when to shift or reduce Eint|int 1+ (int) + (int)$ E — int
- The input is the stack 2)— @ (4 on . E1+ (int) + (int)$ shift (x3)
- The language consists of terminals and non-terminals | 4¢cP* E int E+(int 1) +.(m‘r)$ € - nt
on$ E+(E1)+(int)$ shift
- We run the DFA on the stack and we examine 7——(6) E,f) nt JE+ @)1+ ()3 E—E(E)
the resulting state X and the token tok after | E-E+(E) / _ El +_('“ﬂ$ shift (x3)
- If X has a transition labeled tok then shift on int €+ (inf 1)3 Eh._> nt
- If X is labeled with A — 3 on tok" then reduce E+(EN$ shift
E+(E)1$ E - E+(E)
E1$ accept
Compiler Design | (2011)
Representing the DFA Representing the DFA: Example
* Parsers represent the DFA as a 2D table The table for a fragment of our DFA:
- Recall table-driven lexical analysis int * () $ E
* Lines correspond to DFA states
* Columns correspond to terminals and non- 3 s4
terminals 4|s5 96
» Typically columns are split into: > FE = inr Al
- Those for terminals: the action table 3 s8 s7
- Those for non-terminals: the goto table "E~E@® "E~E@®

Compiler Design | (2011)

Compiler Design | (2011)

sk is shift and goto state k
ry—, iS reduce
gk is goto state k

The LR Parsing Algorithm

- After a shift or reduce action we rerun the
DFA on the entire stack

- This is wasteful, since most of the work is repeated

- Remember for each stack element on which
state it brings the DFA

* LR parser maintains a stack

(sym,, state;) ... (sym,, state,)
state, is the final state of the DFA on sym, ... sym,

Compiler Design | (2011)

The LR Parsing Algorithm

let T = w$ be initial input
let j=0
let DFA state O be the start state
let stack = (dummy, O)
repeat
case action[top_state(stack), I[j]] of

topush (I[j++] k)

pop |A| pairs,
push (X, goto[top_state(stack), X])
: halt normally
: halt and report error

Compiler Design | (2011) 10

Key Issue: How is the DFA Constructed?

* The stack describes the context of the parse
- What non-terminal we are looking for
- What production RHS we are looking for
- What we have seen so far from the RHS

- Each DFA state describes several such
contexts

- E.g., when we are looking for non-terminal E, we
might be looking either for an int or an E + (E) RHS

Compiler Design | (2011)

1

LR(O) Items

* An LR(0) item is a production with a "1"
somewhere on the RHS

* The items for T — (E) are
T—>1(E)
T (1E)
T—(Er1)
T (B)

* The only item for X - ¢is X — |

Compiler Design | (2011) 12

LR(O) Items: Intuition

+ Anitem [X — oI B] says that
- the parser is looking for an X
- it has an o on top of the stack

- Expects to find a string derived from next in the
input

+ Notes:

- [X — a1 aB] means that a should follow. Then we
can shift it and still have a viable prefix

- [X —a 1] means that we could reduce X
+ But this is not always a good idea !

Compiler Design | (2011)

13

LR(1) Items

+ An LR(1) item is a pair:
X—>alfB, a
- X — ap is a production
- ais a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
* [X > a1, a] describes a context of the parser
- We are trying to find an X followed by an a, and

- We have (at least) o already on top of the stack
- Thus we need to see next a prefix derived from pa

Compiler Design | (2011) 14

Note

« The symbol | was used before to separate the
stack from the rest of input

- o ly,where o is the stack and vy is the remaining
string of terminals

* Initems | is used to mark a prefix of a
production RHS:

X—>aiB, a
- Here B might contain terminals as well

- In both case the stack is on the left of |

Compiler Design | (2011)

15

Convention

* We add to our grammar a fresh new start
symbol S and a production S —» E
- Where E is the old start symbol

- The initial parsing context contains:

S>I1E ,$

- Trying to find an S as a string derived from E$
- The stack is empty

Compiler Design | (2011) 16

LR(1) Items (Cont.)

* In context containing

E—-E+i(E) , +
- If (follows then we can perform a shift to context
containing
E->E+(IE) ,+
* In context containing
E->E+(E) ,+

- We can perform a reduction with E — E + (E)
- But only if a + follows

Compiler Design | (2011)

17

LR(1) Items (Cont.)

- Consider the item
E>E+(E) , +
- We expect a string derived from E) +

* There are two productions for E
E—int and E—>E+(E)

+ We describe this by extending the context
with two more items:

E > iint)
E—-1E+(E) ,)

Compiler Design | (2011) 18

The Closure Operation

* The operation of extending the context with
items is called the closure operation

Closure(Items) =
repeat
for each [X - a1 YB, a] in Items
for each production ¥ — y
for each b in First(Ba)
add [Y - |y, b] to Items
until Items is unchanged

Compiler Design | (2011)

19

Constructing the Parsing DFA (1)

- Construct the start context: Closure({s — I E, $})

S—>I1E %
E > I1E+E), $
E—>ilint ,$
E - 1 E+(E), +

E>iint ,+

- We abbreviate as:

S—>IE . $
E—>I1E+E) ,$/+
E>tint ,$/+

Compiler Design | (2011) 20

Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items

 The start state contains [S > 1 E |, $]

A state that contains [X — a1, b] is labelled
with "reduce with X - o« on b"

« And now the transitions ...

Compiler Design | (2011) 21

The DFA Transitions

* A state "State” that contains [X — a 1yp, b]
has a transition labeled y to a state that
contains the items "Transition(State, y)"

- y can be a tferminal or a non-terminal

Transition(State, y)
Items = &
for each [X - o 1yB, b] in State
add [X - ay | B, b] to Items
return Closure(Items)

Compiler Design | (2011) 22

Constructing the Parsing DFA: Example

™ 0 -
S—>I1E ,$ [: .| E—>int
E—>IE+(E),$/+{T'E_)IMI'$/ on %, +
E>iint ,$/+

% \E /E%E+I(E),$/+3
S—>EI $ (
E > E1+E). $/+ E>E+(E),$/+

accept E _AE—IEE),)/
/ E—rint |)/+

on$

@E—>E+(EI),$/+ int
E—>E1+(E),)/+ E—int1,)/+|E—int
TN "

Compiler Design | (2011) Clnd so on... 23

LR Parsing Tables: Notes

* Parsing tables (i.e., the DFA) can be
constructed automatically for a CFG

* But we still need to understand the
construction to work with parser generators
- E.g., they report errors in terms of sets of items

* What kind of errors can we expect?

Compiler Design | (2011) 24

Shift/Reduce Conflicts

- ITf a DFA state contains both
[X > oaiaB, b] and [Y - v1, a]

* Then on input "a" we could either
- Shift into state [X — aa I B, b], or
- Reduce with Y — v

« This is called a shA/ft-reduce conflict

Compiler Design | (2011)

25

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
* Classic example: the
S—>ifEthenS | ifEthenSelse S | OTHER

- Will have DFA state containing
[S—> if Ethen S, else]
[S—>ifEthenSlelse S, x]

- If else follows then we can shift or reduce

+ Default (yacc, ML-yacc, etc.) is to shift
- Default behavior is as needed in this case

Compiler Design | (2011) 26

More Shift/Reduce Conflicts

- Consider the ambiguous grammar
E->E+E | E*E | int
+ We will have the states containing
[E—>E*IE, +] [E—>E*EI +]
[ES>IE+E, +] =F [E—SEI+E, +]
* Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Recall solution: declare the precedence of * and +

Compiler Design | (2011)

27

More Shift/Reduce Conflicts

* Inyacc declare precedence and associativity:
%left +
%left *

* Precedence of arule = that of its last terminal
See yacc manual for ways to override this default

- Resolve shift/reduce conflict with a shift if:
- no precedence declared for either rule or terminal
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

Compiler Design | (2011) 28

Using Precedence to Solve S/R Conflicts

* Back to our example:
[E—>E*IE, +]
[ES>I1E+E, +] =F

[E>E*EI, +]
[E >EI+E, +]

* Will choose reduce because precedence of
rule E — E * E is higher than of terminal +

Compiler Design | (2011)

29

Using Precedence to Solve S/R Conflicts

 Same grammar as before
E->E+E | E*XE | int
« We will also have the states
[E—>E+IE, +] [E->E+EI +]
[E>IE+E, +] =F [E—>EI+E, +]
* Now we also have a shift/reduce on input +

- We choose reduce because E — E + E and + have
the same precedence and + is left-associative

Compiler Design | (2011) 30

Using Precedence to Solve S/R Conflicts

* Back to our dangling else example
[S—> if Ethen S, else]
[S—>ifEthenSlelse S, x]

« Can eliminate conflict by declaring else having
higher precedence than then

» But this starts to look like "hacking the tables”

- Best to avoid overuse of precedence
declarations or we will end with unexpected
parse trees

Compiler Design | (2011)

31

Precedence Declarations Revisited

The term "precedence declaration” is misleading!

These declarations do not define precedence:
they define conflict resolutions

I.e., they instruct shift-reduce parsers to resolve
conflicts in certain ways

The two are not quite the same thing!

Compiler Design | (2011) 32

Reduce/Reduce Conflicts

- ITf a DFA state contains both
[X > ai1,a] and [Y — B1, a]

- Then on input "a" we don't know which
production to reduce

- This is called a reduce/reduce conflict

Compiler Design | (2011)

33

Reduce/Reduce Conflicts

* Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers
So>e|id | idS

* There are two parse trees for the string id
S—id
S—>idS—id
How does this confuse the parser?

Compiler Design | (2011)

34

More on Reduce/Reduce Conflicts

+ Consider the states [S—>idl, $]
[S—>1S, $] [S—>idlS, $]
[S >, $] —>id [S >, $]
[S—>1lid, $] [S—>1id, $]
[S>1idS, $] [S—>1idS, $]
» Reduce/reduce conflict on input $
S>S5S-id

S—>S5S->idS—id
* Better rewrite the grammar: S ¢ |id S

Compiler Design | (2011)

Using Parser Generators

* Parser generators automatically construct the
parsing DFA given a CFG

- Use precedence declarations and default
conventions to resolve conflicts

- The parser algorithm is the same for all grammars
(and is provided as a library function)

* But most parser generators do not construct
the DFA as described before

- Because the LR(1) parsing DFA has 1000s of states
even for a simple language

35

Compiler Design | (2011)

36

LR(1) Parsing Tables are Big

- But many states are similar, e.g.

1

E—int1, $/+

5|

E—>int1,)/+

E — int
on$,+

E — int
on), +

and

- Idea: merge the DFA states whose items
differ only in the lookahead tokens
- We say that such states have the same core

+ We obtain W

E—int1, $/+/)

E —int

on$, +)

Compiler Design | (2011)

37

The Core of a Set of LR Items

Definition: The core of a set of LR items is the
set of first components
- Without the lookahead terminals

+ Example: the core of
{(X—>alp,b]l,[Y—>715,d]}
IS
X—>alB, Y—>vI18}

Compiler Design I (2011) 38

LALR States

+ Consider for example the LR(1) states
{IX>al,al,[Y—=BIcl}
{(X—>al,bl,[Y—>BId]}

* They have the same core and can be merged

* And the merged state contains:
{((X—>al,a/b]l,[Y =B, c/d]}

* These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10 times fewer LALR(1) states than LR(1)

Compiler Design | (2011)

39

A LALR(1) DFA

- Repeat until all states have distinct core
- Choose two distinct states with same core

- Merge the states by creating a new one with the
union of all the items

- Point edges from predecessors to new state

- New state points to all the previous successors
B—E—0©) @
©O—E6—6® © ®

Compiler Design | (2011) 40

Conversion LR(1) to LALR(1): Example.

int

E—int accept
on),+ on

The LALR Parser Can Have Conflicts

* Consider for example the LR(1) states
{(X—>al,al,[Y =B, bl
{(X—>al,bl,[Y—>BIal}

+ And the merged LALR(1) state
{(X—>al,a/b],[Y > BI,a/bl}

* Has a new reduce/reduce conflict

* In practice such cases are rare

Compiler Design | (2011)

42

LALR vs. LR Parsing: Things to keep in mind

* LALR languages are not natural
- They are an efficiency hack on LR languages

* Any reasonable programming language has a
LALR(1) grammar

* LALR(1) parsing has become a standard for
programming languages and for parser
generators

Compiler Design | (2011) 43

A Hierarchy of Grammar Classes

Ambiguous
Grammars

Unambiguous Grammars

LR(1)

LALR(])

From Andrew Appel,
"Modern Compiler

Compiler Design | (2011)

Implementation in ML"

44

Semantic Actions in LR Parsing

« We can now illustrate how semantic actions
are implemented for LR parsing

* Keep attributes on the stack

* On shifting a, push attribute for a on stack

* Onreduce X - a
- pop attributes for a
- compute attribute for X
- and push it on the stack

Compiler Design | (2011)

45

Performing Semantic Actions: Example

* Recall the example

E->T+E;, {E.wval=Tuval+Eval}
| T { E.val = T.val }
T—int*T, {Twval=intval* Ty.val}
| int { T.val = int.val }

« Consider the parsing of the string3 * 5 + 8

Compiler Design | (2011) 46

Performing Semantic Actions: Example

| int * int + int shift 3*5+8
int. | *int + int shift
int: * | int + int shift

int, * int: | + int reduce T — int

int:* T | +int reduce T—> int*T
T, | +int shift

T+ | int shift

T, +inty | reduce T — int
T+ Te | reduceE > T
T.+E; | reduce E > T+E
E. | accept

Compiler Design | (2011)

47

Notes

* The previous example shows how synthesized
attributes are computed by LR parsers

- It is also possible to compute inherited
attributes in an LR parser

Compiler Design | (2011) 48

Notes on Parsing

+ Parsing
- A solid foundation: context-free grammars
A simple parser: LL(1)
A more powerful parser: LR(1)
An efficiency hack: LALR(1)
LALR(1) parser generators

+ Next time we move on to semantic analysis

Compiler Design | (2011)

49

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
due to LALR Conversion
(and how to handle them)

Strange Reduce/Reduce Conflicts

+ Consider the grammar

S—>PR, NL—->N | N,NL
P>T | NL:T Ro>T |N:T
N — id T—>id

* P - parameters specification

- R - result specification

* N - aparameter or result name
- T -atype hame

* NL - a list of names

Compiler Design | (2011)

51

Strange Reduce/Reduce Conflicts

* InPanidisa
- N when followed by , or:
- T when followed by id

- InRanidisa
- N when followed by :
- T when followed by ,

+ This is an LR(1) grammar
« But it is not LALR(1). Why?

- For obscure reasons

Compiler Design | (2011)

52

A Few LR(1) States

LALR reduce/reduce

id/,
/,

Compiler Design | (2011)

P->I1T id ﬂ

PS>INL:T id T idl idﬂ

T lid id idey N> id | conflict on
NL >IN ;/N—)idl

NL—->IN,NL :

Nt T— idl
N —1id LALR merge N i)
RoIT ,ﬂid T idl . 4]
R—>IN:T , /N—>idl :

T-lid ,

N —Iid

53

What Happened?

- Two distinct states were confused because
they have the same core

* Fix: add dummy productions to distinguish the
two confused states
- E.g.,add
R — id bogus
- bogus is a terminal not used by the lexer
- This production will never be used during parsing
- But it distinguishes R from P

Compiler Design | (2011) 54

A Few LR(1) States After Fix

Po>IT
P—>INL:T
NL - IN

N —1id
N —Ilid
Tolid

NL—>IN,NL :

id
id

1]

: id/7

T— idl id
N— idl
N - idl

El

R—>.T
R— .N:T

T—.id
N —.id

2]

R —.id bogus ,

id

Compiler Design | (2011)

T— idl
N— idl
R —id | bogus ,

Different cores = no LALR merging

55

