Introduction to Bottom-Up Parsing

Outline

- Review LL parsing
- Shift-reduce parsing
- The LR parsing algorithm
- Constructing LR parsing tables

Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
- Always expand the leftmost non-terminal

int * int + int
- The leaves at any point form a string $\beta A \gamma$
- β contains only terminals
- The input string is $\beta \mathrm{b} \delta$
- The prefix β matches
- The next token is b

```
int * int + int
```


Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
- Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
- β contains only terminals
- The input string is $\beta b \delta$
- The prefix β matches
- The next token is b
int * int + int
Compiler Design 1 (2011)

Predictive Parsing: Review

- A predictive parser is described by a table
- For each non-terminal A and for each token b we specify a production $A \rightarrow \alpha$
- When trying to expand A we use $A \rightarrow \alpha$ if b follows next
- Once we have the table
- The parsing algorithm is simple and fast
- No backtracking is necessary

Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
- Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
- β contains only terminals
- The input string is β b δ
- The prefix β matches
- The next token is b

Constructing Predictive Parsing Tables

1. Consider the state $S \rightarrow{ }^{*} \beta A \gamma$

- With b the next token
- Trying to match $\beta b \delta$

There are two possibilities:

- b belongs to an expansion of A
- Any $A \rightarrow \alpha$ can be used if b can start a string derived from α
- We say that $b \in \operatorname{First}(\alpha)$

Or...

Constructing Predictive Parsing Tables (Cont.)
2. b does not belong to an expansion of A

- The expansion of A is empty and b belongs to an expansion of γ
- Means that b can appear after A in a derivation of the form $S \rightarrow{ }^{*} \beta A b \omega$
- We say that $b \in$ Follow(A) in this case
- What productions can we use in this case?
- Any $A \rightarrow \alpha$ can be used if α can expand to ε
- We say that $\varepsilon \in$ First(A) in this case

First Sets: Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \operatorname{int} Y & Y \rightarrow * T \mid \varepsilon
\end{array}
$$

- First sets

First(() $=\{(\} \quad$ First (T) $=\{$ int, ($\}$
First()) $=\{$) $\} \quad$ First (E) $=\{$ int, ($\}$
First (int) $=\{$ int $\} \quad$ First $(X)=\{+, \varepsilon\}$
$\operatorname{First}(+)=\{+\} \quad \operatorname{First}(Y)=\{*, \varepsilon\}$
First(*) $=\{$ * $\}$

Computing First Sets

Definition

$$
\text { First }(X)=\left\{b \mid X \rightarrow^{*} b \alpha\right\} \cup\left\{\varepsilon \mid X \rightarrow^{*} \varepsilon\right\}
$$

Algorithm sketch

1. First(b) $=\{b\}$
2. $\varepsilon \in \operatorname{First}(X)$ if $X \rightarrow \varepsilon$ is a production
3. $\varepsilon \in$ First (X) if $X \rightarrow A_{1} \ldots A_{n}$ and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for $1 \leq i \leq n$
4. First $(\alpha) \subseteq$ First (X) if $X \rightarrow A_{1} \ldots A_{n} \alpha$ and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for $1 \leq i \leq n$

Computing Follow Sets

- Definition

$$
\text { Follow }(X)=\left\{b \mid S \rightarrow^{*} \beta \times b \delta\right\}
$$

- Intuition
- If $X \rightarrow A B$ then First $(B) \subseteq$ Follow (A)

$$
\text { and Follow }(X) \subseteq \text { Follow }(B)
$$

- Also if $B \rightarrow{ }^{*} \varepsilon$ then Follow $(X) \subseteq$ Follow (A)
- If S is the start symbol then $\$ \in$ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch

1. $\$ \in$ Follow(S)
2. First $(\beta)-\{\varepsilon\} \subseteq$ Follow (X)

- For each production $A \rightarrow \alpha \times \beta$

3. Follow $(A) \subseteq$ Follow (X)

- For each production $A \rightarrow \alpha \times \beta$ where $\varepsilon \in$ First (β)

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
- For each terminal $b \in \operatorname{First}(\alpha)$ do

$$
\text { - } T[A, b]=\alpha
$$

- If $\varepsilon \in \operatorname{First}(\alpha)$, for each $b \in \operatorname{Follow}(A)$ do
- $T[A, b]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$ do
- $T[A, \$]=\alpha$

Follow Sets: Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow * T \mid \varepsilon
\end{array}
$$

- Follow sets

$$
\begin{aligned}
& \text { Follow(}+ \text {) }=\{\text { int, (}\} \quad \text { Follow (*) }=\{\text { int, (}\} \\
& \text { Follow }(()=\{\text { int, (}\} \quad \text { Follow }(E)=\{), \$\} \\
& \text { Follow }(X)=\{\$,)\} \quad \text { Follow }(T)=\{+,), \$\} \\
& \text { Follow }())=\{+,), \$\} \\
& \text { Follow }(\text { int })=\{*,+,), \$\}
\end{aligned}
$$

Constructing LL(1) Tables: Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Where in the line of Y we put $Y \rightarrow *$?
- In the lines of First(${ }^{*}$ T) $=\{$ * $\}$
- Where in the line of Y we put $Y \rightarrow \varepsilon$
?
- In the lines of Follow $(Y)=\{\$,+)$,
- If any entry is multiply defined then G is not $\operatorname{LL}(1)$
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well
- For some grammars there is a simple parsing strategy: Predictive parsing
- Most programming language grammars are not LL(1)
- Thus, we need more powerful parsing strategies

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
- And just as efficient
- Builds on ideas in top-down parsing
- Preferred method in practice
- Also called LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation!

Bottom Up Parsing

An Introductory Example

- LR parsers don't need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

$$
E \rightarrow E+(E) \mid \text { int }
$$

- Why is this not $\operatorname{LL}(1)$?
- Consider the string: int + (int) + (int)

The Idea

- LR parsing reduces a string to the start symbol by inverting productions:
str w input string of terminals
repeat
- Identify β in str such that $A \rightarrow \beta$ is a production (i.e., str $=\alpha \beta \gamma$)
- Replace β by A in str (i.e., str $w=\alpha A \gamma$)
until str $=S$ (the start symbol)
OR all possibilities are exhausted

A Bottom-up Parse in Detail (2)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& E+(\text { int })+(\text { int })
\end{aligned}
$$

A Bottom-up Parse in Detail (1)

int + (int) + (int)

```
int + ( int ) + ( int )
```

Compiler Design 1 (2011)

A Bottom-up Parse in Detail (3)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& E+(\text { int })+(\text { int }) \\
& E+(E)+\text { int })
\end{aligned}
$$

A Bottom-up Parse in Detail (4)

int + (int) + (int)
$E+(i n t)+(i n t)$
$E+(E)+(i n t)$
E + (int)

A Bottom-up Parse in Detail (5)

int + (int) + (int)
$E+(i n t)+(i n t)$
$E+(E)+(i n t)$
$E+(i n t)$
$E+(E)$

Compiler Design 1 (2011)

Important Fact \#1

Important Fact \#1 about bottom-up parsing:

An LR parser traces a rightmost derivation in reverse

Where Do Reductions Happen
Important Fact \#1 has an interesting consequence:

- Let $\alpha \beta \gamma$ be a step of a bottom-up parse
- Assume the next reduction is by using $A \rightarrow \beta$
- Then γ is a string of terminals

Why? Because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a rightmost derivation

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Notation

- Idea: Split string into two substrings
- Right substring is as yet unexamined by parsing (a string of terminals)
- Left substring has terminals and non-terminals
- The dividing point is marked by a
- The 1 is not part of the string
- Initially, all input is unexamined: $\mid x_{1} x_{2} \ldots x_{n}$

Shift

Shift: Move I one place to the right

- Shifts a terminal to the left string

$$
E+(। \mathrm{int}) \Rightarrow E+(\text { int } \mathrm{I})
$$

In general:

$$
A B C|x y z \Rightarrow A B C x| y z
$$

Reduce

Shift-Reduce Example

Reduce: Apply an inverse production at the right
end of the left string

- If $E \rightarrow E+(E)$ is a production, then

$$
E+(\underline{E}+(\underline{E}) ı) \Rightarrow E+(\underline{E} \mid)
$$

In general, given $A \rightarrow x y$, then:

$$
\text { Cbxyıijk } \Rightarrow \text { CbAıijk }
$$

Compiler Design 1 (2011)

Shift-Reduce Example

I int + (int) + (int)\$ shift
int I + (int) + (int)\$ reduce E int

	$E \rightarrow E+(E) \mid$ int
int $+($ int $)+($ int $)$	

```
                                    int + ( int ) + ( int )
```

 \(\uparrow\)

Shift-Reduce Example

$$
E \rightarrow E+(E) \mid \mathrm{int}
$$

```
l int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E }->\mathrm{ int
E I + (int) + (int)$ shift 3 times
```


Shift-Reduce Example

Shift-Reduce Example

$E \rightarrow E+(E) \mid \mathrm{int}$

```
l int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E int
EI+ (int)+ (int)$ shift 3 times
E + (int l) + (int)$ reduce E }->\mathrm{ int
```

```
l int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E }->\mathrm{ int
EI+ (int)+ (int)$ shift 3 times
E+(int I)+(int)$ reduce E }->\mathrm{ int
E + (EI) + (int)$ shift
```


Shift-Reduce Example

I int + (int) + (int) \$	shift
int I + (int $)+($ int $) \$$	reduce $E \rightarrow$ int
$E I+($ int $)+($ int $) \$$	shift 3 times
$E+($ int I $)+($ int $) \$$	reduce $E \rightarrow$ int
$E+(E I)+($ int $) \$$	shift
$E+(E) I+($ int $) \$$	reduce $E \rightarrow E+(E)$

```
| int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E }->\mathrm{ int
EI + (int) + (int)$ shift 3 times
E (int I) + (int)$ reduce E }->\mathrm{ int
* (E) + (int)$ shif
E+(E)I+(int)$ reduce E }->E+(E
```


Shift-Reduce Example

$E \rightarrow E+(E) \mid$ int

Shift-Reduce Example

Shift-Reduce Example

int $+($ int $)+($ int $)$

Shift-Reduce Example

$1 \mathrm{int}+$ (int$)+$ (int)\$	shift	
int I + (int) + (int)\$	reduce $E \rightarrow$ int	
$E 1+(\mathrm{int})+(\mathrm{int}) \$$	shift 3 times	
E + (int l) + (int)\$	reduce $E \rightarrow$ int	
$E+\left(E_{1}\right)+(\mathrm{int}) \$$	shift	
$E+(E) I+(i n t) \$$	reduce $E \rightarrow E+(E)$	
E I + (int)\$	shift 3 times	
E + (int 1) \$	reduce $E \rightarrow$ int	
$\mathrm{E}+(\mathrm{E} \\|) \$$	shift	

int I + (int) + (int)\$ reduce $E \rightarrow$ int
EI+ (int) + (int)\$ shift 3 times
$E+($ int I $)+($ int $) \$$ reduce $E \rightarrow$ int
$E+(E$ I $)+($ int $) \$$ shift
$E+(E) I+($ int $) \$ \quad$ reduce $E \rightarrow E+(E)$
shift 3 times

+ (in+1)
shift

Shift-Reduce Example

$E \rightarrow E+(E) \mid$ int

The Stack

- Left string can be implemented by a stack
- Top of the stack is the ।
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production RHS) and pushes a nonterminal on the stack (production LHS)

Key Question: To Shift or to Reduce?

Idea: use a finite automaton (DFA) to decide when to shift or reduce

- The input is the stack
- The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after ।
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

Representing the DFA

- Parsers represent the DFA as a 2D table
- Recall table-driven lexical analysis
- Lines correspond to DFA states
- Columns correspond to terminals and nonterminals
- Typically columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table

Representing the DFA: Example

- The table for a fragment of our DFA:

The LR Parsing Algorithm

```
Let I = w$ be initial input
Let j = 0
Let DFA state 0 be the start state
Let stack = < dummy, 0 >
    repeat
        case action[top_state(stack), I[j]] of
            shift k: push <I[j++],k\rangle
            reduce }X->A\mathrm{ :
                pop |A| pairs,
                push <X,Goto[top_state(stack), X]\rangle
                accept: halt normally
                error: halt and report error
```


The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
- This is wasteful, since most of the work is repeated
- Remember for each stack element on which state it brings the DFA
- LR parser maintains a stack
$\left\langle\right.$ sym $_{1}$, state $\left._{1}\right\rangle \ldots\left\langle\right.$ sym $_{n}$, state $\left._{n}\right\rangle$

Compiler Design 1 (2011)

LR Parsers

- Can be used to parse more grammars than LL
- Most programming languages grammars are LR
- LR Parsers can be described as a simple table
- There are tools for building the table
- How is the table constructed?

