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Review of Parsing

•
 

Given a language L(G), a parser consumes a 
sequence of tokens s

 
and produces a parse tree

•
 

Issues:
–

 
How do we recognize that s ∈

 
L(G)

 
?

–
 

A parse tree of s
 

describes how
 

s ∈
 

L(G) 
–

 
Ambiguity: more than one parse tree (possible 
interpretation) for some string s

–
 

Error: no parse tree for some string s
–

 
How do we construct the parse tree?
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Abstract Syntax Trees

•
 

So far, a parser traces the derivation of a 
sequence of tokens

•
 

The rest of the compiler needs a structural 
representation of the program

•
 

Abstract syntax trees
–

 
Like parse trees but ignore some details

–
 

Abbreviated as AST
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Abstract Syntax Trees (Cont.)

•
 

Consider the grammar
E →

 
int | ( E ) | E + E 

•
 

And the string
5 + (2 + 3)

•
 

After lexical analysis (a list of tokens)
int5

 

‘+’
 

‘(‘
 

int2
 

‘+’
 

int3
 

‘)’
•

 
During parsing we build a parse tree …
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Example of Parse Tree

E

E E

( E )

+

E +

int5

int2

E

int3

•
 

Traces the operation 
of the parser

•
 

Captures the nesting 
structure

•
 

But too much info
–

 
Parentheses

–
 

Single-successor nodes
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Example of Abstract Syntax Tree

•
 

Also captures the nesting structure
•

 
But abstracts

 
from the concrete syntax

a
 

more compact and easier to use
•

 
An important data structure in a compiler

PLUS

PLUS

25 3
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Semantic Actions

•
 

This is what we’ll use to construct ASTs

•
 

Each grammar symbol may have attributes
–

 
An attribute is a property of a programming 
language construct

–
 

For terminal symbols (lexical tokens) attributes can 
be calculated by the lexer

•
 

Each production may have an action
–

 
Written as:    X → Y1

 

… Yn
 

{
 

action }
–

 
That can refer to or compute symbol attributes
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Semantic Actions: An Example

•
 

Consider the grammar
E → int | E + E | ( E )

•
 

For each symbol X
 

define an attribute X.val
–

 
For terminals, val

 
is the associated lexeme

–
 

For non-terminals, val
 

is the expression’s value  
(which is computed from values of subexpressions)

•
 

We annotate the grammar with actions:
E →

 
int                  { E.val

 
= int.val

 
}

|  E1
 

+ E2
 

{
 

E.val
 

= E1
 

.val
 

+ E2
 

.val
 

}
|  ( E1

 

)               {
 

E.val
 

= E1
 

.val
 

}
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Semantic Actions: An Example (Cont.)

Productions
 

Equations
E  → E1

 

+ E2                                E.val
 

= E1
 

.val
 

+ E2
 

.val
E1

 

→ int5
 

E1
 

.val
 

= int5
 

.val
 

= 5
E2

 

→
 

(E3
 

)                         E2
 

.val
 

= E3
 

.val
E3

 

→
 

E4
 

+ E5
 

E3
 

.val
 

= E4
 

.val
 

+ E5
 

.val
E4

 

→
 

int2
 

E4
 

.val
 

= int2
 

.val
 

= 2
E5

 

→
 

int3
 

E5
 

.val
 

= int3
 

.val = 3

•
 

String:    5 + (2 + 3)
•

 
Tokens:   int5

 

‘+’
 

‘(‘
 

int2
 

‘+’
 

int3
 

‘)’
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Semantic Actions: Dependencies

Semantic actions specify a system of equations
–

 
Order of executing the actions is not specified

•
 

Example:
E3

 

.val
 

= E4
 

.val
 

+ E5
 

.val
–

 
Must compute

 
E4

 

.val and E5
 

.val
 

before E3
 

.val
–

 
We say that

 
E3

 

.val
 

depends on E4
 

.val and E5
 

.val

•
 

The parser must find the order of evaluation
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Dependency Graph

E

E1 E2

( E3 )

+

E4
+

int5

int2

E5

int3

+ 

+ 

2 

5

•
 

Each node labeled with 
a non-terminal E

 
has 

one slot for its val
 attribute

•
 

Note the dependencies

3
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Evaluating Attributes

•
 

An attribute must be computed after all its 
successors in the dependency graph have been 
computed 
–

 
In the previous example attributes can be 
computed bottom-up

•
 

Such an order exists when there are no cycles
–

 
Cyclically defined attributes are not legal
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Semantic Actions: Notes (Cont.)

•
 

Synthesized
 

attributes
–

 
Calculated from attributes of descendents in the 
parse tree

–
 

E.val
 

is a synthesized attribute
–

 
Can always be calculated in a bottom-up order

•
 

Grammars with only synthesized attributes 
are called S-attributed

 
grammars

–
 

Most frequent kinds of grammars
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Inherited Attributes

•
 

Another kind of attributes
•

 
Calculated from attributes of the parent 
node(s) and/or siblings in the parse tree

•
 

Example: a line calculator
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A Line Calculator

•
 

Each line contains an expression
E →

 
int  |  E + E

•
 

Each line is terminated with the
 

= sign
L →

 
E =  |  + E =

•
 

In the second form, the value of evaluation of 
the previous line is used as starting value

•
 

A program is a sequence of lines
P → ε |  P L
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Attributes for the Line Calculator

•
 

Each E
 

has a synthesized attribute val
–

 
Calculated as before

•
 

Each
 

L
 

has a synthesized attribute val
L → E =        {

 
L.val

 
= E.val

 
}

|  + E =
 

{
 

L.val
 

= E.val
 

+ L.prev
 

}
•

 
We need the value of the previous line

•
 

We use an inherited attribute
 

L.prev
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Attributes for the Line Calculator (Cont.)

•
 

Each P
 

has a synthesized attribute val
–

 
The value of its last line
P → ε

 
{ P.val

 
= 0 }

|  P1
 

L            {
 

P.val
 

= L.val; 
L.prev

 
= P1

 

.val
 

}
•

 
Each L

 
has an inherited attribute prev

–
 

L.prev
 

is inherited from sibling P1
 

.val

•
 

Example …
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Example of Inherited Attributes

•
 

val
 

synthesized

•
 

prev
 

inherited

•
 

All can be 
computed in 
depth-first 
order 

P

ε

L

+ E3
=

E4
+

int2

E5

int3

+ 

+  

2 

0

3

P
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Semantic Actions: Notes (Cont.)

•
 

Semantic actions can be used to build ASTs

•
 

And many other things as well
–

 
Also used for type checking, code generation, …

•
 

Process is called syntax-directed translation
–

 
Substantial generalization over CFGs
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Constructing an AST

•
 

We first define the AST data type
•

 
Consider an abstract tree type with two 
constructors:

mkleaf(n) 

mkplus(

T1

)    =,

T2

=

PLUS

T1 T2

n
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Constructing a Parse Tree

•
 

We define a synthesized attribute ast
–

 
Values of

 
ast

 
values are ASTs

–
 

We assume that int.lexval
 

is the value of the 
integer lexeme

–
 

Computed using semantic actions

E →
 

int               { E.ast
 

= mkleaf(int.lexval) }
|  E1

 

+ E2
 

{
 

E.ast
 

= mkplus(E1
 

.ast, E2
 

.ast) }
|  ( E1

 

)            { E.ast
 

= E1
 

.ast }
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Parse Tree Example

•
 

Consider the string int5
 

‘+’
 

‘(‘
 

int2
 

‘+’
 

int3
 

‘)’
•

 
A bottom-up evaluation of the ast

 
attribute:

E.ast
 

= mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))

PLUS

PLUS

25 3
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Review of Abstract Syntax Trees

•
 

We can specify language syntax using CFG
•

 
A parser will answer whether s ∈

 
L(G)

•
 

…
 

and will build a parse tree
•

 
…

 
which we convert to an AST

•
 

…
 

and pass on to the rest of the compiler

•
 

Next two & a half lectures:
–

 
How do we answer s ∈

 
L(G)

 
and build a parse tree?

•
 

After that: from AST to assembly language
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Second-Half of Lecture 5: Outline

•
 

Implementation of parsers
•

 
Two approaches
–

 
Top-down

–
 

Bottom-up
•

 
Today: Top-Down
–

 
Easier to understand and program manually

•
 

Then: Bottom-Up
–

 
More powerful and used by most parser generators
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Introduction to Top-Down Parsing

•
 

Terminals are seen in order of 
appearance in the token 
stream: 

t2
 

t5
 

t6
 

t8
 

t9

•
 

The parse tree is constructed
–

 
From the top

–
 

From left to right

1

t2 3

4

t5

7

t6

t9

t8
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Recursive Descent Parsing

•
 

Consider the grammar
E →

 
T + E  |  T

T →
 

int  |  int * T  |  ( E )
•

 
Token stream is:   int5

 

* int2
•

 
Start with top-level non-terminal E

•
 

Try the rules for
 

E in order
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Recursive Descent Parsing. Example (Cont.)

•
 

Try E0
 

→
 

T1
 

+ E2
•

 
Then try a rule for T1 →

 
( E3 )

–
 

But
 

( does not match input token
 

int5

•
 

Try
 

T1 →
 

int . Token matches. 
–

 
But +

 
after T1

 

does not match input token *
•

 
Try T1 →

 
int * T2

–
 

This will match but +
 

after T1
 

will be unmatched
•

 
Has exhausted the choices for T1
–

 
Backtrack to choice for E0

Token stream:   int5 * int2

E → T + E  |  T
T → (E)  | int | int * T
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Recursive Descent Parsing. Example (Cont.)

•
 

Try E0
 

→
 

T1
•

 
Follow same steps as before for T1
–

 
And succeed with T1 → int5

 

* T2
 

and
 

T2 →
 

int2

–
 

With
 

the following parse tree

E0

T1

int5 * T2

int2

Token stream:   int5 * int2

E → T + E  |  T
T → (E)  | int | int * T
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Recursive Descent Parsing. Notes.

•
 

Easy to implement by hand

•
 

Somewhat inefficient (due to backtracking)

•
 

But does not always work …
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When Recursive Descent Does Not Work

•
 

Consider a production S →
 

S a
bool

 
S1

 

() { return S() && term(a); } 
bool

 
S() { return  S1

 

(); }
•

 
S()

 
will get into an infinite loop

•
 

A left-recursive grammar
 

has a non-terminal S
S →+

 
Sα

 
for some

 
α

•
 

Recursive descent does not work in such cases
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Elimination of Left Recursion

•
 

Consider the left-recursive grammar
S

 
→ S α

 
| β

•
 

S
 

generates all strings starting with a β
 

and 
followed by any number of

 
α’s

•
 

The grammar can be rewritten using right-
 recursion

S
 

→ β S’
S’

 
→ α S’

 
| ε
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More Elimination of Left-Recursion

•
 

In general
S

 
→

 
S α1

 

| …
 

| S αn
 

| β1
 

| …
 

| βm

•
 

All strings derived from S
 

start with one of 
β1

 

,…,βm
 

and continue with several instances of
 α1

 

,…,αn
•

 
Rewrite as

S
 

→ β1
 

S’
 

| …
 

| βm
 

S’
S’

 
→ α1

 

S’
 

| …
 

| αn S’
 

| ε
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General Left Recursion

•
 

The grammar 
S

 
→

 
A α

 
| δ

A →
 

S β
is also left-recursive because

S
 

→+
 

S β α

•
 

This left-recursion can also be eliminated
•

 
See a Compilers book for a general algorithm
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Summary of Recursive Descent

•
 

Simple and general parsing strategy
–

 
Left-recursion must be eliminated first

–
 

…
 

but that can be done automatically
•

 
Unpopular because of backtracking
–

 
Thought to be too inefficient

•
 

In practice, backtracking is eliminated by 
restricting the grammar
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Predictive Parsers

•
 

Like recursive-descent but parser can 
“predict”

 
which production to use

–
 

By looking at the next few tokens
–

 
No backtracking 

•
 

Predictive parsers accept LL(k)
 

grammars
–

 
L

 
means “left-to-right”

 
scan of input

–
 

L
 

means “leftmost derivation”
–

 
k

 
means “predict based on k tokens of lookahead”

•
 

In practice, LL(1)
 

is used
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LL(1) Languages

•
 

In recursive-descent, for each non-terminal 
and input token there may be a choice of 
production

•
 

LL(1) means that for each non-terminal and 
token there is only one production

•
 

Can be specified via 2D tables
–

 
One dimension for current non-terminal to expand

–
 

One dimension for next token
–

 
A table entry contains one production
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Predictive Parsing and Left Factoring

•
 

Recall the grammar for arithmetic expressions
E →

 
T + E  |  T

T → ( E )  |  int  |  int * T

•
 

Hard to predict because
–

 
For T

 
two productions start with int

–
 

For E
 

it is not clear how to predict

•
 

A grammar must be left-factored
 

before it is 
used for predictive parsing
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Left-Factoring Example

•
 

Recall the grammar
E →

 
T + E  |  T

T → ( E )  |  int  |  int * T

•
 

Factor out common prefixes of productions
E →

 
T X

X
 

→ + E  |  ε
T → ( E )  |  int Y
Y

 
→

 
* T  |  ε
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LL(1) Parsing Table Example

•
 

Left-factored grammar
E →

 
T X                               X → + E  |  ε

T → ( E )  |  int Y                 Y →
 

* T  |  ε

•
 

The LL(1) parsing table:

int * + ( ) $
E T X T X
X + E ε ε
T int Y ( E )
Y * T ε ε ε
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LL(1) Parsing Table Example (Cont.)

•
 

Consider the [E, int] entry
–

 
“When current non-terminal is E

 
and next input is 

int, use production  E →
 

T X
–

 
This production can generate an int

 
in the first 

place
•

 
Consider the [Y,+] entry
–

 
“When current non-terminal is Y

 
and current token 

is +, get rid of Y”
–

 
Y

 
can be followed by +

 
only in a derivation in which  

Y → ε
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LL(1) Parsing Tables: Errors

•
 

Blank entries indicate error situations
–

 
Consider the [E,*] entry

–
 

“There is no way to derive a string starting with *
 from non-terminal E”
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Using Parsing Tables

•
 

Method similar to recursive descent, except
–

 
For each non-terminal S

–
 

We look at the next token a
–

 
And chose the production shown at [S,a]

•
 

We use a stack to keep track of pending non-
 terminals

•
 

We reject when we encounter an error state
•

 
We accept when we encounter end-of-input  
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LL(1) Parsing Algorithm

initialize stack = <S $> and next 
repeat

case stack of
<X, rest>  : if T[X,*next] = Y1 …Yn

then stack ←
 

<Y1 …Yn rest>;
else  error();   

<t, rest>  : if t == *next++ 
then stack ←

 
<rest>;

else  error();
until stack == <>
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LL(1) Parsing Example

Stack                Input                Action
E $                    int * int

 
$         T X

T X $                int * int
 

$         int Y
int Y X $           int * int

 
$         terminal

Y X $                * int $               * T
* T X $             * int $               terminal
T X $                int $                  int Y
int Y X $           int $                  terminal
Y X $                $                       ε
X $                   $                       ε
$                      $                   ACCEPT

int * + ( ) $

E T X T X

X + E ε ε

T int Y ( E )

Y * T ε ε ε
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Constructing Parsing Tables

•
 

LL(1) languages are those defined by a parsing 
table for the LL(1) algorithm

•
 

No table entry can be multiply defined

•
 

We want to generate parsing tables from CFG
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Constructing Parsing Tables (Cont.)

•
 

If A → α, where in the line of A
 

we place α
 

?
•

 
In the column of t

 
where t

 
can start a string 

derived from α
–

 
α →*

 
t β

–
 

We say that
 

t ∈
 

First(α)
•

 
In the column of t

 
if α

 
is ε

 
and t

 
can follow an 

A
–

 
S →*

 
β

 
A t δ

–
 

We say
 

t ∈
 

Follow(A)

Compiler Design 1 (2011) 47

Computing First Sets

Definition
First(X) = { t | X →*

 
tα} ∪

 
{ε

 
| X →*

 
ε}

Algorithm sketch
1.

 
First(t) = { t }

2.
 

ε ∈ First(X)
 

if X → ε is a production
3.

 
ε ∈ First(X)

 
if X →

 
A1

 

… An
and ε ∈ First(Ai

 

)
 

for each 1 ≤
 

i ≤
 

n
4.

 
First(α) ⊆

 
First(X)

 
if X →

 
A1

 

… An
 

α
and ε ∈ First(Ai

 

)
 

for each 1 ≤
 

i ≤
 

n
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First Sets: Example

•
 

Recall the grammar 
E →

 
T X                               X → + E | ε

T → ( E ) | int Y                   Y → * T | ε
•

 
First sets

First( (
 

) = { (
 

}            First( )
 

) = { )
 

}
First( +

 
) = { +

 
}           First( *

 
) = { *

 
}

First( int) = { int
 

}
First( T

 
) = { int,

 
(

 
}

First( E
 

) = { int, (
 

}
First( X

 
) = { +, ε

 
}

First( Y
 

) = { *, ε
 

}
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Computing Follow Sets

•
 

Definition
Follow(X) = { t | S →*

 
β

 
X t δ

 
}

•
 

Intuition
–

 
If X → A B then

 
First(B) ⊆

 
Follow(A)                       

and
 

Follow(X) ⊆
 

Follow(B)
–

 
Also if B →*

 
ε

 
then

 
Follow(X) ⊆

 
Follow(A)

–
 

If
 

S is the start symbol then $ ∈
 

Follow(S)
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Computing Follow Sets (Cont.)

Algorithm sketch
1.

 
$ ∈

 
Follow(S)

2.
 

First(β) -
 

{ε} ⊆
 

Follow(X)
For each production A → α X β

3.
 

Follow(A) ⊆
 

Follow(X)
For each production A → α X β

 
where ε ∈ First(β)
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Follow Sets: Example

•
 

Recall the grammar 
E →

 
T X                               X → + E | ε

T → ( E ) | int Y                   Y → * T | ε
•

 
Follow sets
Follow( +

 
) = { int, (

 
}    Follow( *

 
) = { int, ( } 

Follow( (
 

) = { int, (
 

}     Follow( E ) = { ), $ } 
Follow( X

 
) = { $, )

 
}      Follow( T ) = { +, ) , $ }

Follow( )
 

) = { +, ) , $ }   Follow( Y
 

) = { +, ) , $ }
Follow( int) = { *, +, ) , $ }
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Constructing LL(1) Parsing Tables

•
 

Construct a parsing table T for CFG G

•
 

For each production  A → α in G do:
–

 
For each terminal t ∈

 
First(α)

 
do

•
 

T[A, t] = α
–

 
If ε ∈ First(α), for each t ∈

 
Follow(A)

 
do

•
 

T[A, t] = α
–

 
If ε ∈ First(α)

 
and $ ∈

 
Follow(A)

 
do

•
 

T[A, $] = α
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Notes on LL(1) Parsing Tables

•
 

If any entry is multiply defined then G is not 
LL(1)
–

 
If G is ambiguous

–
 

If G is left recursive
–

 
If G is not left-factored

–
 

And in other cases as well
•

 
Most programming language grammars are not 
LL(1)

•
 

There are tools that build LL(1) tables
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Review

•
 

For some grammars there is a simple parsing 
strategy

Predictive parsing

•
 

Next time: a more powerful parsing strategy


