
Abstract Syntax Trees
 &

 Top-Down Parsing

Compiler Design 1 (2011) 2

Review of Parsing

•

Given a language L(G), a parser consumes a
sequence of tokens s

and produces a parse tree

•

Issues:
–

How do we recognize that s ∈

L(G)

?

–

A parse tree of s

describes how

s ∈

L(G)
–

Ambiguity: more than one parse tree (possible
interpretation) for some string s

–

Error: no parse tree for some string s
–

How do we construct the parse tree?

Compiler Design 1 (2011) 3

Abstract Syntax Trees

•

So far, a parser traces the derivation of a
sequence of tokens

•

The rest of the compiler needs a structural
representation of the program

•

Abstract syntax trees
–

Like parse trees but ignore some details

–

Abbreviated as AST

Compiler Design 1 (2011) 4

Abstract Syntax Trees (Cont.)

•

Consider the grammar
E →

int | (E) | E + E

•

And the string
5 + (2 + 3)

•

After lexical analysis (a list of tokens)
int5

‘+’

‘(‘

int2

‘+’

int3

‘)’
•

During parsing we build a parse tree …

Compiler Design 1 (2011) 5

Example of Parse Tree

E

E E

(E)

+

E +

int5

int2

E

int3

•

Traces the operation
of the parser

•

Captures the nesting
structure

•

But too much info
–

Parentheses

–

Single-successor nodes

Compiler Design 1 (2011) 6

Example of Abstract Syntax Tree

•

Also captures the nesting structure
•

But abstracts

from the concrete syntax

a

more compact and easier to use
•

An important data structure in a compiler

PLUS

PLUS

25 3

Compiler Design 1 (2011) 7

Semantic Actions

•

This is what we’ll use to construct ASTs

•

Each grammar symbol may have attributes
–

An attribute is a property of a programming
language construct

–

For terminal symbols (lexical tokens) attributes can
be calculated by the lexer

•

Each production may have an action
–

Written as: X → Y1

… Yn

{

action }
–

That can refer to or compute symbol attributes

Compiler Design 1 (2011) 8

Semantic Actions: An Example

•

Consider the grammar
E → int | E + E | (E)

•

For each symbol X

define an attribute X.val
–

For terminals, val

is the associated lexeme

–

For non-terminals, val

is the expression’s value
(which is computed from values of subexpressions)

•

We annotate the grammar with actions:
E →

int { E.val

= int.val

}

| E1

+ E2

{

E.val

= E1

.val

+ E2

.val

}
| (E1

) {

E.val

= E1

.val

}

Compiler Design 1 (2011) 9

Semantic Actions: An Example (Cont.)

Productions

Equations
E → E1

+ E2 E.val

= E1

.val

+ E2

.val
E1

→ int5

E1

.val

= int5

.val

= 5
E2

→

(E3

) E2

.val

= E3

.val
E3

→

E4

+ E5

E3

.val

= E4

.val

+ E5

.val
E4

→

int2

E4

.val

= int2

.val

= 2
E5

→

int3

E5

.val

= int3

.val = 3

•

String: 5 + (2 + 3)
•

Tokens: int5

‘+’

‘(‘

int2

‘+’

int3

‘)’

Compiler Design 1 (2011) 10

Semantic Actions: Dependencies

Semantic actions specify a system of equations
–

Order of executing the actions is not specified

•

Example:
E3

.val

= E4

.val

+ E5

.val
–

Must compute

E4

.val and E5

.val

before E3

.val
–

We say that

E3

.val

depends on E4

.val and E5

.val

•

The parser must find the order of evaluation

Compiler Design 1 (2011) 11

Dependency Graph

E

E1 E2

(E3)

+

E4
+

int5

int2

E5

int3

+

+

2

5

•

Each node labeled with
a non-terminal E

has

one slot for its val
 attribute

•

Note the dependencies

3

Compiler Design 1 (2011) 12

Evaluating Attributes

•

An attribute must be computed after all its
successors in the dependency graph have been
computed
–

In the previous example attributes can be
computed bottom-up

•

Such an order exists when there are no cycles
–

Cyclically defined attributes are not legal

Compiler Design 1 (2011) 13

Semantic Actions: Notes (Cont.)

•

Synthesized

attributes
–

Calculated from attributes of descendents in the
parse tree

–

E.val

is a synthesized attribute
–

Can always be calculated in a bottom-up order

•

Grammars with only synthesized attributes
are called S-attributed

grammars

–

Most frequent kinds of grammars

Compiler Design 1 (2011) 14

Inherited Attributes

•

Another kind of attributes
•

Calculated from attributes of the parent
node(s) and/or siblings in the parse tree

•

Example: a line calculator

Compiler Design 1 (2011) 15

A Line Calculator

•

Each line contains an expression
E →

int | E + E

•

Each line is terminated with the

= sign
L →

E = | + E =

•

In the second form, the value of evaluation of
the previous line is used as starting value

•

A program is a sequence of lines
P → ε | P L

Compiler Design 1 (2011) 16

Attributes for the Line Calculator

•

Each E

has a synthesized attribute val
–

Calculated as before

•

Each

L

has a synthesized attribute val
L → E = {

L.val

= E.val

}

| + E =

{

L.val

= E.val

+ L.prev

}
•

We need the value of the previous line

•

We use an inherited attribute

L.prev

Compiler Design 1 (2011) 17

Attributes for the Line Calculator (Cont.)

•

Each P

has a synthesized attribute val
–

The value of its last line
P → ε

{ P.val

= 0 }

| P1

L {

P.val

= L.val;
L.prev

= P1

.val

}
•

Each L

has an inherited attribute prev

–

L.prev

is inherited from sibling P1

.val

•

Example …

Compiler Design 1 (2011) 18

Example of Inherited Attributes

•

val

synthesized

•

prev

inherited

•

All can be
computed in
depth-first
order

P

ε

L

+ E3
=

E4
+

int2

E5

int3

+

+

2

0

3

P

Compiler Design 1 (2011) 19

Semantic Actions: Notes (Cont.)

•

Semantic actions can be used to build ASTs

•

And many other things as well
–

Also used for type checking, code generation, …

•

Process is called syntax-directed translation
–

Substantial generalization over CFGs

Compiler Design 1 (2011) 20

Constructing an AST

•

We first define the AST data type
•

Consider an abstract tree type with two
constructors:

mkleaf(n)

mkplus(

T1

) =,

T2

=

PLUS

T1 T2

n

Compiler Design 1 (2011) 21

Constructing a Parse Tree

•

We define a synthesized attribute ast
–

Values of

ast

values are ASTs

–

We assume that int.lexval

is the value of the
integer lexeme

–

Computed using semantic actions

E →

int { E.ast

= mkleaf(int.lexval) }
| E1

+ E2

{

E.ast

= mkplus(E1

.ast, E2

.ast) }
| (E1

) { E.ast

= E1

.ast }

Compiler Design 1 (2011) 22

Parse Tree Example

•

Consider the string int5

‘+’

‘(‘

int2

‘+’

int3

‘)’
•

A bottom-up evaluation of the ast

attribute:

E.ast

= mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))

PLUS

PLUS

25 3

Compiler Design 1 (2011) 23

Review of Abstract Syntax Trees

•

We can specify language syntax using CFG
•

A parser will answer whether s ∈

L(G)

•

…

and will build a parse tree
•

…

which we convert to an AST

•

…

and pass on to the rest of the compiler

•

Next two & a half lectures:
–

How do we answer s ∈

L(G)

and build a parse tree?

•

After that: from AST to assembly language

Compiler Design 1 (2011) 24

Second-Half of Lecture 5: Outline

•

Implementation of parsers
•

Two approaches
–

Top-down

–

Bottom-up
•

Today: Top-Down
–

Easier to understand and program manually

•

Then: Bottom-Up
–

More powerful and used by most parser generators

Compiler Design 1 (2011) 25

Introduction to Top-Down Parsing

•

Terminals are seen in order of
appearance in the token
stream:

t2

t5

t6

t8

t9

•

The parse tree is constructed
–

From the top

–

From left to right

1

t2 3

4

t5

7

t6

t9

t8

Compiler Design 1 (2011) 26

Recursive Descent Parsing

•

Consider the grammar
E →

T + E | T

T →

int | int * T | (E)
•

Token stream is: int5

* int2
•

Start with top-level non-terminal E

•

Try the rules for

E in order

Compiler Design 1 (2011) 27

Recursive Descent Parsing. Example (Cont.)

•

Try E0

→

T1

+ E2
•

Then try a rule for T1 →

(E3)

–

But

(does not match input token

int5

•

Try

T1 →

int . Token matches.
–

But +

after T1

does not match input token *
•

Try T1 →

int * T2

–

This will match but +

after T1

will be unmatched
•

Has exhausted the choices for T1
–

Backtrack to choice for E0

Token stream: int5 * int2

E → T + E | T
T → (E) | int | int * T

Compiler Design 1 (2011) 28

Recursive Descent Parsing. Example (Cont.)

•

Try E0

→

T1
•

Follow same steps as before for T1
–

And succeed with T1 → int5

* T2

and

T2 →

int2

–

With

the following parse tree

E0

T1

int5 * T2

int2

Token stream: int5 * int2

E → T + E | T
T → (E) | int | int * T

Compiler Design 1 (2011) 29

Recursive Descent Parsing. Notes.

•

Easy to implement by hand

•

Somewhat inefficient (due to backtracking)

•

But does not always work …

Compiler Design 1 (2011) 30

When Recursive Descent Does Not Work

•

Consider a production S →

S a
bool

S1

() { return S() && term(a); }
bool

S() { return S1

(); }
•

S()

will get into an infinite loop

•

A left-recursive grammar

has a non-terminal S
S →+

Sα

for some

α

•

Recursive descent does not work in such cases

Compiler Design 1 (2011) 31

Elimination of Left Recursion

•

Consider the left-recursive grammar
S

→ S α

| β

•

S

generates all strings starting with a β

and
followed by any number of

α’s

•

The grammar can be rewritten using right-
 recursion

S

→ β S’
S’

→ α S’

| ε

Compiler Design 1 (2011) 32

More Elimination of Left-Recursion

•

In general
S

→

S α1

| …

| S αn

| β1

| …

| βm

•

All strings derived from S

start with one of
β1

,…,βm

and continue with several instances of
 α1

,…,αn
•

Rewrite as

S

→ β1

S’

| …

| βm

S’
S’

→ α1

S’

| …

| αn S’

| ε

Compiler Design 1 (2011) 33

General Left Recursion

•

The grammar
S

→

A α

| δ

A →

S β
is also left-recursive because

S

→+

S β α

•

This left-recursion can also be eliminated
•

See a Compilers book for a general algorithm

Compiler Design 1 (2011) 34

Summary of Recursive Descent

•

Simple and general parsing strategy
–

Left-recursion must be eliminated first

–

…

but that can be done automatically
•

Unpopular because of backtracking
–

Thought to be too inefficient

•

In practice, backtracking is eliminated by
restricting the grammar

Compiler Design 1 (2011) 35

Predictive Parsers

•

Like recursive-descent but parser can
“predict”

which production to use

–

By looking at the next few tokens
–

No backtracking

•

Predictive parsers accept LL(k)

grammars
–

L

means “left-to-right”

scan of input

–

L

means “leftmost derivation”
–

k

means “predict based on k tokens of lookahead”

•

In practice, LL(1)

is used

Compiler Design 1 (2011) 36

LL(1) Languages

•

In recursive-descent, for each non-terminal
and input token there may be a choice of
production

•

LL(1) means that for each non-terminal and
token there is only one production

•

Can be specified via 2D tables
–

One dimension for current non-terminal to expand

–

One dimension for next token
–

A table entry contains one production

Compiler Design 1 (2011) 37

Predictive Parsing and Left Factoring

•

Recall the grammar for arithmetic expressions
E →

T + E | T

T → (E) | int | int * T

•

Hard to predict because
–

For T

two productions start with int

–

For E

it is not clear how to predict

•

A grammar must be left-factored

before it is
used for predictive parsing

Compiler Design 1 (2011) 38

Left-Factoring Example

•

Recall the grammar
E →

T + E | T

T → (E) | int | int * T

•

Factor out common prefixes of productions
E →

T X

X

→ + E | ε
T → (E) | int Y
Y

→

* T | ε

Compiler Design 1 (2011) 39

LL(1) Parsing Table Example

•

Left-factored grammar
E →

T X X → + E | ε

T → (E) | int Y Y →

* T | ε

•

The LL(1) parsing table:

int * + () $
E T X T X
X + E ε ε
T int Y (E)
Y * T ε ε ε

Compiler Design 1 (2011) 40

LL(1) Parsing Table Example (Cont.)

•

Consider the [E, int] entry
–

“When current non-terminal is E

and next input is

int, use production E →

T X
–

This production can generate an int

in the first

place
•

Consider the [Y,+] entry
–

“When current non-terminal is Y

and current token

is +, get rid of Y”
–

Y

can be followed by +

only in a derivation in which

Y → ε

Compiler Design 1 (2011) 41

LL(1) Parsing Tables: Errors

•

Blank entries indicate error situations
–

Consider the [E,*] entry

–

“There is no way to derive a string starting with *
 from non-terminal E”

Compiler Design 1 (2011) 42

Using Parsing Tables

•

Method similar to recursive descent, except
–

For each non-terminal S

–

We look at the next token a
–

And chose the production shown at [S,a]

•

We use a stack to keep track of pending non-
 terminals

•

We reject when we encounter an error state
•

We accept when we encounter end-of-input

Compiler Design 1 (2011) 43

LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat

case stack of
<X, rest> : if T[X,*next] = Y1 …Yn

then stack ←

<Y1 …Yn rest>;
else error();

<t, rest> : if t == *next++
then stack ←

<rest>;

else error();
until stack == <>

Compiler Design 1 (2011) 44

LL(1) Parsing Example

Stack Input Action
E $ int * int

$ T X

T X $ int * int

$ int Y
int Y X $ int * int

$ terminal

Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ ε
X $ $ ε
$ $ ACCEPT

int * + () $

E T X T X

X + E ε ε

T int Y (E)

Y * T ε ε ε

Compiler Design 1 (2011) 45

Constructing Parsing Tables

•

LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

•

No table entry can be multiply defined

•

We want to generate parsing tables from CFG

Compiler Design 1 (2011) 46

Constructing Parsing Tables (Cont.)

•

If A → α, where in the line of A

we place α

?
•

In the column of t

where t

can start a string

derived from α
–

α →*

t β

–

We say that

t ∈

First(α)
•

In the column of t

if α

is ε

and t

can follow an

A
–

S →*

β

A t δ

–

We say

t ∈

Follow(A)

Compiler Design 1 (2011) 47

Computing First Sets

Definition
First(X) = { t | X →*

tα} ∪

{ε

| X →*

ε}

Algorithm sketch
1.

First(t) = { t }

2.

ε ∈ First(X)

if X → ε is a production
3.

ε ∈ First(X)

if X →

A1

… An
and ε ∈ First(Ai

)

for each 1 ≤

i ≤

n
4.

First(α) ⊆

First(X)

if X →

A1

… An

α
and ε ∈ First(Ai

)

for each 1 ≤

i ≤

n

Compiler Design 1 (2011) 48

First Sets: Example

•

Recall the grammar
E →

T X X → + E | ε

T → (E) | int Y Y → * T | ε
•

First sets

First((

) = { (

} First()

) = {)

}
First(+

) = { +

} First(*

) = { *

}

First(int) = { int

}
First(T

) = { int,

(

}

First(E

) = { int, (

}
First(X

) = { +, ε

}

First(Y

) = { *, ε

}

Compiler Design 1 (2011) 49

Computing Follow Sets

•

Definition
Follow(X) = { t | S →*

β

X t δ

}

•

Intuition
–

If X → A B then

First(B) ⊆

Follow(A)

and

Follow(X) ⊆

Follow(B)
–

Also if B →*

ε

then

Follow(X) ⊆

Follow(A)

–

If

S is the start symbol then $ ∈

Follow(S)

Compiler Design 1 (2011) 50

Computing Follow Sets (Cont.)

Algorithm sketch
1.

$ ∈

Follow(S)

2.

First(β) -

{ε} ⊆

Follow(X)
For each production A → α X β

3.

Follow(A) ⊆

Follow(X)
For each production A → α X β

where ε ∈ First(β)

Compiler Design 1 (2011) 51

Follow Sets: Example

•

Recall the grammar
E →

T X X → + E | ε

T → (E) | int Y Y → * T | ε
•

Follow sets
Follow(+

) = { int, (

} Follow(*

) = { int, (}

Follow((

) = { int, (

} Follow(E) = {), $ }
Follow(X

) = { $,)

} Follow(T) = { +,) , $ }

Follow()

) = { +,) , $ } Follow(Y

) = { +,) , $ }
Follow(int) = { *, +,) , $ }

Compiler Design 1 (2011) 52

Constructing LL(1) Parsing Tables

•

Construct a parsing table T for CFG G

•

For each production A → α in G do:
–

For each terminal t ∈

First(α)

do

•

T[A, t] = α
–

If ε ∈ First(α), for each t ∈

Follow(A)

do

•

T[A, t] = α
–

If ε ∈ First(α)

and $ ∈

Follow(A)

do

•

T[A, $] = α

Compiler Design 1 (2011) 53

Notes on LL(1) Parsing Tables

•

If any entry is multiply defined then G is not
LL(1)
–

If G is ambiguous

–

If G is left recursive
–

If G is not left-factored

–

And in other cases as well
•

Most programming language grammars are not
LL(1)

•

There are tools that build LL(1) tables

Compiler Design 1 (2011) 54

Review

•

For some grammars there is a simple parsing
strategy

Predictive parsing

•

Next time: a more powerful parsing strategy

