Review of Parsing

- Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree
- Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes how $s \in L(G)$
 - Ambiguity: more than one parse tree (possible interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
 - **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees (Cont.)

- Consider the grammar
 $$E \rightarrow \text{int} \mid (E) \mid E + E$$
- And the string
 $$5 + (2 + 3)$$
- After lexical analysis (a list of tokens)
 $$\text{int}_5 ' + ' '(' \text{int}_2 ' + ' \text{int}_3 ')'$$
- During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - More compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we’ll use to construct ASTs
- Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
 - Written as: $X \rightarrow Y_1 \ldots Y_n \{ \text{action} \}$
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

- Consider the grammar
 $$E \rightarrow \text{int} \mid E + E \mid (E)$$
- For each symbol X define an attribute $X.val$
 - For terminals, val is the associated lexeme
 - For non-terminals, val is the expression’s value (which is computed from values of subexpressions)
- We annotate the grammar with actions:
 $$E \rightarrow \text{int} \{ E.val = \text{int}.val \}$$
 $$\mid E_1 + E_2 \{ E.val = E_1.val + E_2.val \}$$
 $$\mid (E_1) \{ E.val = E_1.val \}$$
Semantic Actions: An Example (Cont.)

• String: 5 + (2 + 3)
• Tokens: int5 ' ' (' ' int2 ' + ' int3 ' ')'

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → E1 + E2</td>
<td>E.val = E1.val + E2.val</td>
</tr>
<tr>
<td>E1 → int5</td>
<td>E1.val = int5.val = 5</td>
</tr>
<tr>
<td>E2 → (E3)</td>
<td>E2.val = E3.val</td>
</tr>
<tr>
<td>E3 → E4 + E5</td>
<td>E3.val = E4.val + E5.val</td>
</tr>
<tr>
<td>E4 → int2</td>
<td>E4.val = int2.val = 2</td>
</tr>
<tr>
<td>E5 → int3</td>
<td>E5.val = int3.val = 3</td>
</tr>
</tbody>
</table>

Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

• Example:
 \[E_3.val = E_4.val + E_5.val \]
 - Must compute \(E_4.val \) and \(E_5.val \) before \(E_3.val \)
 - We say that \(E_3.val \) depends on \(E_4.val \) and \(E_5.val \)

• The parser must find the order of evaluation

Dependency Graph

• Each node labeled with a non-terminal \(E \) has one slot for its \(\text{val} \) attribute
• Note the dependencies

Evaluating Attributes

• An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

• Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

- **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree
 - \(E \cdot val \) is a synthesized attribute
 - Can always be calculated in a bottom-up order

- Grammars with only synthesized attributes are called S-attributed grammars
 - Most frequent kinds of grammars

Inherited Attributes

- Another kind of attributes
- Calculated from attributes of the parent node(s) and/or siblings in the parse tree

- Example: a line calculator

A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \epsilon \mid PL \]

Attributes for the Line Calculator

- Each \(E \) has a synthesized attribute \(\text{val} \)
 - Calculated as before
- Each \(L \) has a synthesized attribute \(\text{val} \)
 \[L \rightarrow E = \{ L \cdot \text{val} = E \cdot \text{val} \} \]
 \[+ E = \{ L \cdot \text{val} = E \cdot \text{val} + L \cdot \text{prev} \} \]
- We need the value of the previous line
- We use an inherited attribute \(L \cdot \text{prev} \)
Attributes for the Line Calculator (Cont.)

• Each P has a synthesized attribute val
 - The value of its last line
 $$P \rightarrow \epsilon \quad \{ P.\text{val} = 0 \}$$
 $$| \quad P_1 L \quad \{ P.\text{val} = L.\text{val};$$
 $$\quad L.\text{prev} = P_1.\text{val} \}$$

• Each L has an inherited attribute prev
 - $L.\text{prev}$ is inherited from sibling $P_1.\text{val}$

• Example ...

Example of Inherited Attributes

• val synthesized

• prev inherited

• All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 - Also used for type checking, code generation, ...

• Process is called syntax-directed translation
 - Substantial generalization over CFGs

Constructing an AST

• We first define the AST data type

• Consider an abstract tree type with two constructors:

$$\text{mkleaf}(n) = \boxed{n}$$

$$\text{mkplus}(, ,) = \boxed{\text{PLUS}}$$

Compiler Design 1 (2011)
Constructing a Parse Tree

- We define a synthesized attribute \(\text{ast} \)
 - Values of \(\text{ast} \) values are ASTs
 - We assume that \(\text{int}.\text{lexval} \) is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad \{ \text{E.ast} = \text{mkleaf}(\text{int.}\text{lexval}) \} \\
\mid E_1 + E_2 \quad \{ \text{E.ast} = \text{mkplus}(E_1.\text{ast}, E_2.\text{ast}) \} \\
\mid (E_1) \quad \{ \text{E.ast} = E_1.\text{ast} \}
\]

Parse Tree Example

- Consider the string \(\text{int}_5 \ ' + ' (\text{int}_2 \ ' + ' \text{int}_3 ') \)
- A bottom-up evaluation of the \(\text{ast} \) attribute:
 \[
 E.\text{ast} = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))
 \]

Review of Abstract Syntax Trees

- We can specify language syntax using CFG
- A parser will answer whether \(s \in L(G) \)
- ... and will build a parse tree
- ... which we convert to an AST
- ... and pass on to the rest of the compiler
- Next two & a half lectures:
 - How do we answer \(s \in L(G) \) and build a parse tree?
- After that: from AST to assembly language

Second-Half of Lecture 5: Outline

- Implementation of parsers
- Two approaches
 - Top-down
 - Bottom-up
- Today: Top-Down
 - Easier to understand and program manually
- Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

• Terminals are seen in order of appearance in the token stream:
 \[t_2 \ t_5 \ t_6 \ t_8 \ t_9 \]

• The parse tree is constructed
 - From the top
 - From left to right

Recursive Descent Parsing

• Consider the grammar
 \[
 E \rightarrow T \cdot E \mid T \\
 T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
 \]

• Token stream is: \(\text{int}_5 \ast \text{int}_2 \)

• Start with top-level non-terminal \(E \)

• Try the rules for \(E \) in order

Recursive Descent Parsing. Example (Cont.)

• Try \(E_0 \rightarrow T_1 \ast E_2 \)

• Then try a rule for \(T_1 \rightarrow (E_3) \)
 - But \((\) does not match input token \(\text{int}_5 \)

• Try \(T_1 \rightarrow \text{int} \). Token matches.
 - But \(\ast \) after \(T_1 \) does not match input token \(\ast \)

• Try \(T_1 \rightarrow \text{int} \ast T_2 \)
 - This will match but \(\ast \) after \(T_1 \) will be unmatched

• Has exhausted the choices for \(T_1 \)
 - Backtrack to choice for \(E_0 \)

Recursive Descent Parsing. Example (Cont.)

• Try \(E_0 \rightarrow T_1 \)
 - Token stream: \(\text{int}_5 \ast \text{int}_2 \)

• Follow same steps as before for \(T_1 \)
 - And succeed with \(T_1 \rightarrow \text{int}_5 \ast T_2 \) and \(T_2 \rightarrow \text{int}_2 \)
 - With the following parse tree

\[
\begin{array}{c}
E_0 \\
T_1 \\
\text{int}_5 \\
\ast \\
T_2 \\
E \rightarrow T \cdot E \mid T \\
T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \\
\end{array}
\]
Recursive Descent Parsing. Notes.

- Easy to implement by hand
- Somewhat inefficient (due to backtracking)
- But does not always work …

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S a$

  ```
  bool $S_1()$ { return $S()$ && term(a); }
  bool $S()$ { return $S_1();$ }
  ```
- $S()$ will get into an infinite loop

- A left-recursive grammar has a non-terminal S

 $S \rightarrow S\alpha$ for some α
- Recursive descent does not work in such cases

Elimination of Left Recursion

- Consider the left-recursive grammar

 $S \rightarrow S \alpha | \beta$
- S generates all strings starting with a β and followed by any number of α’s
- The grammar can be rewritten using right-recursion

 $S \rightarrow \beta S'$
 $S' \rightarrow \alpha S' | \varepsilon$

More Elimination of Left-Recursion

- In general

 $S \rightarrow S \alpha_1 | \ldots | S \alpha_n | \beta_1 | \ldots | \beta_m$
- All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$
- Rewrite as

 $S \rightarrow \beta_1 S' | \ldots | \beta_m S'$
 $S' \rightarrow \alpha_1 S' | \ldots | \alpha_n S' | \varepsilon$
General Left Recursion

- The grammar

 \[S \rightarrow A \alpha | \delta \]

 \[A \rightarrow S \beta \]

 is also left-recursive because

 \[S \rightarrow S \beta \alpha \]

- This left-recursion can also be eliminated
- See a Compilers book for a general algorithm

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

• Recall the grammar for arithmetic expressions
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

• Hard to predict because
 - For \(T \) two productions start with \text{int}
 - For \(E \) it is not clear how to predict

• A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

• Recall the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

• Factor out common prefixes of productions
 \[E \rightarrow TX \]
 \[X \rightarrow + E \mid \varepsilon \]
 \[T \rightarrow (E) \mid \text{int} Y \]
 \[Y \rightarrow \ast T \mid \varepsilon \]

LL(1) Parsing Table Example

• Left-factored grammar
 \[E \rightarrow TX \]
 \[X \rightarrow + E \mid \varepsilon \]
 \[T \rightarrow (E) \mid \text{int} Y \]
 \[Y \rightarrow \ast T \mid \varepsilon \]

• The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>()</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>+E</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>T</td>
<td>intY</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td>*T</td>
<td>ε</td>
<td>ε</td>
</tr>
</tbody>
</table>

LL(1) Parsing Table Example (Cont.)

• Consider the \([E, \text{int}]\) entry
 - “When current non-terminal is \(E \) and next input is \text{int}, use production \(E \rightarrow TX \)
 - This production can generate an \text{int} in the first place

• Consider the \([Y,+]\) entry
 - “When current non-terminal is \(Y \) and current token is +, get rid of \(Y \)”
 - \(Y \) can be followed by + only in a derivation in which \(Y \rightarrow \varepsilon \)
LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the \([\text{E,*}]\) entry
 - "There is no way to derive a string starting with * from non-terminal \(\text{E}\)"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal \(S\)
 - We look at the next token \(a\)
 - And chose the production shown at \([S,a]\)
 - We use a stack to keep track of pending non-terminals
 - We reject when we encounter an error state
 - We accept when we encounter end-of-input

LL(1) Parsing Algorithm

initialize stack = \(<\text{S $}>\) and next
repeat
 case stack of
 \(<X, \text{rest}>\) : if \(T[X,*\text{next}] = Y_1 \ldots Y_n\)
 then stack ← \(<Y_1 \ldots Y_n \text{rest}>\);
 else error();
 \(<t, \text{rest}>\) : if \(t == *\text{next}++\)
 then stack ← \(<\text{rest}>\);
 else error();
 until stack == <>

LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{E $})</td>
<td>(\text{int * int $})</td>
<td>(\text{T X})</td>
</tr>
<tr>
<td>(\text{T X $})</td>
<td>(\text{int * int $})</td>
<td>(\text{int Y})</td>
</tr>
<tr>
<td>(\text{int Y X $})</td>
<td>(\text{int * int $})</td>
<td>(\text{terminal})</td>
</tr>
<tr>
<td>(\text{Y X $})</td>
<td>(* \text{int $})</td>
<td>(* \text{T})</td>
</tr>
<tr>
<td>(\text{* T X $})</td>
<td>(* \text{int $})</td>
<td>(\text{terminal})</td>
</tr>
<tr>
<td>(\text{T X $})</td>
<td>(\text{int $})</td>
<td>(\text{int Y})</td>
</tr>
<tr>
<td>(\text{int Y X $})</td>
<td>(\text{int $})</td>
<td>(\text{terminal})</td>
</tr>
<tr>
<td>(\text{Y X $})</td>
<td>($)</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>(\text{X $})</td>
<td>($)</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>($)</td>
<td>($)</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If \(A \rightarrow \alpha \), where in the line of \(A \) we place \(\alpha \)?
- In the column of \(t \) where \(t \) can start a string derived from \(\alpha \)
 - \(\alpha \rightarrow^* t \beta \)
 - We say that \(t \in \text{First}(\alpha) \)
- In the column of \(t \) if \(\alpha \) is \(\epsilon \) and \(t \) can follow an \(A \)
 - \(S \rightarrow^* \beta A \mid \delta \)
 - We say \(t \in \text{Follow}(A) \)

Computing First Sets

Definition

\[
\text{First}(X) = \{ t \mid X \rightarrow^* t \alpha \} \cup \{ \epsilon \mid X \rightarrow^* \epsilon \}
\]

Algorithm sketch

1. \(\text{First}(t) = \{ t \} \)
2. \(\epsilon \in \text{First}(X) \) if \(X \rightarrow \epsilon \) is a production
3. \(\epsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \)
 and \(\epsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \)
 and \(\epsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)

First Sets: Example

- Recall the grammar
 \[
 \begin{align*}
 E &\rightarrow TX \\
 T &\rightarrow (E) \mid \text{int } Y \\
 X &\rightarrow +E \mid \epsilon \\
 Y &\rightarrow *T \mid \epsilon
 \end{align*}
 \]
- First sets
 \[
 \begin{align*}
 \text{First}(()) &= \{ () \} \\
 \text{First}(+) &= \{ + \} \\
 \text{First}(*) &= \{ * \} \\
 \text{First}(\text{int}) &= \{ \text{int} \} \\
 \text{First}(T) &= \{ \text{int}, () \} \\
 \text{First}(E) &= \{ \text{int}, () \} \\
 \text{First}(X) &= \{ +, \epsilon \} \\
 \text{First}(Y) &= \{ *, \epsilon \}
 \end{align*}
 \]
Computing Follow Sets

• **Definition**
 \[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta X t \delta \} \]

• **Intuition**
 - If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \)
 and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
 - Also if \(B \rightarrow^* \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
 - If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)

Follow Sets: Example

• Recall the grammar
 \[
 \begin{align*}
 E & \rightarrow TX \\
 T & \rightarrow (E) | \text{int} \ Y \\
 X & \rightarrow +E | \varepsilon \\
 Y & \rightarrow *T | \varepsilon
 \end{align*}
 \]

• Follow sets
 \[
 \begin{align*}
 \text{Follow}(+) & = \{ \text{int}, (\} \\
 \text{Follow}(*) & = \{ \text{int}, (\} \\
 \text{Follow}(() & = \{ \text{int}, (\} \\
 \text{Follow}(E) & = \{), \$ \} \\
 \text{Follow}(X) & = \{ \$,) \} \\
 \text{Follow}(Y) & = \{ + ,), \$ \} \\
 \text{Follow}(\text{int}) & = \{ *, + ,) , \$ \}
 \end{align*}
 \]

Constructing LL(1) Parsing Tables

• Construct a parsing table \(T \) for CFG \(G \)

• For each production \(A \rightarrow \alpha \) in \(G \) do:
 - For each terminal \(t \in \text{First}(\alpha) \) do
 \[T[A, t] = \alpha \]
 - If \(\varepsilon \in \text{First}(\alpha) \), for each \(t \in \text{Follow}(A) \) do
 \[T[A, t] = \alpha \]
 - If \(\varepsilon \in \text{First}(\alpha) \) and \(\$ \in \text{Follow}(A) \) do
 \[T[A, \$] = \alpha \]
Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy
 Predictive parsing
- Next time: a more powerful parsing strategy