Implementation of Lexical Analysis

Notation

- For convenience, we use a variation (allow userdefined abbreviations) in regular expression notation
- Union: $A + B \equiv A \mid B$
- Option: $A + \varepsilon = A$?
- Range: $a'+b'+...+z' \equiv [a-z]$
- Excluded range:

complement of $[a-z] \equiv [^a-z]$

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions $\mathsf{RegExp} \Rightarrow \mathsf{NFA} \Rightarrow \mathsf{DFA} \Rightarrow \mathsf{Tables}$

Compiler Design 1 (2011)

Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate $s \in L(R)$
- But a yes/no answer is not enough !
- Instead: partition the input into tokens
- We will adapt regular expressions to this goal

Regular Expressions \Rightarrow Lexical Spec. (1)

- 1. Select a set of tokens
 - Integer, Keyword, Identifier, OpenPar, ...
- 2. Write a regular expression (pattern) for the lexemes of each token
 - Integer = digit +
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = '('

...

Compiler Design 1 (2011)

Regular Expressions \Rightarrow Lexical Spec. (2)

3. Construct R, matching all lexemes for all tokens

R = Keyword + Identifier + Integer + ... = $R_1 + R_2 + R_3 + ...$

Facts: If $s \in L(R)$ then s is a lexeme

- Furthermore $s \in L(R_i)$ for some "i"
- This "i" determines the token that is reported

Regular Expressions \Rightarrow Lexical Spec. (3)

- 4. Let input be $x_1...x_n$
 - (x₁ ... x_n are characters)
 - $\bullet \quad \text{For } 1 \leq i \leq n \text{ check}$

x₁...x_i ∈ L(R) ?

5. It must be that

```
x_{1}...x_{i} \in L(R_{j}) for some j
(if there is a choice, pick a smallest such j)
```

6. Remove $x_1...x_i$ from input and go to previous step

How to Handle Spaces and Comments?

1. We could create a token Whitespace

Whitespace = $(' + '\n' + '\t')^+$

- We could also add comments in there
- An input "\t\n 5555 " is transformed into Whitespace Integer Whitespace
- 2. Lexer skips spaces (preferred)
 - Modify step 5 from before as follows: It must be that $x_k \dots x_i \in L(R_j)$ for some j such that $x_1 \dots x_{k-1} \in L(Whitespace)$
 - Parser is not bothered with spaces

5

Compiler Design 1 (2011)

Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if
 - $x_1...x_i \in L(R)$ and also
 - $x_1...x_K \in L(R)$
 - Rule: Pick the longest possible substring
 - The "maximal munch"

Ambiguities (2)

- Which token is used? What if
 - * $x_1...x_i \in L(R_j)$ and also
 - $x_1...x_i \in L(R_k)$
 - Rule: use rule listed first (j if j < k)
- Example:
 - R₁ = Keyword and R₂ = Identifier
 - "if" matches both
 - Treats "if" as a keyword not an identifier

Compiler Design 1 (2011)

Error Handling

- What if No rule matches a prefix of input ?
- Problem: Can't just get stuck ...
- Solution:
 - Write a rule matching all "bad" strings
 - Put it last
- Lexer tools allow the writing of:
 - $\mathsf{R} = \mathsf{R}_1 + \dots + \mathsf{R}_n + \mathsf{Error}$
 - Token Error matches if nothing else matches

Summary

Compiler Design 1 (2011)

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)

9

Regular Languages & Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

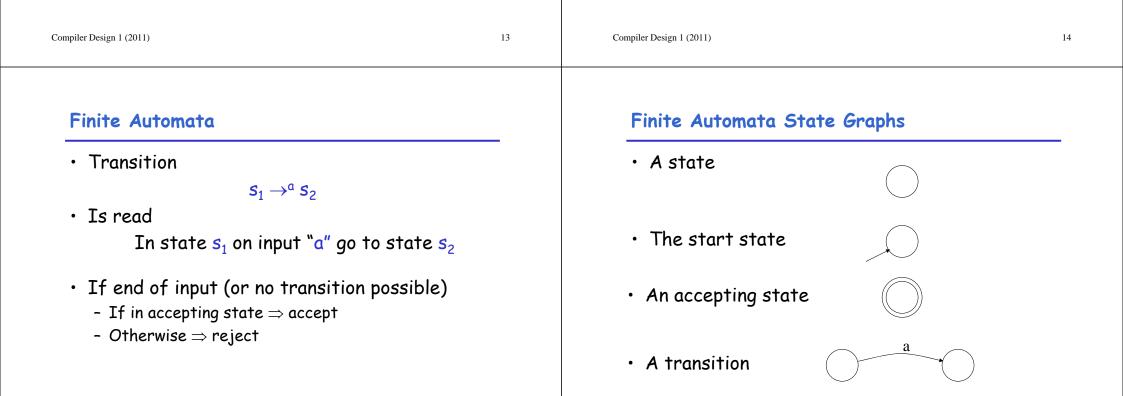
- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a *recognizer* for the strings of a regular language

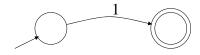
A finite automaton consists of

- A finite input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $\mathsf{F} \subseteq \mathsf{S}$
- A set of transitions state \rightarrow^{input} state



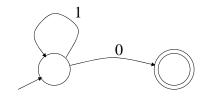
A Simple Example

• A finite automaton that accepts only "1"



Another Simple Example

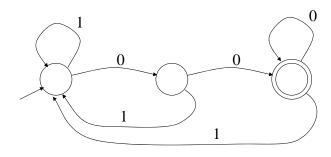
- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}



Compiler Design 1 (2011) 17 Compiler Design 1 (2011)	18
--	----

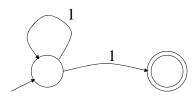
And Another Example

- Alphabet {0,1}
- What language does this recognize?



And Another Example

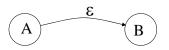
Alphabet still { 0, 1 }



- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves

• Another kind of transition: ϵ -moves



• Machine can move from state A to state B without reading input

Deterministic and Non-Deterministic Automata

• Deterministic Finite Automata (DFA)

- One transition per input per state
- No $\epsilon\text{-moves}$
- Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have $\epsilon\text{-moves}$
- Finite automata have finite memory
 - Enough to only encode the current state

Compiler Design 1 (2011)

21

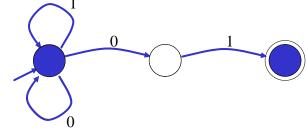
Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make $\epsilon\text{-moves}$
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

Compiler Design 1 (2011)

• An NFA can get into multiple states



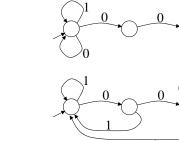
- Input: 1 0 1
- Rule: NFA accepts an input if it <u>can</u> get in a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

• For a given language the NFA can be simpler than the DFA



• DFA can be exponentially larger than NFA

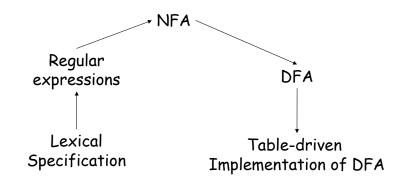
Compiler Design 1 (2011)

NFA

DFA

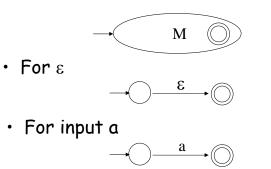
Regular Expressions to Finite Automata

High-level sketch



Regular Expressions to NFA (1)

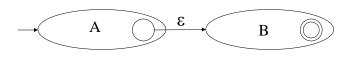
For each kind of reg. expr, define an NFA
Notation: NFA for regular expression M



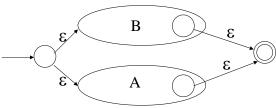
Compiler Design 1 (2011)

Regular Expressions to NFA (2)

• For AB



• For A + B

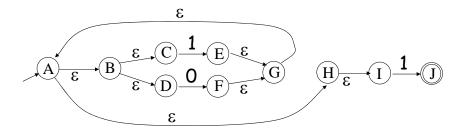


Compiler Design 1 (2011)

29

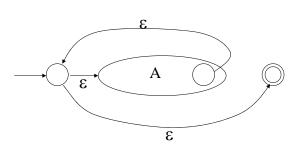
Example of Regular Expression \rightarrow NFA conversion

- Consider the regular expression (1+0)*1
- The NFA is



Regular Expressions to NFA (3)

・For A*



Compiler Design 1 (2011)

NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through $\epsilon\text{-moves}$ from NFA start state
- Add a transition S \rightarrow^{a} S' to DFA iff
 - S' is the set of NFA states reachable from <u>any</u> state in S after seeing the input a
 - considering ϵ -moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states ?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - 2^N 1 = finitely many

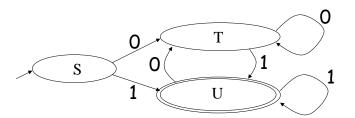
Compiler Design 1 (2011)

33

Implementation

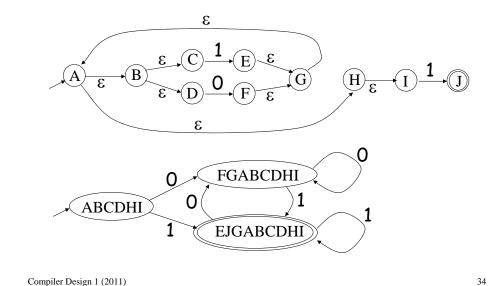
- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbols"
 - For every transition $S_i \rightarrow^{\alpha} S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA



	0	1
5	Т	U
Т	Т	U
U	Т	U

NFA to DFA Example



Implementation (Cont.)

- NFA \rightarrow DFA conversion is at the heart of tools such as lex, ML-Lex or flex
- But, DFAs can be huge
- In practice, lex/ML-Lex/flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice

Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.
- DFAs consume the complete string and accept or reject it. A lexer must *find* the end of the lexeme in the input stream and then find the *next* one, etc.

Compiler Design 1 (2011)	37	Compiler Design 1 (2011)	38