
Introduction to Lexical

Analysis

Compiler Design 1 (2011) 2

Outline

•

Informal sketch of lexical analysis
–

Identifies tokens in input string

•

Issues in lexical analysis
–

Lookahead

–

Ambiguities

•

Specifying lexers
–

Regular expressions

–

Examples of regular expressions

Compiler Design 1 (2011) 3

Lexical Analysis

•

What do we want to do? Example:
if (i == j)
then

Z = 0;
else

Z = 1;
•

The input is just a string of characters:
\tif

(i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Goal: Partition input string into substrings
–

Where the substrings are tokens

Compiler Design 1 (2011) 4

What’s a Token?

•

A syntactic category
–

In English:

noun, verb, adjective, …

–

In a programming language:
Identifier, Integer, Keyword, Whitespace, …

Compiler Design 1 (2011) 5

Tokens

•

Tokens correspond to sets of strings.

•

Identifier: strings of letters or digits,
starting with a letter

•

Integer: a non-empty string of digits
•

Keyword: “else” or “if” or “begin” or …

•

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

Compiler Design 1 (2011) 6

What are Tokens used for?

•

Classify program substrings according to role

•

Output of lexical analysis is a stream of
tokens . . .

•

. . . which is input to the parser

•

Parser relies on token distinctions
–

An identifier is treated differently than a keyword

Compiler Design 1 (2011) 7

Designing a Lexical Analyzer: Step 1

•

Define a finite set of tokens
–

Tokens describe all items of interest

–

Choice of tokens depends on language, design of
parser

•

Recall
\tif

(i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Useful tokens for this expression:
Integer, Keyword, Relation, Identifier, Whitespace,

(,), =, ;

Compiler Design 1 (2011) 8

Designing a Lexical Analyzer: Step 2

•

Describe which strings belong to each token

•

Recall:
–

Identifier: strings of letters or digits, starting
with a letter

–

Integer: a non-empty string of digits
–

Keyword: “else” or “if” or “begin” or …

–

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

Compiler Design 1 (2011) 9

Lexical Analyzer: Implementation

An implementation must do two things:

1.

Recognize substrings corresponding to tokens

2.

Return the value or lexeme of the token
–

The lexeme is the substring

Compiler Design 1 (2011) 10

Example

•

Recall:
\tif (i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Token-lexeme groupings:
–

Identifier: i, j, z

–

Keyword: if, then, else
–

Relation: ==

–

Integer: 0, 1
–

(,), =, ;

single character of the same name

Compiler Design 1 (2011) 11

Why do Lexical Analysis?

•

Dramatically simplify parsing
–

The lexer usually discards “uninteresting”

tokens

that don’t contribute to parsing
•

E.g. Whitespace, Comments

–

Converts data early
•

Separate out logic to read source files
–

Potentially an issue on multiple platforms

–

Can optimize reading code independently of parser

Compiler Design 1 (2011) 12

True Crimes of Lexical Analysis

•

Is it as easy as it sounds?

•

Not quite!

•

Look at some programming language history . . .

Compiler Design 1 (2011) 13

Lexical Analysis in FORTRAN

•

FORTRAN rule: Whitespace is insignificant

•

E.g., VAR1 is the same as VA R1

•

Footnote: FORTRAN whitespace rule was motivated
by inaccuracy of punch card operators

Compiler Design 1 (2011) 14

A terrible design! Example

•

Consider
– DO 5 I = 1,25
– DO 5 I = 1.25

•

The first is DO 5 I = 1 , 25
•

The second is DO5I = 1.25

•

Reading left-to-right, cannot tell if DO5I is a
variable or DO stmt. until after “,”

is reached

Compiler Design 1 (2011) 15

Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1.

The goal is to partition the string. This is
implemented by reading left-to-write, recognizing
one token at a time

2.

“Lookahead”

may be required to decide where one
token ends and the next token begins

–

Even our simple example has lookahead

issues
i vs. if
= vs. ==

Compiler Design 1 (2011) 16

Another Great Moment in Scanning

•

PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

can be difficult to determine how to label lexemes

Compiler Design 1 (2011) 17

More Modern True Crimes in Scanning

•

Nested template declarations in C++

vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))

Compiler Design 1 (2011) 18

Review

•

The goal of lexical analysis is to
–

Partition the input string into lexemes (the smallest
program units that are individually meaningful)

–

Identify the token of each lexeme

•

Left-to-right scan ⇒

lookahead sometimes
required

Compiler Design 1 (2011) 19

Next

•

We still need
–

A way to describe the lexemes of each token

–

A way to resolve ambiguities
•

Is if two variables i and f?

•

Is == two equal signs = =?

Compiler Design 1 (2011) 20

Regular Languages

•

There are several formalisms for specifying
tokens

•

Regular languages are the most popular
–

Simple and useful theory

–

Easy to understand
–

Efficient implementations

Compiler Design 1 (2011) 21

Languages

Def. Let Σ

be a set of characters. A language Λ
 over Σ

is a set of strings of characters drawn

from Σ
(Σ

is called the alphabet of Λ)

Compiler Design 1 (2011) 22

Examples of Languages

•

Alphabet = English
characters

•

Language = English
sentences

•

Not every string on
English characters is an
English sentence

•

Alphabet = ASCII

•

Language = C programs

•

Note: ASCII character
set is different from
English character set

Compiler Design 1 (2011) 23

Notation

•

Languages are sets of strings

•

Need some notation for specifying which sets
of strings we want our language to contain

•

The standard notation for regular languages is
regular expressions

Compiler Design 1 (2011) 24

Atomic Regular Expressions

•

Single character

•

Epsilon

{ }' ' " "c c=

{ }""ε =

Compiler Design 1 (2011) 25

Compound Regular Expressions

•

Union

•

Concatenation

•

Iteration

{ }| or A B s s A s B+ = ∈ ∈

{ }| and AB ab a A b B= ∈ ∈

*
0

 where ... times ...i i
i

A A A A i A
≥

= =U

Compiler Design 1 (2011) 26

Regular Expressions

•

Def.

The regular expressions over Σ

are the
smallest set of expressions including

*

' ' where
where , are rexp over
" " "
where is a rexp over

c c
A B A B
AB
A A

ε
∈∑

+ ∑

∑

Compiler Design 1 (2011) 27

Syntax vs. Semantics

•

To be careful, we should distinguish syntax
and semantics (meaning)

of regular expressions

{ }

*
0

() ""
(' ') {" "}
() () ()
() { | () and ()}
() ()i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=
=

+ = ∪
= ∈ ∈
= U

Compiler Design 1 (2011) 28

Example: Keyword

Keyword: “else” or “if” or “begin” or …

else' + 'if' + 'begi' n' + L

Note: abbrev'else' 'e''l''siates ''e'

Compiler Design 1 (2011) 29

Example: Integers

Integer: a non-empty string of digits

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation: A AA+ =

Compiler Design 1 (2011) 30

Example: Identifier

Identifier: strings of letters or digits,
starting with a letter

*

letter = 'A' 'Z' 'a' 'z'
identifier = letter (letter digit)

+ + + + +
+

K K

* *(letter + diIs the sgit) ame?

Compiler Design 1 (2011) 31

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

()' ' + '\n' + '\t' +

Compiler Design 1 (2011) 32

Example 1: Phone Numbers

•

Regular expressions are all around you!
•

Consider +46(0)18-471-1056

Σ

= digits ∪

{+,−,(,)}
country = digit digit
city = digit digit
univ = digit digit digit
extension = digit digit digit digit
phone_num = ‘+’country’(’0‘)’city’−’univ’−’extension

Compiler Design 1 (2011) 33

Example 2: Email Addresses

•

Consider kostis@it.uu.se

{ }
+name = letter

address = name '@' name '.'

letters

name '.

'

.,@

name

∑ = ∪

Compiler Design 1 (2011) 34

Summary

•

Regular expressions describe many useful
languages

•

Regular languages are a language specification
–

We still need an implementation

•

Next time: Given a string s and a regular
expression R, is

()?s L R∈

