K-means algorithm

select K points \((m_1, \ldots, m_K)\) randomly

do

\((w_1, \ldots, w_K) = (m_1, \ldots, m_K)\)

all clusters \(C_i = \{\}\)

for each row \(w\) in \(M\)

find the closest point in \((w_1, \ldots, w_K)\) to \(w\)

assign \(w\) to the corresponding cluster:

\[C_i = C_i \cup \{w\}\] (if \(w_i\) is closest point)

end

for each cluster \(C_i\)

 calculate the mean point \(\bar{m}_i\)

while exists \(m_i \neq w_i\)
K-means clustering

• Input: M (set of points), K (number of clusters) m_1, \ldots, m_k (Initial centroids)

• Choosing K
 - Study the data
 - Measure how squared error decreases as more clusters are added

• Choosing centroids
 - Typically randomly
K-means clustering

• Pros:
 - Easy
 - Scalable

• Cons:
 - Works only for certain clusters
 - Sensitive to outliers and noise
K-means clustering
K-means clustering

Bad initial points
K-means clustering
Non-spherical clusters
Questions

• Using the euclidean distance one gets spherical clusters, what types of clusters does one get using the manhattan distance?

• If we assume that the K-means algorithm converges in I iterations, with N points and X characteristics for each point give an approximation of the complexity of the algorithm expressed in K, I, N and X

• Can the K-means algorithm be parallellized? if yes how?
I want to cluster this class into 5 different clusters. Assume that I know:

- Your Age
- What row you are sitting in
- Whether you handed in the first assignment on time or not
- How many years you have studied at university

Design a method to use K-means to create these clusters
DB Scan

- Density based clustering
- Connected regions with sufficiently high density
- Clusters with arbitrary shape
- Avoids outliers, noise
DB Scan
- key concepts

- **ε-neighbourhood**
 - the neighbourhood within a radius ε of an object

- **core object**
 - an object is a core object iff there are more than MinPts objects in its ε-neighbourhood

- **directly density reachable (ddr)**
 - An object p is ddr from q iff q is a core object and p is inside the ε-neighbourhood of $q
DB Scan
- key concepts

• density reachable (dr)
 - an object \(q \) is \(\text{dr} \) from \(p \) iff there exists a chain of objects \(p_1, \ldots, p_n \) such that \(p_1 \) is \(\text{ddr} \) from \(p \), \(p_2 \) is \(\text{ddr} \) from \(p_1 \), \(p_3 \) is \(\text{ddr} \) from ... and \(q \) is \(\text{ddr} \) from \(p_n \).

• density connected (dc)
 - \(p \) is \(\text{dc} \) to \(q \) iff exist an object \(o \) such that \(p \) is \(\text{dr} \) from \(o \) and \(q \) is \(\text{dr} \) from \(o \)
DB Scan
- How to use DB scan to cluster

- Idea:
 - If object p is density connected to q, then p and q should belong to the same cluster
 - If an object is not density connected to any other object it is considered as noise
DB Scan
- How to use DB scan to cluster

• Naïve Algorithm:

\[
i = 0
\]

\[
do
\]

\[
take a point p from M
\]

\[
find the set of points P which are density connected to p
\]

\[
if P = {}
\]

\[
M = M / \{p\}
\]

\[
else C_i = P, i = i+1, M = M / P
\]

\[
end
\]

\[
while M \neq {}
\]
More practical Algorithm:

\[i = 0, \text{Find the core points CP in M} \]

do

\[\text{take a point } p \text{ from CP} \]

\[\text{find the set of points } P \text{ which are density} \]

\[\text{reachable from } p \]

\[C_i = P, \quad i = i+1, \quad \text{CP} = \text{CP} / (\text{CP} \cap P) \]

while \(\text{CP} \neq {} \)
DB Scan

- How to use DB scan to cluster

find the set of points P which are density reachable from p

$C = \{p\}, P = \{p\}$

do

 Remove a point p' from C
 Find all of the points X that are directly density reachable from p'

 $C = C \cup (X \setminus (P \cap X))$

 $P = P \cup X$

while $C \neq {}$
Questions

• Why is the density connected criterion useful to define a cluster, instead of density reachable or directly density reachable?

• For which points are density reachable symmetric?

• Express using only core objects and directly density reachable, which objects will belong to a cluster.
Practical db scan

Try to use the db scan algorithm with the following parameters:

MinPts:
Eps:

To determine if you are a core point, if you belong to a cluster.