

Overview

- Data & Types of Data
- Fuzzy Sets
- Information Retrieval
- Machine Learning
- Statistics & Estimation Techniques

Data Mining Lecture 2

2

- Similarity Measures
- Decision Trees

Properties of Attribute Values The type of an attribute depends on which of the following properties it possesses: - Distinctness: = ≠ - Order: < > - Addition: + -*/ - Multiplication: - Nominal attribute: distinctness - Ordinal attribute: distinctness & order - Interval attribute: distinctness, order & addition - Ratio attribute: all 4 properties Data Mining Lecture 2

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. (=, \neq)	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ^2 test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are measurgful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson' correlation, t and F tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Attribute Level	Transformation	Comments		
Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?		
Ordinal	An order preserving change of values, i.e., $new_value = f(old_value)$ where f is a monotonic function.	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by {0.5, 1, 10}.		
Interval	<i>new_value =a * old_value + b</i> where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).		
Ratio	new_value = a * old_value	Length can be measured in meters or feet.		

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Data Mining Lecture 2

13

Doc	ument Da	ta										
• Ea - -	ach docum each term the value c the corres	is a of e pon	t be cor ach ding	ecol npol con g tel	mes nen npor rm c	s a t (at nent occu	`te ttril is t ırs i	rm oute the i n th	' Vé :) of num le d	ecto f th ber ocui	or, e ve of men	ctor, times t.
		team	coach	рla У	ball	score	game	n Wi	lost	timeout	season	
	Document 1	3	0	5	0	2	6	0	2	0	2	ĺ
	Document 2	0	7	0	2	1	0	0	3	0	0	
	Document 3	0	1	0	0	1	2	2	0	3	0	
			Е	Data Mi	ning L	ecture 2	2					14

Missing Values

- Reasons for missing values
- Information is not collected
- (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases
 (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

Data Mining Lecture 2

- Data set may include data objects that are duplicates, or almost duplicates of one another
 Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 Process of dealing with duplicate data issues

Data Mining Lecture 2

25

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Data Mining Lecture 2

26

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Data Mining Lecture 2

29

Sampling ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Data Mining Lecture 2

Machine Learning

- *Machine Learning (ML)*: area of AI that examines how to devise algorithms that can learn.
- Techniques from ML are often used in classification and
- prediction.
- Supervised Learning: learns by example.
- Unsupervised Learning: learns without knowledge of correct answers.
- \cdot $\,$ Machine learning often deals with small or static datasets.

DM: Uses many machine learning techniques.

Data Mining Lecture 2

ning Data:					
ID	Income	Credit	Class	Xi	
1	4	Excellent	h ₁	X 4	
2	3	Good	h ₁	X7	
3	2	Excellent	h ₁	X ₂	
4	3	Good	h ₁	X7	
5	4	Good	h ₁	X 8	
6	2	Excellent	h ₁	X_2	
7	3	Bad	h ₂	X ₁₁	
8	2	Bad	h ₂	X10	
9	3	Bad	h ₃	X11	
10	1	Bad	h₄	Xq	

Hypothesis Testing

- Find model to explain behavior by creating and then testing a hypothesis about the data.
- Exact opposite of usual DM approach.
- H₀ Null hypothesis; Hypothesis to be tested.
- H₁ Alternative hypothesis.

Data Mining Lecture 2

