

Multi-level Association Rules

- How do support and confidence vary as we traverse the concept hierarchy?
- If X is the parent item for both $X 1$ and $X 2$, then $\sigma(X) \leq \sigma(X 1)+\sigma(X 2)$
- If $\quad \sigma(\mathrm{X} 1 \cup \mathrm{Y} 1) \geq$ minsup,
and $\quad \mathrm{X}$ is parent of $\mathrm{X} 1, \mathrm{Y}$ is parent of Y 1
then $\quad \sigma(X \cup Y 1) \geq$ minsup, $\sigma(X 1 \cup Y) \geq$ minsup
$\sigma(X \cup Y) \geq$ minsup
- If $\operatorname{conf}(X 1 \Rightarrow Y 1) \geq$ minconf,
then $\operatorname{conf}(X 1 \Rightarrow Y) \geq$ minconf

Multi-level Association Rules

- Approach 1:
- Extend current association rule formulation by augmenting each transaction with higher level items
- Original Transaction:
- \{skim milk, wheat bread\}
- Augmented Transaction:
- \{skim milk, wheat bread, milk, bread, food\}
- Issues:
- Items that reside at higher levels have much higher support counts
- if support threshold is low, there are too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

Multi-level Association Rules

- Approach 2:
- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on...
- Issues:
- I/O requirements increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Examples of Sequence Data

Database					Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time \dagger	Books, diary products, CDs, etc				
Web data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc				
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors				
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C				

Sequence Data

Formal Definition of a Sequence

- A sequence is an ordered list of elements (transactions)

$$
s=\left\langle e_{1} e_{2} e_{3} \ldots\right\rangle
$$

- Each element contains a collection of events (items)

$$
e_{i}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}
$$

- Each element is attributed to a specific time or location
- Length of a sequence, $|s|$, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequences

- Web sequence:
< \{Homepage\} \{Electronics\} \{Digital Cameras\} \{Canon Digital Camera\} \{Shopping Cart\} \{Order Confirmation\} \{Return to Shopping\} >
- Sequence of books checked out at a library (or films rented at a video store):
< \{Fellowship of the Ring\} \{The Two Towers, Return of the King\} >

Formal Definition of a Subsequence

- A sequence $\left\langle a_{1} a_{2} \ldots a_{n}>\right.$ is contained in another sequence $\left\langle b_{1} b_{2} \ldots b_{m}\right\rangle(m \geq n)$ if there exist integers $i_{1}<i_{2}<\ldots<i_{n}$ such that $a_{1} \subseteq b_{i 1}, a_{2} \subseteq b_{i 2}, \ldots, a_{n} \subseteq b_{\text {in }}$

Data sequence	Subsequence	Contain?
$\langle\{2,4\}\{3,5,6\}\{8\}>$	$<\{2\}\{3,5\}>$	Yes
$<\{1,2\}\{3,4\}>$	$<\{1\}\{2\}>$	No
$<\{2,4\}\{2,4\}\{3,5\}>$	$<\{2\}\{4\}>$	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is \geq minsup)

Sequential Pattern Mining: Definition

- Given:
- a database of sequences
- a user-specified minimum support threshold, minsup
- Task:
- Find all subsequences with support \geq minsup

Sequential Pattern Mining: Challenge

- Given a sequence: $<\{a b\}\{c d e\}\{f\}\{g h i\}$
- Examples of subsequences:
$\langle\{a\}\{c d\}\{f\}\{g\}>,<\{c \mathrm{~d} e\} \geqslant,<\{b\}\{9\}>$, etc.
- How many k-subsequences can be extracted from a given n-sequence?
$\{a b\}\{c d e\}\{f\}\{g h i\}>n=9$
$k=4$:

Answer :
$\binom{n}{k}=\binom{9}{4}=126$

Extracting Sequential Patterns: Brute-force

- Given n events: $i_{1}, i_{2}, i_{3}, \ldots, i_{n}$
- Candidate 1-subsequences:
$\left.\left.\left\langle\left\{i_{1}\right\}\right\rangle,\left\langle i_{2}\right\},<\left\{i_{3}\right\}\right\rangle, \ldots,<\left\langle i_{n}\right\}\right\rangle$
- Candidate 2-subsequences:
$\left\langle\left\{i_{1}, i_{2}\right\},\left\langle\left\{i_{1}, i_{3}\right\}, \ldots,\left\langle i_{1}\right\}\left\{i_{1}\right\}\right\rangle,\left\langle i_{1}\right\}\left\{i_{2}\right\}\right\rangle, \ldots,\left\langle\left\{i_{n-1}\right\}\left\{i_{n}\right\}\right\rangle$
- Candidate 3-subsequences:
$\left.\left.\left.\left\langle\left\{i_{1}, i_{2}, i_{3}\right\}\right\rangle,\left\langle i_{1}, i_{2}, i_{4}\right\}\right\rangle, \ldots,\left\langle i_{1}, i_{2}\right\}\left\{i_{1}\right\}\right\rangle,\left\langle i_{1}, i_{2}\right\}\left\{i_{2}\right\}\right\rangle, \ldots$, $\left\langle\left\{i_{1}\right\}\left\{i_{1}, i_{2}\right\},\left\langle\left\{i_{1}\right\}\left\{i_{1}, i_{3}\right\}, \ldots,\left\langle i_{1}\right\}\left\{i_{1}\right\}\left\{i_{1}\right\},\left\langle\left\{i_{1}\right\}\left\{i_{1}\right\}\left\{i_{2}\right\}\right\rangle, \ldots\right.\right.$

Candidate Generation Examples

- Merging the sequences
$w_{1}=\left\langle\{1\}\{23\}\{4\}>\right.$ and $w_{2}=\langle\{23\}\{45\}>$
will produce the candidate sequence $<\{1\}\{23\}\{45\}>$ because the last two events in $w_{2}(4$ and 5$)$ belong to the same element
- Merging the sequences
$w_{1}=<\{1\}\{23\}\{4\}>$ and $w_{2}=<\{23\}\{4\}\{5\}>$
will produce the candidate sequence $<\{1\}\{23\}\{4\}\{5\}>$ because the last two events in $w_{2}(4$ and 5$)$ do not belong to the same element
- We do not have to merge the sequences

$$
\left.\left.W_{1}=<\{1\}\{26\}\{4\}\right\rangle \text { and } W_{2}=<\{1\}\{2\}\{45\}\right\rangle
$$

to produce the candidate $<\{1\}\{26\}\{45\}>$ because if the latter is a viable candidate, then it can be obtained by merging w_{1} with <1\} \{2 6\} \{5\}

GSP Example

Frequent
3-sequences

< 11$\}$ \{2 5 >
< $\{1\}\{5\}\{3\}$
< $\{2\}\{3\}\{4\}\rangle$
< 25 5 \{ 3$\}$ >
< $\{3\}\{4\}\{5\}>$
< $\{5\}\{34\}>$

Data Mining: Association Rules
83

Mining Sequential Patterns with Timing Constraints

- Approach 1:
- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns
- Approach 2:
- Modify GSP to directly prune candidates that violate timing constraints
- Question:
- Does the Apriori principle still hold?

Data Mining: Association Rules

Apriori Principle for Sequence Data			
Object	Timestamp	Events	Suppose:
A	1	1,2,4	$\mathrm{x}_{\mathrm{g}}=1$ (max-gap)
A	2	2,3	
A	3	5	$\mathrm{n}_{\mathrm{g}}=0$ (min-gap)
B	1	1,2	$\mathrm{m}_{\mathrm{s}}=5$ (maximum span) minsup $=60 \%$
B	2	2,3,4	
C	1	1,2	
C	2	2,3,4	
C	3	2,4,5	$<\{2\}\{5\}>$ support $=40 \%$
D	1	2	
D	2	3, 4	but
D	3	4,5	< 23 \{ 3$\}\{5\}>$ support $=60 \%$
E	1	1,3	
E	2	2, 4, 5	
Problem exists because of max-gap constraint No such problem if max-gap is infinite			
Data Mining. Association Rules 86			

Contiguous Subsequences

s is a contiguous subsequence of $\left.w=\left\langle e_{1}\right\rangle\left\langle e_{2}\right\rangle \ldots e_{k}\right\rangle$
if any of the following conditions hold:

1. s is obtained from w by deleting an item from either e_{1} or e_{k}
2. s is obtained from w by deleting an item from any element e_{i} that contains 2 or more items
3. s is a contiguous subsequence of s^{\prime} and s^{\prime} is a contiguous subsequence of w (recursive definition)
Examples: $s=\langle 1\}\{2\}>$

- is a contiguous subsequence of
$<\{1\}\{23\}>,<\{12\}\{2\}\{3\}>$, and $\langle\{34\}\{12\}\{23\}\{4\}>$
- is not a contiguous subsequence of $<\{1\}\{3\}\{2\}>$ and $<\{2\}\{1\}\{3\}\{2\}$ >

Modified Candidate Pruning Step

- Without maxgap constraint:
- A candidate k-sequence is pruned if at least one of its ($k-1$)-subsequences is infrequent
- With maxgap constraint:
- A candidate k-sequence is pruned if at least one of its contiguous ($k-1$)-subsequences is infrequent

Timing Constraints (II)

$x_{g}=2, n_{g}=0, w s=1, m_{s}=5$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,6\}\{8\}>$	$<\{3\}\{5\}>$	No
$<\{1,2,3,4\}\{5\}\{6\}>$	$<\{1,4\}\{5\}>$	No
$<\{1,2\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{1,2\}\{3,4\}>$	Yes

Other Formulation

- In some domains, we may have only one very long time series
- Example:
- monitoring network traffic events for attacks
monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
- This problem is also known as frequent episode mining

Pattern: <E1> <E3>
Data Mining: Association Rules
91

