## Pattern Evaluation

- Association rule algorithms tend to produce too many rules
- many of them are uninteresting or redundant
- Redundant if $\{A, B, C\} \rightarrow\{D\}$ and $\{A, B\} \rightarrow\{D\}$
have same support \& confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support \& confidence are the only measures used


## Computing Interestingness Measure

- Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

|  | $y$ | $\overline{7}$ |  |
| :---: | :---: | :---: | :---: |
| $X$ | $f_{11}$ | $f_{10}$ | $f_{1+}$ |
| $\bar{Z}$ | $f_{01}$ | $f_{00}$ | $f_{0+}$ |
|  | $f_{+1}$ | $f_{+0}$ | $\|\mathrm{~T}\|$ |

$f_{11}$ : support of $X$ and $Y$ $f_{10}$ : support of $X$ and $\bar{Y}$ $f_{01}$ : support of $X$ and $Y$ $\mathrm{f}_{00}$ : support of $\bar{X}$ and $\bar{Y}$

Used to define various measures

- support, confidence, lift, Gini, J-measure, etc.

Data Mining: Association Rules

Probability-based Measures
In a rule of the form $A \Rightarrow B$

- Support = $P(A B)$
- Confidence $=P(B \mid A)$
- Interest $=P(A B) / P(A) P(B)$
- Implication Strength $=P(A) P(\sim B) / P(A \sim B)$


## Drawback of Confidence

|  | Coffee |  |  |
| :---: | :---: | :---: | :---: |
|  | Coffee |  |  |
| Tea | 15 | 5 | 20 |
| Tea | 75 | 5 | 80 |
|  | 90 | 10 | 100 |

Association Rule: Tea $\rightarrow$ Coffee

Confidence $=P($ Coffee $\mid$ Tea $)=0.75$
but P (Coffee) $=0.9$
$\Rightarrow$ Although confidence is high, rule is misleading
$\Rightarrow \mathrm{P}($ Coffee $\mid \overline{\text { Tea }})=0.9375$
Data Mining: Association Rules

## Criticism to Support and Confidence (Cont.)

## Example 2:

- X and Y : positively correlated
- X and Z: negatively related
- support and confidence of $X \Rightarrow \mathbf{Z}$ dominates

| X | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 |  |  |  |  |  |  |  |
| Y | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| Z | 0 | 1 | 1 | 1 | 1 | 1 | 1 |

Measure of dependence or correlation of events

$$
\operatorname{corr}_{A, B}=\frac{P(A \cup B)}{P(A) P(B)}
$$

| Rule | Support | Confidence |
| :---: | :---: | :---: |
| $X=>Y$ | $25 \%$ | $50 \%$ |
| $X=>Z$ | $37.50 \%$ | $75 \%$ |

$P(B \mid A) / P(B)$ is also called the lift of rule $A \Rightarrow B$


## Statistical Independence

- Population of 1000 students
- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 420 students know how to swim and bike $(S, B)$
- $P(S \wedge B)=420 / 1000=0.42$
$-P(S) \times P(B)=0.6 \times 0.7=0.42$
- $P(S \wedge B)=P(S) \times P(B)=>$ Statistical independence
- $P(S \wedge B)>P(S) \times P(B)=>$ Positively correlated
- $P(S \wedge B)<P(S) \times P(B)=>$ Negatively correlated

Data Mining: Association Rules
53

## Statistical-based Measures

- Measures that take into account statistical dependence

$$
\begin{aligned}
& \text { Lift }=\frac{P(Y \mid X)}{P(Y)} \\
& \text { Interest }=\frac{P(X, Y)}{P(X) P(Y)} \\
& P S=P(X, Y)-P(X) P(Y) \\
& \phi-\text { coefficient }=\frac{P(X, Y)-P(X) P(Y)}{\sqrt{P(X)[1-P(X)] P(Y)[1-P(Y)]}}
\end{aligned}
$$

## Example: Lift/Interest

|  | Coffee | $\overline{\text { Coffee }}$ |  |
| :---: | :---: | :---: | :---: |
| Tea | 15 | 5 | 20 |
| $\overline{\text { Tea }}$ | 75 | 5 | 80 |
|  | 90 | 10 | 100 |

Association Rule: Tea $\rightarrow$ Coffee

Confidence $=P($ Coffee $\mid$ Tea $)=0.75$
but P (Coffee) $=0.9$
$\Rightarrow$ Lift $=0.75 / 0.9=0.8333(<1$, therefore is negatively associated $)$

## Drawback of Lift \& Interest

|  | $y$ | $\bar{y}$ |  |
| :---: | :---: | :---: | :---: |
| $x$ | 10 | 0 | 10 |
| $\bar{x}$ | 0 | 90 | 90 |
|  | 10 | 90 | 100 |


|  | $y$ | $\bar{y}$ |  |
| :---: | :---: | :---: | :---: |
| $X$ | 90 | 0 | 90 |
| $\bar{X}$ | 0 | 10 | 10 |
|  | 90 | 10 | 100 |

$$
\text { Lift }=\frac{0.1}{(0.1)(0.1)}=10
$$

$$
\text { Lift }=\frac{0.9}{(0.9)(0.9)}=1.11
$$

Statistical independence: If $P(X, Y)=P(X) P(Y)=>$ Lift $=\mathbf{1}$

## Properties of a Good Measure

[Piatetsky-Shapiro]
3 properties a good measure $M$ must satisfy:

- $M(A, B)=0$ if $A$ and $B$ are statistically independent
- $M(A, B)$ increases monotonically with $P(A, B)$ when $P(A)$ and $P(B)$ remain unchanged
- $M(A, B)$ decreases monotonically with $P(A)$ [or $P(B)$ ] when $P(A, B)$ and $P(B)$ [or $P(A)]$ remain unchanged


## Property under Variable Permutation



$$
\text { Does } M(A, B)=M(B, A) \text { ? }
$$

Symmetric measures:

- support, lift, collective strength, cosine, Jaccard, etc Asymmetric measures:
- confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling
Grade-Gender Example (Mosteller, 1968):

|  | Male | Female |  |
| :---: | :---: | :---: | :---: |
| High | 2 | 3 | 5 |
| Low | 1 | 4 | 5 |
|  | 3 | 7 | 10 |

Mosteller:

|  | Male | Female |  |  |
| :---: | :---: | :---: | :---: | :---: |
| High | 4 | 30 | 34 |  |
| Low | 2 | 40 | 42 |  |
|  | 6 | 70 | 76 |  |
|  |  |  |  |  |
|  | $\downarrow$ | $\downarrow$ |  |  |
|  | $2 x$ | $10 x$ |  |  |

Underlying association should be independent of the relative number of male and female students in the samples

## Example: $\phi$-Coefficient

- $\phi$-coefficient is analogous to correlation coefficient for continuous variables

|  | $y$ | $\bar{y}$ |  |
| :---: | :---: | :---: | :---: |
| $X$ | 60 | 10 | 70 |
| $\bar{x}$ | 10 | 20 | 30 |
|  | 70 | 30 | 100 |


|  | $y$ | $\bar{y}$ |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 20 | 10 | 30 |
| $\bar{x}$ | 10 | 60 | 70 |
|  | 30 | 70 | 100 |

$\phi=\frac{0.6-0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$
$\phi=\frac{0.2-0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$ $=0.5238 \quad=0.5238$
$\phi$ Coefficient is the same for both tables

Property under Null Addition


Invariant measures:

- support, cosine, Jaccard, etc

Non-invariant measures:

- correlation, Gini, mutual information, odds ratio, etc

