Association Rules \& Frequent Itemsets

All you ever wanted to know about diapers, beers and their correlation!

The Market-Basket Problem

- Given a database of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

\{Diaper $\} \rightarrow$ \{Beer $\}$,
\{Milk, Bread $\} \rightarrow$ \{Eggs,Coke $\}$, $\{$ Beer, Bread $\} \rightarrow\{$ Milk $\}$

Implication here means co-occurrence, not causality!

The Market-Basket Problem

Given a database of transactions
where each transaction is a collection of items (purchased by a customer in a visit)
find all rules that correlate the presence of one set of items with that of another set of items

Example: 30% of all transactions that contain diapers also contain beers; 5\% of all transactions contain these items

- 30\%: confidence of the rule
- 5% : support of the rule

We are interested in finding all rules, rather than verifying that a particular rule holds

Definition: Association Rule

- Association Rule
- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:
\{Milk, Diaper $\} \rightarrow\{$ Beer $\}$
- Rule Evaluation Metrics
- Support (s)
- Fraction of transactions that contain both X and Y
- Confidence (c)

Measures how often items in Y appear in transactions that contain X ,

> Data Mining: Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:
\{Milk, Diaper $\} \Rightarrow$ Beer
$s=\frac{\sigma(\text { Milk, Diaper, Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4$
$c=\frac{\sigma(\text { Milk, Diaper, Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67$

Aspects of Association Rule Mining

- How do we generate rules fast?
- Performance measured in
- Number of database scans
- Number of itemsets that must be counted
- Which are the interesting rules?

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!
Data Mining: Association Rules

Finding Association Rules

Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ $O(N M w)$) Expensive since $M=2^{d}$!!! Data Mining: Association Rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
- Complete search: $M=2^{\text {d }}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Data Mining: Association Rules
14

Reducing Number of Candidates

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

The Idea of the Apriori Algorithm

- start with all 1-itemsets
- go through data and count their support and find all "large" 1-itemsets
- combine them to form "candidate" 2-itemsets
- go through data and count their support and find all "large" 2-itemsets
- combine them to form "candidate" 3-itemsets
large itemset: itemset with support >s candidate itemset: itemset that may have support >s

The Apriori Algorithm

- Join Step: C_{k} is generated by joining L_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:
C_{k} Candidate itemset of size k
$L_{k}:$ frequent itemset of size k
$L_{1}=\{$ frequent items $\}$;
for $\left(k=1 ; L_{k} \mid=\varnothing ; k+\right)$ do begin
C_{k+1} candidates genereated from L_{k}
for each transaction tin database do
increment the count of all candidates in C_{k+1}
that are contained in t
$L_{k+1}=$ candidates in C_{k+1} with min_support
end
return $\cup_{k} L_{k}$
$L_{1}=\{$ large 1-itemsets $\} ;$
for ($k=2 ; L_{k-1} \neq \emptyset ; k++$) do begin
$C_{k}=$ apriori-gen $\left(L_{k-1}\right) ; / /$ New candidates
forall transactions $t \in \mathcal{D}$ do begin
$C_{t}=\operatorname{subset}\left(C_{k}, t\right) ; / /$ Candidates contained in t
forall candidates $c \in C_{t}^{+}$do
c.count++;
end
$L_{k}=\left\{c \in C_{k} \mid c\right.$. count \geq minsup $\}$

10) end
11) Answer $=\bigcup_{k} L_{k}$;

Algorithm to Guess Itemsets

- Naïve way:
- Extend all itemsets with all possible items
- More sophisticated:
- Join L_{k-1} with itself, adding only a single, final item e.g.: $\left\{\begin{array}{ll}1 & 2\end{array}\right\}$, $\{124\},\{134\},\{135\},\left\{\begin{array}{lll}2 & 3 & 4\end{array}\right\}$ produces $\{1234\}$ and $\{1345\}$
- Remove itemsets with an unsupported subset e.g.: $\{1345\}$ has an unsupported subset: $\{145\}$ if minsup $=50 \%$
- Use the database to further refine C_{k}

Apriori: How to Generate Candidates?

STEP 1: Self-join operation
insert into C_{k}
select p. item $_{1}, p$. item $_{2}, \ldots, p$. item $_{k-1}, q$. item $_{k-1}$
from $L_{k-1} p, L_{k-1} q$
where p. item $_{1}=q$. item $_{1}, \ldots, p$. item $_{k-2}=q$. item $_{k-2}$, p. item $_{k-1}<q$. item $_{k-1} ;$
STEP 2: Subset filtering
forall itemsets $c \in C_{k}$ do
forall ($k-1$)-subsets s of c do
if $\left(s \notin L_{k-1}\right)$ then delete c from C_{k};

Example of Generating Candidate Itemsets

- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from $a b c$ and $a b d$
- acde from acd and ace
- Pruning based on the Apriori principle:
- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$

Run Time of Apriori

- k passes over data where k is the size of the largest candidate itemset
- Memory chunking algorithm $\Rightarrow 2$ passes over data on disk but multiple in memory

Toivonen 1996 gives a statistical technique which requires $1+e$ passes (but more memory)
Brin 1997 - Dynamic Itemset Counting $\Rightarrow 1+e$ passes (less memory)

Methods to Improve Apriori's Efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in $D B$ must be frequent in at least one of the partitions of $D B$
- Sampling: mining on a subset of given data
- lower support threshold
- a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent

Is Apriori Fast Enough? - Performance Bottlenecks

- The core of the Apriori algorithm:
- Use frequent ($k-1$)-itemsets to generate candidate frequent k-itemsets
- Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori candidate generation
- Huge candidate sets:
- 10^{4} frequent 1 -itemset will generate 10^{7} candidate 2 -itemsets
- To discover a frequent pattern of size 100 , e.g., $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
- Multiple scans of database:
- Needs $(n+1)$ scans, where n is the length of the longest pattern

