
Association Rules & Frequent Itemsets

All you ever wanted to know about diapers,
beers and their correlation!

Data Mining: Association Rules 2

The Market-Basket Problem

• Given a database of transactions, find rules that will
predict the occurrence of an item based on the
occurrences of other items in the transaction

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk}

Implication here means
co-occurrence, not causality!

Data Mining: Association Rules 3

The Market-Basket Problem

Given a database of transactions
where each transaction is a collection of items (purchased by a
customer in a visit)

find all rules that correlate the presence of one set of
items with that of another set of items

Example: 30% of all transactions that contain diapers also contain
beers; 5% of all transactions contain these items
– 30%: confidence of the rule
– 5%: support of the rule

We are interested in finding all rules,
rather than verifying that a particular rule holds

Data Mining: Association Rules 4

Applications of Market-Basket Analysis

• Supermarkets
– Placement
– Advertising
– Sales
– Coupons

• Many applications outside market basket data analysis
– Prediction (telecom switch failure)

– Web usage mining

• Many different types of association rules
– Temporal

– Spatial

– Causal

Data Mining: Association Rules 5

Definition: Frequent Itemset

• Itemset
– A collection of one or more items

• Example: {Milk, Bread, Diaper}

– k-itemset
• An itemset that contains k items

• Support count (σσσσ)
– Frequency of occurrence of an
itemset

– E.g. σ({Milk, Bread,Diaper}) = 2

• Support
– Fraction of transactions that
contain an itemset

– E.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset
– An itemset whose support is greater
than or equal to a minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Data Mining: Association Rules 6

Definition: Association Rule

Example:

Beer}Diaper,Milk{ ⇒

4.0
5

2

|T|

)BeerDiaper,,Milk(
===

σ
s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(
===

σ
σ

c

• Association Rule
– An implication expression of
the form X → Y, where X and Y
are itemsets

– Example:
{Milk, Diaper} → {Beer}

• Rule Evaluation Metrics
– Support (s)

• Fraction of transactions that
contain both X and Y

– Confidence (c)
• Measures how often items in Y
appear in transactions that
contain X

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Data Mining: Association Rules 7

Aspects of Association Rule Mining

• How do we generate rules fast?
– Performance measured in

• Number of database scans

• Number of itemsets that must be counted

• Which are the interesting rules?

Data Mining: Association Rules 8

Association Rule Mining Task

• Given a set of transactions T, the goal of
association rule mining is to find all rules
having
– support ≥ minsup threshold
– confidence ≥ minconf threshold

• Brute-force approach:
– List all possible association rules
– Compute the support and confidence for each rule
– Prune rules that fail the minsup and minconf
thresholds

⇒ Computationally prohibitive!

Data Mining: Association Rules 9

Mining Association Rules

Example of Rules:

{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Observations:

• All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but
can have different confidence

• Thus, we may decouple the support and confidence requirements

Data Mining: Association Rules 10

Finding Association Rules

Two-step approach:
1. Frequent Itemset Generation

• Generate all itemsets whose support ≥ minsup

2. Rule Generation
• Generate high confidence rules from each frequent

itemset, where each rule is a binary partitioning of a
frequent itemset

• Frequent itemset generation is still
computationally expensive

Data Mining: Association Rules 11

Frequent Itemset Generation

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there
are 2d possible
candidate itemsets

Data Mining: Association Rules 12

Frequent Itemset Generation

• Brute-force approach:
– Each itemset in the lattice is a candidate frequent itemset

– Count the support of each candidate by scanning the database

– Match each transaction against every candidate

– Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

Data Mining: Association Rules 13

Computational Complexity

• Given d unique items:
– Total number of itemsets = 2d

– Total number of possible association rules:

123 1

1

1 1

+−=

 −
×

=

+

−

=

−

=
∑ ∑

dd

d

k

kd

j j

kd

k

d
R

If d=6, R = 602 rules

Data Mining: Association Rules 14

• Reduce the number of candidates (M)
– Complete search: M=2d

– Use pruning techniques to reduce M

• Reduce the number of transactions (N)
– Reduce size of N as the size of itemset increases
– Used by DHP and vertical-based mining algorithms

• Reduce the number of comparisons (NM)
– Use efficient data structures to store the
candidates or transactions

– No need to match every candidate against every
transaction

Frequent Itemset Generation Strategies

Data Mining: Association Rules 15

Reducing Number of Candidates

• Apriori principle:
– If an itemset is frequent, then all of its subsets must
also be frequent

• Apriori principle holds due to the following
property of the support measure:

– Support of an itemset never exceeds the support of
its subsets

– This is known as the anti-monotone property of
support

)()()(:, YsXsYXYX ≥⇒⊆∀

Data Mining: Association Rules 16

Found to be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned
supersets

Data Mining: Association Rules 17

Illustrating Apriori Principle

Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Items (1-itemsets)

I te m s e t C o u n t

{B re a d ,M ilk ,D ia p e r } 3

Triplets (3-itemsets)

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered,
6C1 +

6C2 +
6C3 = 41

With support-based pruning,
6 + 6 + 1 = 13

Data Mining: Association Rules 18

The Idea of the Apriori Algorithm

• start with all 1-itemsets

• go through data and count their support and
find all “large” 1-itemsets

• combine them to form “candidate” 2-itemsets

• go through data and count their support and
find all “large” 2-itemsets

• combine them to form “candidate” 3-itemsets
…

large itemset: itemset with support > s

candidate itemset: itemset that may have support > s

Data Mining: Association Rules 19

The Apriori Algorithm

• Join Step: Ck is generated by joining Lk-1with itself
• Prune Step: Any (k-1)-itemset that is not frequent cannot

be a subset of a frequent k-itemset

• Pseudo-code:

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin
Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return∪k Lk;

Data Mining: Association Rules 20

Apriori Algorithm from Agrawal et al. (1993)

Data Mining: Association Rules 21

Apriori Algorithm Example (s = 50%)

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

Scan D

C1

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

C2

Scan D

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

C2

L3Scan D itemset sup

{2 3 5} 2

C3 itemset

{2 3 5}

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

L1

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

Data Mining: Association Rules 22

Algorithm to Guess Itemsets

• Naïve way:
– Extend all itemsets with all possible items

• More sophisticated:
– Join Lk-1 with itself, adding only a single, final item

e.g.: {1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {2 3 4} produces
{1 2 3 4} and {1 3 4 5}

– Remove itemsets with an unsupported subset
e.g.: {1 3 4 5} has an unsupported subset: {1 4 5}

if minsup = 50%

– Use the database to further refine Ck

Data Mining: Association Rules 23

Apriori: How to Generate Candidates?

STEP 1: Self-join operation

STEP 2: Subset filtering

Data Mining: Association Rules 24

How to Count Supports of Candidates?

• Why counting supports of candidates is a problem?

– The total number of candidates can be very huge

– One transaction may contain many candidates

• Method:

– Candidate itemsets are stored in a hash-tree

– Leaf node of hash-tree contains a list of itemsets and
counts

– Interior node contains a hash table

– Subset function: finds all the candidates contained in a
transaction

Data Mining: Association Rules 25

Example of Generating Candidate Itemsets

• L3 = {abc, abd, acd, ace, bcd }

• Self-joining: L3*L3
– abcd from abc and abd

– acde from acd and ace

• Pruning based on the Apriori principle:

– acde is removed because ade is not in L3

• C4 = {abcd }

Data Mining: Association Rules 26

Run Time of Apriori

• k passes over data where k is the size of the
largest candidate itemset

• Memory chunking algorithm ⇒⇒⇒⇒ 2 passes over
data on disk but multiple in memory

Toivonen 1996 gives a statistical technique which
requires 1 + e passes (but more memory)

Brin 1997 - Dynamic Itemset Counting ⇒⇒⇒⇒ 1 + e
passes (less memory)

Data Mining: Association Rules 27

Methods to Improve Apriori’s Efficiency

• Hash-based itemset counting: A k-itemset whose
corresponding hashing bucket count is below the threshold

cannot be frequent

• Transaction reduction: A transaction that does not contain any

frequent k-itemset is useless in subsequent scans

• Partitioning: Any itemset that is potentially frequent in DB

must be frequent in at least one of the partitions of DB

• Sampling: mining on a subset of given data

– lower support threshold

– a method to determine the completeness

• Dynamic itemset counting: add new candidate itemsets only

when all of their subsets are estimated to be frequent

Data Mining: Association Rules 28

Is Apriori Fast Enough? — Performance Bottlenecks

• The core of the Apriori algorithm:
– Use frequent (k – 1)-itemsets to generate candidate frequent
k-itemsets

– Use database scan and pattern matching to collect counts for the
candidate itemsets

• The bottleneck of Apriori: candidate generation
– Huge candidate sets:

• 104 frequent 1-itemset will generate 107 candidate 2-itemsets

• To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100},
one needs to generate 2100 ≈ 1030 candidates.

– Multiple scans of database:
• Needs (n +1) scans, where n is the length of the longest pattern

