
Message Analysis for Concurrent Programs

Using Message Passing

RICHARD CARLSSON, KONSTANTINOS SAGONAS, and JESPER WILHELMSSON

Uppsala University

We describe an analysis-driven storage allocation scheme for concurrent systems that use message
passing with copying semantics. The basic principle is that in such a system, data which is not part

of any message does not need to be allocated in a shared data area. This allows for deallocation
of thread-specific data without requiring global synchronization and often without even triggering
garbage collection. On the other hand, data that is part of a message should preferably be
allocated on a shared area, which allows for fast (O(1)) interprocess communication that does not
require actual copying. In the context of a dynamically typed, higher-order, concurrent functional
language, we present a static message analysis which guides the allocation. As shown by our
performance evaluation, conducted using an industrial-strength language implementation, the
analysis is effective enough to discover most data which is to be used as a message, and to allow
the allocation scheme to combine the best performance characteristics of both a process-centric
and a communal memory architecture.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Features—
concurrent programming structures, dynamic storage management; D.3.4 [Programming Languages]: Proces-
sors—memory management (garbage collection), run-time environments; D.1.3 [Programming Techniques]:
Concurrent Programming

General Terms: Languages, Performance, Measurement

Additional Key Words and Phrases: Static analysis, runtime systems, concurrent languages, mes-
sage passing, Erlang

1. INTRODUCTION

Many programming languages nowadays come with some form of built-in support for
concurrent processes or threads. Depending on the concurrency model of the language,
interprocess communication takes place either through synchronized shared structures, as
e.g. in Java, C#, and Modula-3; using synchronous message passing on (usually typed)
channels as e.g. in Concurrent ML and Concurrent Haskell; via rendezvous as in Ada and
Concurrent C; using asynchronous message passing as in Erlang; or through shared logical
variables as in concurrent logic programming languages, including Mozart/Oz. Most of
these languages typically also require support for automatic memory management, usually

Authors’ address: Department of Information Technology, Uppsala University, Box 337, 75105 Uppsala, Sweden,
email: {richardc,kostis,jesperw}@it.uu.se.
Corresponding author: Richard Carlsson, richardc@it.uu.se.
This is a significantly extended version of a paper that appeared in SAS’03: Proceedings of the Tenth Static
Analysis Symposium.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c©

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 · Richard Carlsson et al.

implemented using a garbage collector. So far, research has largely focused on the mem-
ory reclamation aspects of these concurrent systems. As a result, by now, many different
garbage collection techniques have been proposed and their characteristics are well-known;
see e.g. [Jones and Lins 1996] or [Wilson 1992] for excellent surveys of this area.

A less treated, albeit key issue in the design of a concurrent language implementation
is that of memory allocation. It is clear that, regardless of the concurrency model of the
language, there exist several different ways of structuring the memory architecture of the
runtime system. Perhaps surprisingly, till recently, there has not been any in-depth investi-
gation of the performance tradeoffs that are involved in the choice between these alternative
architectures. In [Johansson et al. 2002], we provided the first detailed characterization of
the advantages and disadvantages of different memory architectures in a language where
communication occurs through message passing.

The reasons for focusing on this type of systems are both principled and pragmatic.
Pragmatic because we are involved in the development of a production-quality system of
this kind, the Erlang/OTP system, which is heavily used as a platform for the develop-
ment of highly concurrent (thousands of light-weight processes) commercial applications.
Principled because, despite current common practice, we hold that concurrency through
(asynchronous) message passing with copying semantics is fundamentally superior to con-
currency through shared data structures. Considerably less locking is required, resulting
in higher performance and much better scalability. Furthermore, from a software engi-
neering perspective the copying semantics offers isolation between processes and makes
distribution transparent, both important properties.

Our contributions. Our first contribution, which motivates our static program analysis,
is in the area of runtime system organization. Based on the properties of the two different
memory architectures investigated in [Johansson et al. 2002], we describe two variants of
a hybrid runtime system architecture that has process-specific areas for allocation of local
data and a common area for data that is shared between communicating processes (i.e.,
is part of some message). This hybrid architecture allows interprocess communication to
occur without actual copying when shared memory is available, uses less overall space due
to avoiding data replication, and allows for the frequent process-local heap collections to
take place without a need for global synchronization of processes, reducing the level of
system irresponsiveness due to garbage collection.

Our second and main contribution is to present in detail a static analysis, called message
analysis, whose aim is to discover what data will be used in messages, and which can
guide the memory allocation in the hybrid architecture. One of the main advantages of the
analysis is that it tends to perform well even when it is run on a single module at a time,
rather than on the whole program (although this is also possible). We present a mini-Erlang
language with a formal semantics and sketch a correctess proof for the message analysis in
terms of this. The analysis does not rely on the presence of type information, and does not
sacrifice precision when handling list types, despite its simplistic representation of data
structures. We show that although the analysis has cubic worst-case time complexity, it
tends to be fast enough in practice.

Finally, we have implemented the above architecture and analysis in the context of an
industrial-strength implementation used for highly concurrent time-critical applications,
and report in detail on the effectiveness of the analysis, the overhead it incurs on compila-
tion times, and the time and space performance of the resulting system.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 3

Summary of contents. We begin by introducing Erlang and briefly reviewing the pros
and cons of alternative heap architectures for concurrent languages. Section 3 goes into
more detail about implementation choices in the hybrid architecture. Section 4 describes
the message analysis and its relation to escape analysis, and Section 5 explains how the
information is used to rewrite the program. Section 6 contains experimental results mea-
suring both the effectiveness of the analysis and the effect that the use of the analysis has on
improving execution performance and memory usage. Finally, Section 7 discusses related
work and Section 8 concludes.

2. PRELIMINARIES

2.1 Erlang and Core Erlang

Erlang [Armstrong et al. 1996] is a strict, dynamically typed functional programming lan-
guage with support for concurrency, distribution, communication, fault-tolerance, on-the-
fly code replacement, and automatic memory management. Erlang was designed to ease
the programming of large soft real-time control systems like those commonly developed
in the telecommunications industry. It has so far been used quite successfully both by
Ericsson and other companies around the world to construct large (several hundred thou-
sand lines of code) commercial applications.

Erlang’s basic data types are atoms (symbols), numbers (floats and arbitrary precision
integers), and process identifiers; compound data types are lists and tuples. Programs
consist of function definitions organized in modules. There is no destructive assignment of
variables or data. Because recursion is the only means to express iteration in Erlang, tail
call optimization is a required feature of Erlang implementations.

Processes in Erlang are extremely light-weight (lighter than OS threads), their number
in typical applications can be large (in some cases up to 50,000 processes on a single
node), and their memory requirements vary dynamically. Erlang’s concurrency primitives
– spawn, ‘!’ (send), and receive – allow a process to spawn new processes and com-
municate with other processes through asynchronous message passing. Any value can be
sent as a message and the recipient may be located on any machine in a network. Each
process has a mailbox, essentially a message queue, where all messages sent to the process
will arrive. Message selection from the mailbox is done by pattern matching. In send op-
erations, the receiver is specified by its process identifier, regardless of where it is located,
making distribution all but invisible. To support robust systems, a process can register to
receive a message if some other process terminates. Erlang provides mechanisms for al-
lowing a process to timeout while waiting for messages and a catch/throw-style exception
mechanism for error handling.

Erlang is often used in “five nines” high-availability (i.e., 99.999% of the time available)
systems, where down-time is required to be less than five minutes per year. Such systems
cannot be taken down, upgraded, and restarted when software patches and upgrades arrive,
since that would not respect the availability requirement. Consequently, Erlang systems
support upgrading code while the system is running, a mechanism known as dynamic code
replacement. In more detail, this means that any loaded module can at any time be re-
placed, by simply loading new code for that module. All calls to the module will then be
redirected to the new version of the code. Processes executing code in the older version
will remain alive, and will migrate to the new code as soon as they execute an inter-module
tail call. For example, a typical server process will be executing an event loop which, af-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · Richard Carlsson et al.

�����

���	�
���

������

P1 P2 P3

P1 P2 P1 P2

P1 P2 P3

P1 P2 P1 P2

� �

� �

(a) Process-centric

P1 P2 P3

P1 P2 P1 P2

���	�

���������

�������! �"
�# 	���

P1 P2 P3

P1 P2 P1 P2

$ %

&(') * +�* ,

- % . ') * +!* ,

(b) Communal

/1032

4�5�6 0�7

4(896�:	;3<
= ;�4>4(69?�;

6!:	;36

P1 P2 P3

@ A

B A

C3A D9E F G C G H

8!;�6 /

P1 P2 P1 P2

(c) Hybrid architecture

Fig. 1. Different runtime system architectures for concurrent languages

ter handling a single event, will make a self-recursive tail call qualified with the module
name, ensuring a switch whenever new code is loaded.1 While dynamic code replacement
is considered an essential feature for real-world Erlang applications, it constitutes a ma-
jor obstacle for whole-program and cross-module analyses; currently, modules are always
compiled independently of one another.

Core Erlang [Carlsson et al. 2000; Carlsson 2001] is the official core language for
Erlang, developed to facilitate compilation, analysis, verification and semantics-preserving
transformations of Erlang programs. When compiling a module, the compiler reduces the
Erlang code to Core Erlang as an intermediate form on which static analyses and optimiza-
tions may be performed before low level code is produced. While Erlang has quite unusual
and complicated variable scoping rules, fixed-order evaluation, and does not allow function
definitions to be nested, Core Erlang is similar to the untyped lambda calculus with let-
and letrec-bindings, and imposes no restrictions on the evaluation order of arguments.

2.2 Heap Architectures for Concurrent Languages using Message Passing

In [Johansson et al. 2002] we examined three different runtime system architectures for
concurrent language implementations: One process-centric where each process allocates
and manages its private memory area and all messages have to be copied between pro-
cesses, one which is communal and all processes get to share the same heap, and finally we
proposed a hybrid runtime system architecture where each process has a private heap for
local data but where a shared heap is used for data sent as messages. Figure 1 depicts mem-
ory areas of these architectures when three processes are currently in the system; shaded
areas show currently unused memory; the filled shapes and arrows in Figure 1(c) represent
messages and pointers.

For each architecture, we discussed its pros and cons focusing on the architectural im-
pact on the speed of interprocess communication and garbage collection (GC). We briefly
review them below:

1In order to cleanly migrate to new code, no return addresses to old code may remain on the stack. The Erlang
run-time system contains support for killing processes that are still depending on old code, when necessary.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 5

Process-centric. This is currently the default configuration of Erlang/OTP. Interprocess
communication requires copying of messages, i.e., is an O(n) operation where n is the
message size. Memory fragmentation tends to be high. Pros are that the garbage collection
times and pauses are expected to be small (as the root set need only consist of the stack of
the process requiring collection), and upon termination of a process, its allocated memory
area can be reclaimed immediately. This property in turn encourages the use of processes
as a form of programmer-controlled regions: a computation that requires a lot of auxil-
iary space can be performed in a separate process that sends its result as a message to its
consumer and then dies. This memory architecture has recently also been exploited in the
context of Java; see [Domani et al. 2002].

Communal. The biggest advantage is very fast (O(1)) interprocess communication,
simply consisting of passing a pointer to the receiving process, low memory requirements
due to message sharing, and low fragmentation. Disadvantages include having to consider
the stacks of all processes as root set (expected higher GC latency) and possibly poor cache
performance due to processes’ data being interleaved on the shared heap. Furthermore, the
communal architecture does not scale well to a multithreaded or multiprocessor implemen-
tation, since locking would be required in order to garbage collect the shared memory in a
parallel setting; see e.g. [Cheng and Blelloch 2001] for a recent treatment of the subject.

Hybrid. An architecture that tries to combine the advantages of the above two architec-
tures: interprocess communication can be fast and GC latency for the frequent collections
of the process-local heaps is expected to be small. No locking is required for garbage col-
lection of the local heaps, and the pressure on the shared heap is reduced so that it does not
need to be garbage collected as often. Also, as in the process-centric architecture, when a
process terminates, its local heap can be reclaimed by simply attaching it to a free-list.

However, to take advantage of this architecture, the system should be able to distinguish
between data that is process-local and data which is to be shared, i.e., used as messages.
This can be achieved by user annotations on the source code, by dynamically monitoring
the creation of data as proposed by Domani et al. [2002], or by a static analysis as we
describe in Section 4.

Note that these runtime system architectures are applicable to all concurrent systems that
use message passing. Their advantages and disadvantages do not in any way depend on
characteristics of the Erlang language or its current implementation.

3. THE HYBRID ARCHITECTURE

A key point in the hybrid architecture is to be able to garbage collect the process-local
heaps individually and without looking at the shared heap. In a multithreaded system, this
allows collection of local heaps without any locking or synchronization. If, on the other
hand, pointers from the shared area to the local heaps are allowed, these must then be
traced so that what they point to is regarded as live during a local collection. This could be
achieved by a read or write barrier, which typically incurs a relatively large overhead on
the overall runtime. The alternative, which is our choice, is to maintain as an invariant of
the runtime system that there are no pointers from the shared area to the local heaps, nor
from one process-local heap to another; cf. Figure 1(c).

This pointer directionality property is also crucial for our choice of memory allocation
strategy, since it makes it easy to test at runtime whether or not a data structure resides

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · Richard Carlsson et al.

in the shared area by making a simple O(1) pointer comparison. (This requires that the
shared message area is contiguous, e.g. using a compacting garbage collector.)

3.1 Allocation strategies

There are two possible strategies for the implementation of allocation and message passing
in the hybrid architecture:

Local allocation of non-messages. Only data that is known to not be part of a message may
be allocated on the process-local heap, while all other data is allocated on the shared
heap. This gives O(1) process communication for processes residing on the same
node, since all possible messages are guaranteed to already be in the shared area, but
utilization of the local heaps depends on the ability to decide through program analy-
sis which data is definitely not shared. This approach is used by Steensgaard [2000].
Because it is not possible in general to determine what will become part of a mes-
sage, underapproximation is necessary. In the worst case, nothing is allocated on the
process-local heaps, and the behaviour of the hybrid architecture with this allocation
strategy reduces to that of the communal architecture.

Shared allocation of possible messages. In this case, data that is likely to be part of a mes-
sage is allocated speculatively on the shared heap, and all other data on the process-
local heaps. This requires that the message operands of all send operations are wrapped
with a copy-on-demand operation, which verifies that the message resides in the shared
area (as noted above, this is an O(1) operation in our system), and otherwise copies
the locally allocated parts to the shared heap. Furthermore, if program analysis can
determine that a message operand must already be on the shared heap, the test can
be statically eliminated. Without such analysis, the behaviour will be similar to the
process-centric architecture, except that data which is repeatedly passed from one pro-
cess to another will only be copied once. On the other hand, if the analysis over-
approximates too much, most of the data will be allocated on the shared heap, and
we will not benefit from the process-local heaps; on the contrary, we could introduce
unnecessary copying, as further explained in Section 5.2.

We have chosen to implement and evaluate the second strategy, which to the best of our
knowledge has not been studied previously. Because Erlang modules are typically sepa-
rately compiled, and any module can be replaced at any time during program execution,
any data that might be passed across module boundaries will in general have to be regarded
as escaping. Thus, the first strategy above is less likely to make good use of both the local
heaps and the shared heap.

3.2 Copying of messages

If the second strategy is used, as in our implementation of the hybrid system, we must
be prepared to copy (parts of) a message as necessary to ensure the pointer directionality
invariant. Since we do not know how much of the message needs to be copied and how
much already resides in the shared area, we cannot easily ensure that the space available
on the shared heap will be sufficient before we begin to copy data.

At the start of the copying, we only know the size of the topmost constructor of the
message. We allocate space in the message area for this constructor. Non-pointer data is
simply copied to the allocated space, and all pointer fields are initialized to Nil. The latter
is necessary because the message object might be scanned as part of a garbage collection

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 7

before all its children have been copied. The copying routine is then executed again for
each child. When space for a child has been allocated and initialized, the child will update
the corresponding pointer field of the parent, before proceeding to copy its own children.

If there is not enough memory on the shared heap at some point, the garbage collector
is called on-the-fly to make room. If a (mostly) copying garbage collector is used, as is
currently the case in our system, it will move those parts of the message that have already
been copied, including the parent constructor. Furthermore, in a global collection, both
source and destination will be moved. Since garbage collection might occur at any time,
all local pointer variables have to be updated after a child has been copied. To keep the
pointers up to date, two stacks are used during message copying: one for storing all des-
tination pointers, and one for the source pointers. The source stack is updated when the
sending process is garbage collected (in a global collection), and the destination stack is
used as a root set (and is thus updated) in the collection of the shared heap.

An alternative algorithm first scans the message to find the size of the required memory.
This simplifies the copying part, because garbage collection cannot occur in mid-copy.
However, our measurements showed that this algorithm (which is used in the process-
centric system) has very bad performance in the hybrid system. The reason is that in the
hybrid system, each pointer needs to be tested in order to determine whether the object
pointed to is already in the shared heap (in which case it will not be copied). When sepa-
rating the size measurement from the copying, this test must be done twice for each pointer
(once when measuring and once when copying), rather than only once.

4. MESSAGE ANALYSIS

To use the hybrid architecture without user annotations on what is to be allocated on the
process-local heap and on the shared heap, respectively, program analysis is necessary. If
data were to be allocated on the shared heap by default, we would need to single out the
data which is guaranteed to not be included in any message, so it can be allocated on the
local heap. This amounts to escape analysis of process-local data; see e.g. [Blanchet 2003;
Bogda and Hölzle 1999; Choi et al. 2003].

However, if data is by default allocated on the local heaps, we instead want to identify
data that is likely to be part of a message, so it can be directly allocated in the shared area
in order to avoid the copying operation when the message is eventually passed. We will
refer to this form of analysis as message analysis. Note that because copying will always
be invoked in the rewritten program whenever some part of a message might be residing
on a process-local heap (cf. Section 5.2), both under- and overapproximation of the set of
run-time message constructors is in itself safe. In our current implementation of message
analysis, we usually overapproximate the set of constructors that could be messages, but
this is not a requirement – underapproximation will have no ill effects apart from increased
copying and unnecessary use of the local heaps for message data.

4.1 The analyzed language

Although our analyses have been implemented for the complete Core Erlang language, for
the purposes of this article, the details of Core Erlang are unimportant. To keep the exposi-
tion simple, we instead define a sufficiently powerful language of A-normal forms [Flana-
gan et al. 1993], shown in Figure 2, with the relevant semantics of the core language (strict,
higher-order, dynamically typed and without destructive updates), and with operators for
asynchronous send (‘!’), blocking receive, and process spawning.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · Richard Carlsson et al.

c ∈ Const Constants (Atoms, Integers, Pids and nil)
x ∈ Var Variables
e ∈ Expr Expressions
l ∈ Label Labels, including xcall and xlambda
o ∈ Primops Primitive operations (==, >,is nil, is cons, is tuple, . . .)
t ∈ Term = Const ∪ {t1:t2} ∪ {{t1, . . . , tn} | n ≥ 0} ∪ Clos
ρ ∈ Env = Var → Term

Clos = {〈e, ρ, ρ′〉 | e ∈ Expr, ρ, ρ′ ∈ Env}

v ::= c | x

e ::= v | (v1 v2)l | if v then e1 else e2 | let x = b in e

b ::= v | (v1 v2)l | (λx.e)l | fix (λx.e) | v1:
lv2 | {v1, . . . , vn}

l | hd v | tl v |

elementk v | v1! v2 | receive | spawn (v1 v2)l | primop o(v1, ..., vn)

Fig. 2. A mini-Erlang language

A program is any expression e that does not contain free variables. It is assumed that all
variables in the program are uniquely named. We also make the simplifying assumption
that all primitive operations return atomic values and do not cause escapement; however,
our actual implementation does not rely on this assumption,2 and the extension to handle
general primops is straightforward.

Atoms (symbols) are written within single-quotes; the atoms ’true’ and ’false’ are
used to represent boolean values. The empty list (nil) is written [], and is not an atom.
Each constructor in the program, as well as each call site and lambda expression, is given
a unique label l. Tuple constructors are written {v1, . . . , vn}, for all n ≥ 0. Since the
language is dynamically typed, the second argument of a list constructor v1:v2 might not
always be a list, but in typical Erlang programs all lists are proper.

Recursion is introduced with the explicit fixpoint operator fix (λx.e). Operators hd and
tl select the first (head) and second (tail) element, respectively, of a list constructor. An
operator elementk selects the k:th element of a tuple, if the tuple has at least k elements.

The spawn operator starts evaluation of the application (v1 v2) as a separate process and
then immediately returns, yielding a new unique process identifier (“pid”). When evalua-
tion of a process terminates, the final result is discarded. The send operator v1! v2 sends
message v2 asynchronously to the process identified by pid v1, returning v2 as result. Each
process is assumed to have an unbounded queue where incoming messages are stored until
extracted. The receive operator extracts the oldest message from the queue, or blocks
if the queue is empty. This is a simple but sufficiently general model of the concurrent
semantics of Erlang.

A big-step operational semantics for the analyzed language is shown in Figure 3. For
simplicity, the state component σ has been left out where it is not affected. We write ρ+ρ′

for the extension of one mapping by another, and ρ[x 7→ y] denotes the extension of ρ by
the function which maps x to y. Recursion is handled by finite unfolding in the vein of The
Definition of Standard ML [Milner et al. 1997]: a closure is represented by a triple 〈e, ρ, ρ′〉

2In our actual implementation, we need to handle the fact that Erlang supports arbitrary-precision integers
(“bignums”) which are boxed and stored on the heap unless they fit into a single word including tag bits. Fur-
thermore, on 32-bit machines, floating-point numbers are always boxed. As a consequence, the analysis has to
conservatively assume that most arithmetic operations possibly return a heap allocated object. In our context, this
somewhat limits the number of run-time copying checks that can be statically eliminated.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 9

ρ ` c → c [Constant]

ρ ` x → ρ(x) [Var]

ρ ` v1 → t1 ρ ` v2 → t2
ρ ` v1:v2 → t1:t2

[Cons]

ρ ` v1 → t1 · · · ρ ` vn → tn
ρ ` {v1, . . . , vn} → {t1, . . . , tn}

[Tuple]

ρ ` v → t1:t2
ρ ` hd v → t1

[Head]

ρ ` v → t1:t2
ρ ` tl v → t2

[Tail]

ρ ` v → {t1, . . . , tn} n ≥ k
ρ ` elementk v → tk

[Element]

ρ ` (λx.e) → 〈(λx.e), ρ, []〉 [Lambda]

rec(ρ[x 7→ 〈e, ρ, []〉]) ` e, σ → t, σ′

ρ ` fix (λx.e), σ → t, σ′
[Fix]

c ∈ Const
ρ ` primop o(v1, ..., vn) → c

[Primop]

ρ ` v → ’true’ ρ ` e1, σ → t, σ′

ρ ` if v then e1 else e2, σ → t, σ′
[If-True]

ρ ` v → ’false’ ρ ` e2, σ → t, σ′

ρ ` if v then e1 else e2, σ → t, σ′
[If-False]

ρ ` b, σ → t, σ′ ρ[x 7→ t] ` e, σ′ → t′, σ′′

ρ ` let x = b in e, σ → t′, σ′′
[Let]

ρ ` v1 → 〈(λx.e), ρ′, ρ′′〉 ρ ` v2 → t (ρ′ + rec ρ′′)[x 7→ t] ` e, σ → t′, σ′

ρ ` (v1 v2), σ → t′, σ′
[Call]

p ∈ Pid
ρ ` spawn (v1 v2), σ → p, σ ∪ {v1 , v2}

[Spawn]

ρ ` v1 → p ∈ Pid ρ ` v2 → t
ρ ` v1! v2, σ → t, σ ∪ {t}

[Send]

t ∈ Term
ρ ` receive, σ → t, σ ∪ {t}

[Receive]

rec ρ x =

�
〈e, ρ′, ρ〉, if ρ(x) = 〈e, ρ′, ρ′′〉
ρ(x), otherwise

Fig. 3. Operational semantics

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · Richard Carlsson et al.

where e is the expression, ρ is the original environment, and ρ′ is the recursive component
which is unrolled by the function rec at least once before each lambda application; see the
rules [Fix] and [Call].

For our purposes, it is sufficient to describe the behaviour of a single process at a time;
therefore, the state σ is simply the set of shared terms. Sending a message adds the sent
term to the shared area, and receiving a message yields an arbitrary term as result,3 which
is also placed in the shared area; see the [Send] and [Receive] rules. Spawning a new
process adds both arguments to the shared area and yields a fresh process identifier; see
the [Spawn] rule. (We leave out all details about how process identifiers are created; they
are not heap allocated objects.)

4.2 General framework

The analyses we have this far implemented are first-order dataflow analyses, and are best
understood as extensions of Shivers’ 0-cfa control flow analysis [1988]. Indeed, we assume
that control flow analysis has been done, so that:

—The label xcall represents all call sites external to the analyzed program, and the label
xlambda represents all possible external lambdas.

—There is a mapping calls : Label → P(Label) from each call site label (including
xcall) to the corresponding set of possible lambda expression labels (which may include
xlambda), which constitutes an upper bound of the call graph of the program.

In particular, any lambda closure that may be part of the result of evaluating program e

could be called from an external site. For e = (λx.x)l, this is the lambda labeled l;
for e = (λx.{(λy.y)l′, (λz.z)l′′})l, this is the set {l, l′, l′′}, and so on. Furthermore, an
external lambda expression (i.e., not in e) could be called from a point in e if a closure is
passed from an external site to a function in e, or is received in a message.

Although higher-order control flow analysis could be directly integrated with the dataflow
analyses, the presentation is much simplified by the assumption that we have already de-
termined the static call graph for the program.

The analysis domain V is defined as follows:

V0 = P(Label) × {〈〉,>}
Vi = Vi−1 ∪ P(Label) ×

⋃

n≥0
{〈v1, . . . , vn〉 | v1, . . . , vn ∈ Vi−1} for all i > 0

V =
⋃

i≥0
Vi

Let R∗ denote the reflexive and transitive closure of a relation R, and define v to be the
smallest relation on V such that

v=
⋃

i≥0
v∗

i , where for all i ≥ 0 :

(s1, w) vi (s2,>) if s1 ⊆ s2

(s1, 〈〉) v0 (s2, 〈〉) if s1 ⊆ s2

(s1, 〈u1, . . . , un〉) vi (s2, 〈v1, . . . , vm〉)
if i > 0 ∧ n ≤ m ∧ s1 ⊆ s2 ∧ ∀j ∈ [1, n] : uj vi−1 vj

v1 vi v2 if i > 0 ∧ v1 vi−1 v2

3Since we only study a single process, other processes in the system can put arbitrary terms in the shared area at
any time, but those terms are not of interest unless they are received by the current process.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 11

It is then easy to see that 〈V,v〉 is a complete lattice.
Intuitively, our abstract values represent sets of constructor trees, where each node in a

tree is annotated with the set of source code labels that could possibly be the origin of an
actual constructor at that point. A node (S,>) represents the set of all possible subtrees
where each node is annotated with set S. We identify ⊥ with the pair (∅, 〈〉).

Let Val be a mapping from variables to abstract values, and In be a mapping from call
site labels to abstract values. We define the expression analysis functions Vv [[·]] and Ve[[·]]
as follows:

Vv [[c]] = ⊥

Vv[[x]] = Val(x)

Ve[[v]] = Vv[[v]]

Ve[[(v1 v2)
l]] = In(l)

Ve[[if v then e1 else e2]] = Ve[[e1]] t Ve[[e2]]

Ve[[let x = b in e]] = Ve[[e]]

and the bound-value analysis function Vb[[·]] as:

Vb[[v]] = Vv[[v]]

Vb[[(v1 v2)
l]] = In(l)

Vb[[(λx.e)l]] = ({l}, 〈〉)

Vb[[fix (λx.e)]] = Ve[[e]]

Vb[[v1:
lv2]] = cons l Vv[[v1]] Vv [[v2]]

Vb[[{v1, . . . , vn}
l]] = tuple l 〈Vv[[v1]], . . . ,Vv[[vn]]〉

Vb[[hd v]] = head(Vv [[v]])

Vb[[tl v]] = tail(Vv[[v]])

Vb[[elementk v]] = elem k Vv[[v]]

Vb[[v1! v2]] = Vv[[v2]]

Vb[[receive]] = ⊥

Vb[[spawn (v1 v2)
l]] = ⊥

Vb[[primop o(v1, ..., vn)]] = ⊥

where

cons l x y = ({l}, 〈x〉) t y

tuple l 〈x1, . . . , xn〉 = ({l}, 〈x1, . . . , xn〉)

and

head (s, w) =

(s, w) if w = >
v1 if w = 〈v1, . . . vn〉, n ≥ 1
⊥ otherwise

tail (s, w) =

{

(s, w) if w = > ∨ w = 〈v1, . . . vn〉, n ≥ 1
⊥ otherwise

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · Richard Carlsson et al.

elem k (s, w) =

(s, w) if w = >
vk if w = 〈v1, . . . vn〉, k ∈ [1, n]
⊥ otherwise

For each label l of a lambda expression (λx.e)l in the program, define Out(l) = Ve[[e]].
Then for all call sites (v1v2)

l in the program, including spawns and the dummy external call
labeled xcall, we have ∀l′ ∈ calls(l) : Out(l′) v In(l), and also ∀l′ ∈ calls(l) : Vv [[v2]] v
Val(x), when l′ is the label of (λx.e)l′ . Finally, for each expression let x = b in e we
have Vb[[b]] v Val(x), and for each fix (λx.e), Ve[[e]] v Val(x). It is easy to verify from
the definitions that the constraint system has a least fixpoint solution due to monotonicity.

Because lists are typically much more common than other recursive data structures, we
give them a nonstandard treatment in order to achieve decent precision by simple means.
We make the assumption that in all or most programs, cons cells are used exclusively for
constructing proper lists, so the loss of precision for non-proper lists is not an issue.

Suppose z = cons l x y. If y is (s, 〈v, . . .〉), then the set of top-level constructors of z is
s∪{l}. Furthermore, head z will yield xtv, and tail z yields z itself. Thus even if a list is
of constant length, such as [A, B, C], we will not be able to make distinctions between
individual elements. The approximation is safe for our purposes: in the above example,
x v head z and y v tail z; thus, as long as we are only interested in the labels occurring
in the final set of abstract values at any particular point, and not of the actual substructure
of those values, we may treat the tail of a list as we do here.

4.3 Termination, complexity and correctness

Finding the least solution for Val and In to the above constraint system for some program by
fixpoint iteration will however not terminate, because of infinite chains such as ({l}, 〈〉) �
({l}, 〈 ({l}, 〈〉) 〉) � . . . To ensure termination, we use a variant of depth-k limiting.

We define the limiting operator θk as:

θk (s,>) = (s,>)

θk (s, 〈〉) = (s, 〈〉)

θk (s, 〈v1, . . . , vn〉) = (s, 〈θk−1v1, . . . , θk−1vn〉), if k > 0

θk (s, w) = (labels (s, w),>), if k ≤ 0

where

labels (s,>) = s

labels (s, 〈〉) = s

labels (s, 〈v1, . . . , vn〉) =
⋃n

i=1
labels vi ∪ s

The rules given in Section 4.2 are modified as follows, for some fixed k: For all call sites
(v1 v2)

l, ∀l′ ∈ calls(l) : θkOut(l′) v In(l), and ∀l′ ∈ calls(l) : θkVv[[v2]] v Val(x), when
l′ is the label of (λx.e)l.

Note that without the special treatment of list constructors, this form of approximation
would generally lose too much information; in particular, recursion over a list would con-
fuse the spine constructors with the elements of the same list. In essence, we have a “poor
man’s escape analysis on lists” for a dynamically typed language.4 Better precision could

4The escape analysis on lists of Park and Goldberg [1992] requires type information.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 13

be achieved by a graph representation of data, as in the storage use analysis of Serrano
and Feeley [1996]; our approximation was chosen to fit easily into our existing analysis
framework and allow us to explore the usefulness of message analysis as a tool for guiding
allocation of data.

It is straightforward to extend this framework to simultaneously perform a more precise
control flow analysis than that of Shivers [1988] (which only uses sets of labels), building
the call graph as we go, but doing so here would cloud the issues of this article. Also,
Erlang programs tend to use fewer higher-order functions, in comparison with typical pro-
grams in e.g. Scheme or ML, so we expect that the improvements to the determined call
graphs would be insignificant in practice.

Correctness of the analyses can be shown by structural induction over the derivations of
` e, σ → t, σ′ for program e and initial state σ. (The semantics as specified in Figure 3 is
nondeterministic, e.g. with respect to received terms, so there may be several derivations.)
The concretization mapping γ from elements in V to sets of (labeled) terms should be
obvious. The only difficult part is the nonstandard handling of lists: γ(cons l x y) does
not include {t1:lt2 | t1 ∈ γ(x), t2 ∈ γ(y)} as would be expected, but rather {t:lc | t ∈
γ(x), c ∈ Const} ∪ γ(y). However, as observed earlier, x v head(cons l x y) and
y v tail(cons l x y), and furthermore, if s = labels(cons l x y) then γ((s,>)) is a safe
approximation of cons l x y. Hence, as long as we interpret the values v of a solution in
terms of labels(v), our analyses are safe.

It is well known that control flow analysis has cubic worst-case time complexity (see
e.g. [Heintze and McAllester 1997]). Since our analyses are based on the standard 0-cfa,
and the terms of our domain have a fixed maximum depth imposed by the above limiting,
we get the same cubic time worst-case complexity. Our experience, however, is that the
analysis is in practice quite fast; see also Section 6.5.

Having established our general framework, we now show in the following two sections
how it can be instantiated to obtain an escape analysis and a message analysis, respectively.

4.4 Escape analysis

As mentioned, in a scheme where data is allocated on the shared heap by default, the anal-
ysis would need to determine what heap-allocated data cannot escape the creating process,
or reversely, what data could possibly escape. Following [Shivers 1988], this can be done
in the above framework by letting Escaped represent the set of all escaping values, and
adding the following straightforward rules to the system:

(1) In(xcall) v Escaped

(2) Vv[[v2]] v Escaped for all call sites (v1 v2)
l such that xlambda ∈ calls(l)

(3) Vv[[v2]] v Escaped for all send operators v1! v2

(4) Vv[[v1]] v Escaped and Vv [[v2]] v Escaped for every spawn (v1 v2)

After the fixpoint iteration converges, if the label of a data constructor operation (in-
cluding lambda expressions) in the program is not in labels(Escaped), the value produced
by that operation does not escape the process. (A more common formulation of escape
analysis is to discover data that does not escape a particular function invocation and might
therefore be stack allocated. For the purposes of this article, however, we are only con-
cerned with whether or not process-local storage can be used for the data.)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · Richard Carlsson et al.

4.5 Message analysis

Since we have chosen to allocate data on the local heap by default, we instead want the
analysis to tell us which constructors may become part of some message. Furthermore,
we need to be able to see whether or not a value could contain locally allocated data con-
structed at a point outside the analyzed program.

For this purpose, we let the label unknown denote any such external constructor, and let
Message represent the set of all possible messages.

For the message analysis, we need the following rules:

(1) ({unknown},>) v In(l) for all call sites (v1 v2)
l such that xlambda ∈ calls(l)

(2) ∀l ∈ calls(xcall) : ({unknown},>) v Val(x), when l is the label of (λx.e)l

(3) Vv[[v2]] v Message for every v1! v2 in the program

(4) Vv[[v1]] v Message and Vv[[v2]] v Message for every spawn (v1 v2) in the program

The main difference from the above escape analysis, apart from also tracking unknown
inputs, is that we do not care about values that escape the current process unless through
explicit message passing. (The closure and argument used in a spawn can be viewed
as being “sent” to the new process.) If a value escapes our scrutiny by being passed to
some external function, we generally underapproximate by assuming that it will not be
used as message. However, the rest of the analysis always overapproximates the set of
possible message constructors. Due to the way the analysis information will be used (see
Section 5.2) this is not a problem.

Upon reaching a fixpoint, if the label of a data constructor is not in labels(Message),
the value constructed at that point is not likely to be part of any message. Furthermore,
for each argument vi to any constructor5, if unknown 6∈ labels(Vv[[vi]]), the value of that
argument cannot be the result of a constructor outside the analyzed program. Note that
since the result of a receive is necessarily a message, we know that it already is located
in the shared area, and is therefore not unknown.

5. USING THE ANALYSIS INFORMATION

Depending on the selected strategy for allocation and message passing (cf. Section 3.1),
the information gathered by the corresponding program analysis (as described above) is
used as follows in the compiler for the hybrid architecture:

5.1 Local allocation of non-messages

In this case, each data constructor in the program such that a value constructed at that
point is guaranteed not to be part of any message, is rewritten so that the allocation will
be performed on the local heap. All other data is allocated on the shared heap. No other
modifications are needed. Note that with this scheme, unless escape analysis is able to
report some constructors as non-escaping, the process-local heaps will not be used at all.

5.2 Shared allocation of possible messages

This requires two things:

5This also includes the free variables of any lambda expression, if closure conversion [Appel 1992] is done.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 15

(1) Each data constructor in the program such that a value constructed at that point is
likely to be a part of a message, is rewritten so that the allocation will be performed
on the shared heap. All other data is allocated on the local heap.

(2) For all arguments of the rewritten constructors, and for the message argument of each
send-operation, if the value is not guaranteed to already be allocated on the shared
heap (i.e., if it might consist of constructors other than those rewritten in the previous
step – such as unknown), the argument is wrapped in a call to copy in order to maintain
the pointer directionality requirement.

In effect, with this scheme, we attempt to push the run-time copying operations back-
wards past as many allocation points as possible (or suitable). It may then occur that
because of overapproximation, some constructors are allocated in the shared area although
they will not in fact be part of any message at run-time. As a consequence, if an argument
to such a misplaced constructor was created on the local heap (e.g., by a function in some
other module), that argument will need to be copied to the shared area in order to preserve
the pointer directionality, but the work is wasted, because the constructed term is not in
fact shared. (In comparison, the process-centric system will only copy exactly the data
being passed in messages, but it can never avoid copying like the hybrid system, and it will
repeat the copying if the data is further forwarded.) If such redundant copying becomes
a problem in practice (see Section 6.2 for an example), probabilistic methods or profiling
data could likely be used to improve the precision of the analysis.

5.3 Differences between escape analysis and message analysis: an example

Figure 4 shows an Erlang program using two processes. (The line numbers are not part
of the program.) The main function takes three equal-length lists, combines them into a
single list of nested tuples, filters that list using a boolean function test defined in some
other module mod, and sends the second component of each element in the resulting list to
the spawned child process, which echoes the received values to the standard output.

The corresponding Core Erlang code looks rather similar. Translation to the language of
this article is straightforward, and mainly consists of expanding pattern matching, currying
functions and identifying applications of primitives such as hd, tl, !, elementk, receive,
etc., and primitive operations like >, is nil and is cons. In the context of separate
compilation of modules, and taking into account the Erlang requirement that the code of
any individual module can be replaced at any time, functions residing in other modules, as
in the calls to mod:test(X) and io:fwrite(...), are conservatively treated as unknown
program parameters by the analyses.

For this example, the escape analysis determines that only the list constructors in the
functions zipwith3 and filter (lines 13 and 18, respectively) are guaranteed to not
escape the executing process, and can be locally allocated. Since the actual elements of the
list, created by the lambda passed to zipwith3 (line 8), are being passed to an unknown
function via filter, they must be conservatively viewed as escaping.

On the other hand, the message analysis recognizes that only the innermost tuple con-
structor in the lambda body in line 8, plus the closure fun receiver/0 (line 5), can
possibly be messages. If the strategy is to allocate locally by default, then placing that tu-
ple constructor directly on the shared heap could reduce copying. However, the arguments
Y and Z could both be created externally, and could thus need to be copied to maintain the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · Richard Carlsson et al.

1 -module(example).

2 -export([main/3]).

3

4 main(Xs, Ys, Zs) ->

5 P = spawn(fun receiver/0),

6 mapsend(P, fun (X) -> element(2, X) end,

7 filter(fun (X) -> mod:test(X) end,

8 zipwith3(fun (X, Y, Z) -> {X, {Y, Z}} end,

9 Xs, Ys, Zs))),

10 P ! stop.

11

12 zipwith3(F, [X | Xs], [Y | Ys], [Z | Zs]) ->

13 [F(X, Y, Z) | zipwith3(F, Xs, Ys, Zs)];

14 zipwith3(F, [], [], []) -> [].

15

16 filter(F, [X | Xs]) ->

17 case F(X) of

18 true -> [X | filter(F, Xs)];

19 false -> filter(F, Xs)

20 end;

21 filter(F, []) -> [].

22

23 mapsend(P, F, [X | Xs]) ->

24 P ! F(X), mapsend(P, F, Xs);

26 mapsend(P, F, []) -> ok.

27

28 receiver() ->

29 receive

30 stop -> ok;

31 {X, Y} -> io:fwrite("~w: ~w.\n", [X, Y]), receiver()

33 end.

Fig. 4. Erlang program example

pointer directionality invariant. The lambda body in line 8 then becomes

{
L

X, {
S

copy(Y), copy(Z)} }

where the outer tuple is locally allocated. (Note that the copy wrappers will not copy data
that already resides on the shared heap; cf. Section 3.2.)

6. PERFORMANCE EVALUATION

The default runtime system architecture of Erlang/OTP R9 (Release 9)6 is the process-
centric one. The communal (“shared heap”) architecture can be selected by specifying
the -shared flag when the system is started. Based on R9, we have also implemented
the modifications needed for the hybrid architecture using the local-by-default allocation
strategy, and included the above message analysis and transformation as a final stage on the
Core Erlang representation in the Erlang/OTP compiler. By default, the compiler generates
byte code, from which native code can also be generated.7 A compiler option invokes the
message analysis. We expect that the hybrid architecture will be included as an option

6Available as open source from www.erlang.org and commercially from www.erlang.com.
7Currently supported architectures are SPARC, x86, AMD-64 and PowerPC.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 17

in Erlang/OTP R10; in fact, this is indeed the case in the pre-release of R10 where the
architecture can be selected by specifying the -hybrid command line option at system
start-up time.

All benchmarks were ran on a dual processor Intel Xeon 2.4 GHz machine with 1 GB
of RAM and 512 KB of cache per processor, running Linux.

6.1 The benchmarks

The performance evaluation was based on the following benchmarks:

msort A distributed implementation of merge sort. Each process receives a list, splits it
into two sublists, and spawns two new processes for sorting the new lists. Since
new lists are continously created, there is very little forwarding of data.

msort q An alternative implementation of distributed merge sort. Sublist splitting is not
done by creating new lists, but by indexing into the original list. However, if
message data cannot be shared (as in the process-centric system), the algorithm
uses quadratic space.

worker Spawns a number of worker processes and waits for them to return their results.
Each worker builds a data structure in several steps, generating a large amount
of local, temporary data. The final data structure is sent to the parent process.

nag A synthetic benchmark which creates a ring of 1000 processes. Each process
creates a large message (about 200 words) which will be passed on 200 steps in
the ring. nag is designed to test the behavior of the memory architectures under
different program characteristics. It comes in two flavours: same and keep. The
same variant creates one single message which is then continously forwarded.
The keep variant creates a new message at every step, but each process keeps
received messages live by storing them in a list.

eddie A medium-sized application (≈2,500 lines of code in 8 modules) implementing
an HTTP parser which handles http-get requests from a client.

eddie m The eddie modules merged into one single module.

mnesia The standard TPC-B database benchmark for the Mnesia distributed database
system [Mattsson et al. 1999]. Mnesia consists of about 22,000 lines of Erlang
code, in 29 modules. The benchmark tries to complete as many transactions as
possible in a given time quantum. Unlike the other programs, the performance
measure is not the runtime, but the average throughput per second.

6.2 Effectiveness of the message analysis

Table I shows amounts of messages sent and words copied between the process-local heaps
and the message area in the hybrid system, both when the message analysis is not used to
guide allocation, and when it is. A message is counted as copied if at least some part of it
needs to be copied to the shared heap at send time.8 We also show the amount of words
allocated directly on the shared heap when the analysis is enabled.

In the hybrid system, the number of words copied also includes forced copying when
allocating message data (cf. Section 5.2), and can thus be nonzero even if no copying
happens at send time. Note that in a process-centric system, the number of words copied

8When the analysis is not used, the number of messages sent without any copying can be nonzero only if some
messages are forwarded exactly as they are (without any wrapper). This rarely happens in non-synthetic programs.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · Richard Carlsson et al.

Table I. Effectiveness of message analysis in the hybrid system

Messages Messages copied k words k words Words copied
Benchmark sent w/o an. with an. prealloc. sent w/o an. with an.
msort 49,149 100.0% 0.0% 1,169 1,202 98.6% 3.33%
msort q 49,149 66.7% 0.0% 451 60,210 0.8% 0.07%
worker 802 100.0% 0.0% 19,995 19.984 100.0% 0.01%
nag (same) 203,000 100.0% 0.5% 606 40,827 2.0% 0.05%
nag (keep) 203,000 100.0% 0.5% 40,606 40,627 100.0% 0.05%
eddie 40,028 100.0% 0.1% 200 421 81.0% 33.47%
eddie m 40,028 100.0% 0.1% 260 421 81.0% 19.22%
mnesia 1,061,290 100.0% 25.2% 5,461 11,203 77.8% 33.68%

between process heaps is exactly the number of words sent. Also, in the communal system,
all data resides in the same shared area, so no copying is done per se (an analysis that triv-
ially classifies all data as shared will have the same effect for the hybrid system); however,
storing data in shared memory can have higher cost, in a multithreaded implementation.

It is clear from Table I that, especially when large amounts of data are being sent, using
message analysis can avoid much of the copying. Even in the real-world programs eddie
and mnesia, the amount of copying is reduced from about 80% to 33% when modules
are separately compiled, and when compiling eddie as a single module, only 19% of the
sent data is copied. We can furthermore see that the message analysis typically causes a
significant portion of the message data to be preallocated on the shared heap (58–100%),
with only a small amount of overapproximation (computed as the difference in copying
without and with analysis, compared to the number of words preallocated), being in the
range of 0–9%.

In the mnesia benchmark, however, we encountered for the first (and so far only) time
a problematic case of overapproximation. The numbers shown in Tables I and II were
measured when only 28 out of 29 modules were compiled using the message analysis.
When compiling also the final module with the analysis enabled, the number of words
copied almost doubled. Studying the code in question and the effects of the analysis, it
turned out that while a small fraction of the overapproximation might be avoided by a
more precise analysis (e.g. distingushing call contexts), the main problem was due to the
style of programming: The rogue module was written so that whenever an error occurs, or
when an “info query” is received, large parts of otherwise local data will be passed in a
message to the outside world. This meant that many data structures that are normally used
only for internal bookkeeping (and are thus constantly being updated), were considered
“probable messages” by the analysis, and were therefore being created on the shared heap,
sometimes also triggering further copying of subterms. The situation could be compared
with how a C programmer unaware of pointer analysis and aliasing may write code that a
compiler cannot optimize. In our case, a programmer cannot be completely oblivious of
the memory model, and needs to keep local data separated from intended message data in
order to get the best performance.

6.3 Memory utilization

Our main goal is however not to put all data in the shared area, but to also use the local
heaps as much as possible for data that does not need to be shared, while avoiding the poor
space behaviour that the process-centric system can display. Figure 5 shows the total heap
usage in the different systems, in terms of the maximum heap sizes at garbage collection

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 19

Msort Msort_q Worker Nag
(same)

Nag
(keep)

Eddie Mnesia
��

���

�����

������

�������

���������

Heap Usage

Private heap

Shared heap

Hybrid (total)

Analysis (total)

Fig. 5. Total heap usage (k words)

Table II. Heap utilization (k words)

Process- Communal Plain Hybrid With Analysis
Benchmark centric local shared local shared total
msort 114 142 87 126 87 122 208
msort q 163,493 192 96 163 96 167 262
worker 69,815 38,041 36,452 16,200 25,033 13,774 38,808
nag (same) 4,207 37 31 343 8 30 38
nag (keep) 39.558 20,924 542 20,924 10 21,473 21,483
eddie 42 69 41 12 39 9 47
mnesia 79 60 32 62 32 56 88

time.9 (Note that the Y axis is in logarithmic scale.) All heaps used the same initial size
for these tests.

The heap utilization numbers can be studied in more detail in Table II. Since the hybrid
system without message analysis only copies to the shared area the data that actually must
be there, on demand, the “plain hybrid” columns give us an approximate lower bound on
the utilization of the shared heap. They also show how reuse of message data can reduce the
sizes of the local heaps compared to the process-centric system. In general, the table shows
that the hybrid system can use significantly less local memory than the process-centric
system, and less shared memory than the communal system, although the total amount of
used memory can be larger than in the latter; this is a natural consequence of wanting to
separate local memory from shared memory. Furthermore, using the message analysis can
improve the memory behaviour of the hybrid system, sometimes even reducing the size of
the shared area. (Figures showing heap usage of individual benchmarks can be found in
Appendix A.)

A seemingly anomalous detail in Table II is that in the nag (same) benchmark, the use
of the shared area is much higher without the analysis. The reason is that when a message
is copied on demand, the original reference is not updated to point to the shared heap. We
did not originally think this detail would be worthwhile to handle, but it turns out that in a
program like this one, where effectively a multicast is performed which distributes a single

9Heap usage of eddie m is not shown as it is identical to that of eddie.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · Richard Carlsson et al.

����� ������� ���	
� ���
����
�

���
�	

��

����

��

���

���

���

���

����

����

����

����

����

��������
��� !���
��"#��$%

&��'��
�(
��

)*��
��(
��

(+,���

-!��+���

Fig. 6. Normalized runtimes

message to all processes, if the message was first created on the local heap it will then
be copied repeatedly onto the shared heap - in this case yielding 1000 copies. (Enabling
the message analysis eliminates the effect in this particular program, but does not make
the hybrid system immune to it.) One way of avoiding such effects might be to cache the
reference to the last sent message and its location on the shared heap; a more far-reaching
change would be to add indirection pointers to the runtime system (see e.g. [Brooks 1984]).

Note that although we do not show those figures here, the process-centric system can
suffer from high fragmentation, consisting of the unused space between the heap top and
the stack top on each process – often up to 50% of the allocated memory area. With a
large number of processes (e.g., the msort benchmark uses more than 16,000 processes),
a lot of memory is allocated without being used. Using the hybrid system with message
analysis can avoid fragmentation by reducing the local heap sizes. (In comparison, the
communal system allows temporary data created by one process to be quickly garbage
collected so the memory can be used by another process, keeping the total memory usage
low; however, in a multithreaded implementation one does not want processes to share
their scratch memory.)

6.4 Runtime performance

Figure 6 shows execution times for the benchmarks,10 excluding time spent in garbage
collection and normalized with respect to the process-centric architecture. Garbage collec-
tion times are excluded to avoid possible side-effects from the different garbage collection
policies that the different systems employ. (Although for these benchmarks including GC
times does not change the overall picture in any significant way; see Appendix B.) The hy-
brid system, when the analysis is enabled, tends to follow the behaviour of the communal
system, avoiding the excessive copying times that the process-centric system sometimes
suffers from.

A more detailed breakdown of the execution times for these benchmarks (including time
spent in garbage collection) can be found in Appendix B.

10Times for mnesia are not shown as runtimes do not make sense for this benchmark.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 21

Table III. Compilation times (secs) and percentage of time spent in analysis

Benchmark sizes To byte code To native code
Benchmark Modules Lines Byte code Time Analysis Time Analysis

msort 1 76 2,216 0.2 5% 0.8 1%
worker 1 96 2,624 0.2 9% 1.0 2%

nag 1 157 3,596 0.2 9% 1.1 2%
eddie 8 3,310 63,224 1.2 26% 17.7 1.9%

eddie m 1 3,417 55,152 1.5 33% 18.3 2.7%
mnesia 29 24,216 427,136 9.9 34% 163.0 2%

pseudoknot 1 3,315 72,696 2.4 67% 7.2 22%
inline 1 2,762 37,400 1.3 44% 11.2 4.9%

6.5 Compilation overhead due to the analysis

Table III shows sizes and compilation times for the benchmarks, both for compilation to
byte code and to native code. Erlang modules are separately compiled, and most source
code files are small (less than 1,000 lines). The numbers for eddie and mnesia show the
total code and byte code size and compilation time for all their modules. We have also
included the non-concurrent programs pseudoknot and inline to show the overhead of
the analysis on the compilation of single-module applications which contain functions of
quite large size.

In the byte code compiler, the analysis takes on average 25% of the compilation time,
with a minimum of 5%. However, the byte code compiler is fast and relatively simplistic;
for example, it does not in itself perform any global data flow analyses. Including the
message analysis as a stage in the more advanced HiPE native code compiler [Johansson
et al. 2000; Pettersson et al. 2002], its portion of the compilation time is below 5% in all
benchmarks except pseudoknot (22%). More importantly, the analysis appears to scale
well when performed on the whole program (eddie m) rather than on a single module at
a time (eddie).

7. RELATED WORK

We first discuss related work in the areas of runtime system organization and static analysis
and then we try to hopefully shed some more insight on message analysis.

Runtime system organization. Our hybrid memory model is inspired in part by a runtime
system architecture described by Doligez and Leroy [1993] that uses thread-specific areas
for young generations and a shared data area for the old generation. It also shares charac-
teristics with the architecture of KaffeOS [Back et al. 2000], an operating system providing
isolation, resource management, and sharing for the execution of Java programs. An ap-
proach using escape analysis to guide a memory management system with thread-specific
heaps for Java programs was described by Steensgaard [2000].

Static analysis. As mentioned, our analysis framework can be best understood as an ex-
tension of Shivers’ control flow analysis [1988] and it is closely related to the frameworks
used by escape analyses. Escape analysis was introduced in 1992 by Park and Goldberg,
and further refined by Deutsch [1997] and Blanchet [1998]. Till quite recently, its main
application has been to permit stack allocation of data in functional languages. In 1999,
Blanchet extended his analysis to handle assignments and applied it to the Java language,
allocating objects on the stack and also eliminating synchronization on objects that do not
escape their creating thread; see the recent journal article [Blanchet 2003]. Concurrently

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · Richard Carlsson et al.

with Blanchet’s work, Bogda and Hölzle [1999] used a variant of escape analysis to sim-
ilarly remove unnecessary synchronization in Java programs by finding objects that are
reachable only by a single thread, and Choi et al. used a reachability graph based escape
analysis for the same purposes; see [Choi et al. 2003]. Ruf [2000] focuses on synchroniza-
tion removal by regarding only properties over the whole lifetimes of objects, tracking the
flow of values through global state but sacrificing precision within methods and especially
in the presence of recursion. It should be noted that with the exception of [Choi et al.
2003], all these escape analyses rely heavily on static type information, and in general sac-
rifice precision in the presence of recursive data structures. Recursive data structures are
extremely common in Erlang and type information is not available in our context.

Message analysis vs. escape analysis. Although our message analysis is in some re-
spects similar to escape analysis, note that it addresses the problem in its reverse direction.
Rather than proving that a piece of data does not escape its context (which more often than
not requires a whole-program analysis), it identifies data that will probably be used in a
message, enabling a speculative optimization that allocates that data in the shared area of
the hybrid system, eliminating the need for copying at send time and making it possible
to remove some run-time checks altogether. While in our case it is the copying semantics
of the Erlang language that allows us to use the message analysis to guide the memory
allocator, we think that even languages with sharing semantics could benefit from such a
memory architecture when the immutability of data structures can be established, e.g. by
static analysis or a type system.

Message analysis vs. region inference. Notice that it is also possible to view the hybrid
runtime system architecture as a system with a shared heap and separate regions for each
process. Region-based memory management, introduced by Tofte and Talpin [1997], typ-
ically allocates objects in separate areas according to their lifetimes. The compiler, guided
by a static analysis called region inference, is responsible for generating code that creates
and deallocates these areas. The simplest form of region inference places objects in areas
whose lifetimes coincide with that of their creating functions. In this respect, one can view
the process-specific heaps of the hybrid model as regions whose lifetime coincides with
that of the top-level function invocation of each process, and see our message analysis as
a region inference algorithm for discovering data which potentially outlives its creating
process.

8. CONCLUDING REMARKS

For the purpose of employing a hybrid runtime system architecture, which is tailored to the
intended use of data in a high-level concurrent language using message passing, we have
devised and formalized an effective and practical static analysis, called message analysis,
that can be used to guide the allocation of data.

As shown in our performance evaluation, the analysis is in practice fast, precise enough
to discover most of the data which will become part of some message, and allows the
resulting system to combine the best performance characteristics of both a process-centric
and a communal memory architecture.

Communication through message passing with copying semantics, even when the com-
municating processes or threads have access to shared memory (as on a single machine or
in a cluster), has many advantages over the currently more common shared-datastructure
approach; these include isolation, portability, scalability, and reduced complexity for the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 23

programmer. With the formidable explosion of network programming in recent years,
many different but similar techniques based on message passing have become buzzwords,
such as RMI, SOAP, and XML-RPC. We believe that message passing – regardless of
acronym – is here to stay,11 and that programming environments and languages with direct
support for message passing will ultimately be common. Runtime systems will need to be
adapted to this way of programming.

ACKNOWLEDGMENT

This research has been supported in part by a grant from the Swedish Research Council
(Vetenskapsrådet) and by the ASTEC (Advanced Software Technology) competence center
with matching funds by Ericsson and T-Mobile.

REFERENCES

APPEL, A. W. 1992. Compiling with Continuations. Cambridge University Press, Cambridge, England.

ARMSTRONG, J., VIRDING, R., WIKSTRÖM, C., AND WILLIAMS, M. 1996. Concurrent Programming in
Erlang, Second ed. Prentice Hall Europe, Herfordshire, Great Britain.

BACK, G., HSIEH, W. C., AND LEPREAU, J. 2000. Processes in KaffeOS: Isolation, resource management, and
sharing in Java. In Proceedings of the 4th USENIX Symposium on Operating Systems Design and Implemen-
tation. USENIX Association, 333–346. http://www.cs.utah.edu/flux/papers/.

BLANCHET, B. 1998. Escape analysis: Correctness proof, implementation and experimental results. In Con-
ference Record of the 25th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’98). ACM Press, New York, N.Y., 25–37.

BLANCHET, B. 2003. Escape analysis for JavaTM : Theory and practice. ACM Trans. Program. Lang. Syst. 25, 6
(Nov.), 713–775.

BOGDA, J. AND HÖLZLE, U. 1999. Removing unnecessary synchronization in Java. In Proceedings of the 14th
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’99). ACM
Press, New York, N.Y., 35–46.

BROOKS, R. A. 1984. Trading data space for reduced time and code space in real-time garbage collection on
stock hardware. In Proceedings of the 1984 ACM Symposium on LISP and Functional Programming. ACM
Press, New York, N.Y., 256–262.

CARLSSON, R. 2001. An introduction to Core Erlang. In Proceedings of the PLI’01 Erlang Workshop.

CARLSSON, R., GUSTAVSSON, B., JOHANSSON, E., LINDGREN, T., NYSTRÖM, S.-O., PETTERSSON, M.,
AND VIRDING, R. 2000. Core Erlang 1.0 language specification. Tech. Rep. 030, Information Technology
Department, Uppsala University. Nov.

CHENG, P. AND BLELLOCH, G. E. 2001. A parallel, real-time garbage collector. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation. ACM Press, New York, N.Y.,
125–136.

CHOI, J.-D., GUPTA, M., SERRANO, M., SHREEDHAR, V. C., AND MIDKIFF, S. P. 2003. Stack allocation and
synchronization optimizations for Java using escape analysis. ACM Trans. Program. Lang. Syst. 25, 6 (Nov.),
876–910.

DEUTSCH, A. 1997. On the complexity of escape analysis. In Conference Record of the 24th Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. ACM Press, New York, N.Y., 358–
371.

DOLIGEZ, D. AND LEROY, X. 1993. A concurrent, generational garbage collector for a multithreaded implemen-
tation of ML. In Conference Record of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, New York, N.Y., 113–123.

DOMANI, T., GOLDSHTEIN, G., KOLODNER, E., LEWIS, E., PETRANK, E., AND SHEINWALD, D. 2002.
Thread-local heaps for Java. In Proceedings of ISMM’2002: ACM SIGPLAN International Symposium on
Memory Management, D. Detlefs, Ed. ACM Press, New York, N.Y., 76–87.

11Some might say “back with a vengeance”.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · Richard Carlsson et al.

FLANAGAN, C., SABRY, A., DUBA, B. F., AND FELLEISEN, M. 1993. The essence of compiling with continu-
ations. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. ACM Press, New York, N.Y, 237–247.

HEINTZE, N. AND MCALLESTER, D. A. 1997. On the cubic bottleneck in subtyping and flow analysis. In
Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society
Press, 342–351.

JOHANSSON, E., PETTERSSON, M., AND SAGONAS, K. 2000. HiPE: A High Performance Erlang system. In
Proceedings of the ACM SIGPLAN Conference on Principles and Practice of Declarative Programming. ACM
Press, New York, NY, 32–43.

JOHANSSON, E., SAGONAS, K., AND WILHELMSSON, J. 2002. Heap architectures for concurrent languages
using message passing. In Proceedings of ISMM’2002: ACM SIGPLAN International Symposium on Memory
Management, D. Detlefs, Ed. ACM Press, New York, N.Y., 88–99.

JONES, R. E. AND LINS, R. 1996. Garbage Collection: Algorithms for automatic memory management. John
Wiley & Sons.

MATTSSON, H., NILSSON, H., AND WIKSTRÖM, C. 1999. Mnesia - a distributed robust DBMS for telecommu-
nications applications. In Practical Applications of Declarative Languages: Proceedings of the PADL’1999
Symposium, G. Gupta, Ed. Number 1551 in LNCS. Springer, Berlin, Germany, 152–163.

MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML (Revised).
The MIT Press, Cambridge, Massachusetts.

PARK, Y. G. AND GOLDBERG, B. 1992. Escape analysis on lists. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM Press, New York, N.Y., 116–127.

PETTERSSON, M., SAGONAS, K., AND JOHANSSON, E. 2002. The HiPE/x86 Erlang compiler: System de-
scription and performance evaluation. In Proceedings of the Sixth International Symposium on Functional
and Logic Programming, Z. Hu and M. Rodrı́guez-Artalejo, Eds. Number 2441 in LNCS. Springer, Berlin,
Germany, 228–244.

RUF, E. 2000. Effective synchronization removal for Java. In Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation. ACM Press, New York, N.Y., 208–218.

SERRANO, M. AND FEELEY, M. 1996. Storage use analysis and its applications. In Proceedings of the 1996
ACM SIGPLAN International Conference on Functional Programming (ICFP’96). ACM Press, New York,
N.Y., 50–61.

SHIVERS, O. 1988. Control flow analysis in Scheme. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM Press, New York, N.Y., 164–174.

STEENSGAARD, B. 2000. Thread-specific heaps for multi-threaded programs. In Proceedings of the ACM
SIGPLAN International Symposium on Memory Management. ACM Press, New York, N.Y., 18–24.

TOFTE, M. AND TALPIN, J.-P. 1997. Region-based memory management. Information and Computation 132, 2
(Feb.), 109–176.

WILSON, P. R. 1992. Uniprocessor garbage collection techniques. In Proceedings of IWMM’92: International
Workshop on Memory Management, Y. Bekkers and J. Cohen, Eds. Number 637 in LNCS. Springer-Verlag,
Berlin, Germany, 1–42. See also expanded version as Univ. of Texas Austin technical report submitted to
ACM Computing Surveys.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 25

Hybrid Analysis

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

200,000

225,000

Msort

Shared

Local

(a) msort

Hybrid Analysis

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

45,000,000

50,000,000

55,000,000

Worker

Shared

Local

(b) worker

Hybrid Analysis

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Nag (same)

Shared

Local

(c) nag (same)

Hybrid Analysis

0

2,500,000

5,000,000

7,500,000

10,000,000

12,500,000

15,000,000

17,500,000

20,000,000

22,500,000

Nag (keep)

Shared

Local

(d) nag (keep)

Hybrid Analysis

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

Eddie

Shared

Local

(e) eddie

Hybrid Analysis

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Mnesia

Shared

Local

(f) mnesia

Fig. 7. Heap size improvement due to message analysis

A. HEAP MEMORY USAGE

Figure 7 shows the effect of the message analysis-guided heap allocation on the sizes of
the heaps in the hybrid system. While the changes in the allocation pattern is in some cases
not big enough to affect the heap enlargement policy by much, as in msort, and is rarely as
extreme as in nag (same), the message analysis typically makes the hybrid system almost
as memory-efficient as the communal system (cf. Figure 5). We have left out msort q,
since it behaves very much like msort in this respect.

B. EXECUTION TIMES

Figure 8 shows execution time details for the benchmarks (see also Figure 6). It must
be noted that the current (copying, 2-generational) garbage collector is tailored for the
process-centric system only, and for instance does not work well with large amounts of
live data. Work on better garbage collection for the hybrid system is under way, but is not
expected to be ready any time soon.

Figure 9 makes it easier to see for each benchmark where the time is spent, in the dif-
ferent systems. It is e.g. clear that the message analysis removes much of the copying
overhead in the hybrid system,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · Richard Carlsson et al.

��������
	��

�	�����
	��

����� ��������

�

��

��

��

���

���

���

���

���

���

���

���

���

���

���

���

�����

��������������

 �!����������

��"������

��
������

���������

�#����������

(a) msort

��������
	��

�	�����
	��

����� ��������

�

���

����

����

����

����

����

����

����

����

�������

���������� �!�

"�#������ �!�

��$�� �!�

��
�� �!�

����� �!�

�%������ �!�

(b) msort q

��������
	��

�	�����
	��

����� ��������

�

����

����

����

����

����

����

����

����

����

�����

�����

�����

�����

�����

�����

��� ��

!������!"�#�$�

%�&���!"�#�$�

��'��#�$�

"�
��#�$�

�����#�$�

()������#�$�

(c) worker

��������
	��

�	�����
	��

����� ��������

�

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

������� �!

"�#����"$�%� �

&#'���"$�%� �

��(��%� �

$#
��%� �

�����%� �

)*���#��%� �

(d) nag (same)

��������
	��

�	�����
	��

����� ��������

�

���

����

����

����

����

����

����

����

����

����

����

����

��������
�

 �!���� "�#�$�

%!&��� "�#�$�

��'��#�$�

"!
��#�$�

�����#�$�

()���!��#�$�

(e) nag (keep)

��������
	��

�	�����
	��

����� ��������

�

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��������������

 �!����������

��"������

��
������

���������

#$����������

(f) eddie

Fig. 8. Performance of individual benchmarks

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Message Analysis for Concurrent Programs Using Message Passing · 27

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
	

�

�
�

��
�
�
�

�

�
�

��
	

�
�

�
�
�
�

�
�

�
��

��

���

���

���

���

���

���

���

 ��

!��

����

"��#��
�$
��

%&�'��

(�)
�'��

&��*�'��

(
���'��

�+������'��

(a) Process-centric

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
	

�

�
�

��
�
�
�

�

�
�

��
	

�
�

�
�
�
�

�
�

�
��

��

���

���

���

���

���

���

���

 ��

!��

����

"#��
��$
��

%&�'��

"
���'��

�(������'��

(b) Communal

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
	

�

�
�

��
�
�
�

�

�
�

��
	

�
�

�
�
�
�

�
�

�
��

��

���

���

���

���

���

���

���

 ��

!��

����

"#����$%&���

'#�&�#�'(�)��

*�+�#�'(�)��

(��%�)��

,
���)��

�-������)��

(c) Hybrid without analysis

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
	

�

�
�

��
�
�
�

�

�
�

��
	

�
�

�
�
�
�

�
�

�
��

��

���

���

���

���

���

���

���

 ��

!��

����

�
���
�"��#$���

%#�&�#�%'�(��

)�*�#�%'�(��

'��$�(��

+
���(��

�,������(��

(d) Hybrid with message analysis

Fig. 9. Execution time percentages for the different systems

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

