
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2003; (in press) (DOI: 10.1002/spe.533)

Experimental evaluation and
improvements to linear scan
register allocation

Konstantinos Sagonas1,∗,† and Erik Stenman2

1Computing Science, Department of Information Technology, Uppsala University, Sweden
2School of Computer and Communication Sciences, Swiss Federal Institute of Technology, Lausanne,
Switzerland

SUMMARY

We report our experience from implementing and experimentally evaluating the performance of various
register allocation schemes, focusing on the recently proposed linear scan register allocator. In particular,
we describe in detail our implementation of linear scan and report on its behavior both on register-rich
and on register-poor computer architectures. We also extensively investigate how different options to the
basic algorithm and to the compilation process as a whole affect compilation times and quality of the
produced code.

In a nutshell, our experience is that a well-tuned linear scan register allocator is a good choice on
register-rich architectures. It performs competitively with graph coloring based allocation schemes and
results in significantly lower compilation times. When compilation time is a concern, such as in just-in-time
compilers, it can also be a viable option on register-poor architectures. Copyright c© 2003 John Wiley &
Sons, Ltd.

KEY WORDS: global register allocation; just-in-time compilation; code generation; Erlang

1. INTRODUCTION

During the last few years, we have been developing HiPE, a High-Performance native code compiler,
for the concurrent functional programming language Erlang [1]. Erlang has been designed to
address the needs of large-scale soft real-time control applications and is successfully being used in
products of the telecommunications industry. The HiPE system significantly improves the performance

∗Correspondence to: Konstantinos Sagonas, Department of Information Technology, Uppsala University, P.O. Box 337,
SE-75105, Uppsala, Sweden.
†E-mail: kostis@it.uu.se

Copyright c© 2003 John Wiley & Sons, Ltd.
Received 3 July 2002

Revised 25 November 2002
Accepted 23 February 2003

K. SAGONAS AND E. STENMAN

characteristics of Erlang applications by allowing selective, user-controlled, ‘just-in-time’ compilation
of bytecode-compiled Erlang functions to native code. As reported in [2], HiPE currently outperforms
all other implementations of Erlang‡.

Achieving high performance does not come without a price: when compiling to native code,
compilation times are higher than compilation to virtual machine code. Even though HiPE is currently
not focusing exclusively on dynamic compilation—the compiler is usually used either interactively or
through make—compilation times are a significant concern in an interactive development environment
which Erlang advocates. Investigating where the HiPE compiler spends time, we have found that
the register allocator, which was based on a variant of graph coloring, was often a bottleneck being
responsible for 30–40% of the total compilation time. (Note that it is typical for a global register
allocator to be a compiler bottleneck.)

In looking for a more well-behaved register allocator, we found out about the recently proposed
linear scan register allocator [3]. The method is quite simple and extremely intriguing: with relatively
little machinery—and more importantly by avoiding the typically quadratic cost of heuristic coloring—
almost equally efficient code is generated. At first, we were skeptical as to whether the results of [3]
would carry over to HiPE: one reason is because programs written in Erlang—or a functional language
in general—may not benefit to the same extent from techniques used for compiling C or ’C [4]
programs. More importantly because, even on a register-rich computer architecture such as the SPARC,
HiPE reserves a relatively large set of physical registers which are heavily used by the underlying
virtual machine; this increases register pressure and significantly departs from the contexts in which
linear scan has previously been used [3,4]. Finally, because we had no idea how the results would look
on a register-poor architecture such as IA-32; to our knowledge there is no published description of
the performance of linear scan in this setting. Despite our skepticism, we were willing to give it a try.
In about two weeks, a straightforward implementation based on the description in [3] was ready, but
this was the easy part. The results were encouraging, but we were curious to experiment with various
options that [3] also explores, sometimes leaves open, or suggests as future research. We did so and
report our findings in this article.

This article, besides documenting our implementation (Section 3) and extensively reporting on its
performance characteristics (Section 4), describes our experience in using linear scan register allocation
in a context which is significantly different from those previously tried. In particular, we are the first to
investigate the effectiveness of linear scan on the IA-32. Furthermore, we present results from trying
different options to linear scan and report on their effectiveness and on the trade-offs between the speed
of register allocation and the quality of the resulting code (Section 5). In particular, we extensively
investigate the impact of conversion to a static single assignment (SSA) form [5] to compilation time
and quality of the resulting code. We thus believe that this article and our experiences should prove
useful to all programming language implementors who are considering linear scan register allocation
or are involved in a project where compilation time is a concern.

We begin with a description of different global register allocation algorithms with emphasis on the
relatively new linear scan register allocation algorithm.

‡HiPE is incorporated in Ericsson’s Erlang/OTP system (available also as open-source from www.erlang.org). See also:
www.it.uu.se/research/projects/hipe.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

2. GLOBAL REGISTER ALLOCATION

Register allocation aims at finding a mapping of source program or compiler generated variables
(henceforth referred to as temporaries) to a limited set of physical machine registers. Local register
allocation algorithms restrict their attention to the set of temporaries within a single basic block. In this
case, efficient algorithms for optimal register allocation exist; see e.g. [6,7]. When aiming to find
such an allocation for temporaries whose lifetimes span across basic block boundaries (e.g., for all
temporaries of a single function), the process is known as global register allocation. In this case,
control-flow enters the picture and obtaining an optimal mapping becomes an NP-complete problem;
see [8,9]. Since the early 1980s, global register allocation has been studied extensively in the
literature and different approximations to the optimal allocation using heuristics and methods from
related NP-complete problems have been used to solve the problem such as bin-packing, 0-1 integer
programming, and graph coloring based approaches.

2.1. Graph coloring register allocation

The idea behind coloring-based register allocation schemes is to formulate register allocation as a graph
coloring problem [8] by representing liveness information with an interference graph. Nodes in the
interference graph represent temporaries that are to be allocated to registers. Edges connect temporaries
that are simultaneously live and thus cannot use the same physical register. By using as many colors
as allocatable physical registers, the register allocation problem can be solved by assigning colors to
nodes in the graph such that all directly connected nodes receive different colors.

The classic heuristics-based method by Chaitin et al. [8,10] iteratively builds an interference graph,
aggressively coalesces any pair of non-interfering, move-related nodes, and heuristically attempts to
color the resulting graph by simplification (i.e., removal of nodes with degree less than the number
of available machine registers). If the graph is not colorable in this way, nodes are deleted from the
graph, the corresponding temporaries are spilled to memory, and the process is repeated until the graph
becomes colorable.

Since Chaitin’s paper, many variations [11,12] or improvements [13–15] to the basic scheme have
emerged and some of them have been incorporated in production compilers.

2.2. Iterated register coalescing

Iterated register coalescing, proposed by George and Appel [16], is a coloring-based technique aiming
at combining register allocation with an aggressive elimination of redundant move instructions: when
the source and destination node of a move do not interfere (i.e., are not directly connected in the graph),
these nodes can be coalesced into one, and the move instruction can be removed. This coalescing of
nodes a and b is iteratively performed during simplification if, for every neighbor t of a, either t already
interferes with b or t is of insignificant degree. This coalescing criterion is conservative, i.e., coalescing
will be performed only if it does not affect the colorability of the graph.

In practice, coloring-based allocation schemes usually produce good code. However, the cost
of register allocation is often heavily dominated by the construction of the interference graph,
which can take time (and space) quadratic in the number of nodes. Moreover, since the coloring
process is heuristics-based, there is no guarantee that the number of iterations will be bounded

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

Figure 1. Control-flow graph (a) and two of its possible linearizations: (b) linearization 1; (c) linearization 2.

(by a constant). When compilation time is a concern, as in just-in-time compilers or interactive
development environments, graph coloring or iterated register coalescing may not be the best method
to employ for register allocation.

2.3. Linear scan register allocation

The linear scan allocation algorithm, proposed by Poletto and Sarkar [3], is simple to understand and
implement. Moreover, as its name implies, its execution time is linear in the number of instructions
and temporaries. It is based on the notion of the live interval of a temporary, which is an approximation
of its liveness region. The live interval of a temporary is defined so that the temporary is dead at all
instructions outside the live interval. Note that this is an approximation as the temporary might also
be dead at some instructions within the interval. The idea is that the allocator can use this information
to easily determine how these intervals overlap and assign temporaries with overlapping intervals to
different registers.

The algorithm can be broken down into the following four steps: (1) order all instructions linearly;
(2) calculate the set of live intervals; (3) allocate a register to each interval (or spill the corresponding
temporary); and finally (4) rewrite the code with the obtained allocation.

Let us look at each step of the algorithm, using Figure 1 as our example.

2.3.1. Ordering instructions linearly

As long as the calculation of live intervals is correct, an arbitrary linear ordering of the instructions can
be chosen. In our example, the simple control-flow graph of Figure 1(a) can be linearized in many ways;
Figures 1(b) and 1(c) show two possible orderings. Different orderings will of course result in different
approximations of live intervals, and the choice of ordering might impact the allocation and the number
of spilled temporaries. An optimal ordering is one with as few contemporaneous live intervals as
possible, but finding this information at compile time is time-consuming and as such contrary to the
spirit of the linear scan algorithm. It is therefore important to a priori choose an ordering that performs
best on the average. Poletto and Sarkar in [3] suggest the use of a depth-first ordering of instructions

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

as the most natural ordering and only compare it with the ordering in which the instructions appear in
the intermediate code representation. They conclude that these two orderings produce roughly similar
code for their benchmarks. We have experimented with many other different orderings and discuss
their impact on the quality of the produced code in Section 5.1.

2.3.2. Calculation of live intervals

Given a linear ordering of the code, there is a minimal live interval for each temporary. For temporaries
not in a loop, this interval starts with the first definition of the temporary and ends with its last use.
For temporaries live at the entry of a loop, the interval must be extended to the end of the loop.
The optimal interval can be found by first doing a precise liveness analysis and then by traversing
the code in linear order extending the intervals of each temporary to include all instructions where the
temporary is live. For the first linearization of our example, a valid set of live intervals would be:

t0 : [5, 6], t1 : [1, 4], t2 : [1, 3], t3 : [4, 5]
and for the second linearization, a valid set of live intervals would be:

t0 : [3, 4], t1 : [1, 6], t2 : [1, 6], t3 : [2, 3]
In the first set of intervals, t2 is only live at the same time as t1, but in the second,t2 is simultaneously
live with all other temporaries.

A natural improvement to the above calculation of lifetime intervals is to also employ a scheme such
as that described in [17] for utilizing lifetime holes or to perform some form of live range splitting.
We will remark on the use of these methods in Section 5.4. Also, there are alternatives to performing the
somewhat costly liveness analysis. Such alternatives give correct—albeit sub-optimal—live intervals.
One approach is to use strongly connected components in the control-flow graph; see [3]. We will look
closer at this alternative in Section 5.2.

2.3.3. Allocation of registers to intervals

When all intervals are computed, the resulting data structure (Intervals) gets ordered in increasing start-
points to make the subsequent allocation scan efficient. For our first linearization this would result in:

t1 : [1, 4], t2 : [1, 3], t3 : [4, 5], t0 : [5, 6]
Allocation is then done by keeping a set of allocatable free physical registers (FreeRegs), a set of
already allocated temporaries (Allocated), and a list containing a mapping of active intervals to registers
(Active). The active intervals are ordered on increasing end-points while traversing the start-point-
ordered list of intervals. For each interval in Intervals, that is, for each temporary ti (with interval
[starti , endi]) do:

• For each interval j in Active which ends before or at the current interval (i.e., endj ≤ starti),
free the corresponding register and move the mapping to Allocated.

• If there is a free register, r , in FreeRegs, remove r from FreeRegs, add ti �→ r with the interval
ti : [starti , endi] to Active (sorted on end).

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

Alternatively, if there are no free registers and the end-point endk of the first temporary tk in
Active is further away than the current interval (i.e. endk > endi), then spill tk , otherwise spill
ti . By choosing the temporary whose live interval ends last, the number of spilled temporaries
is hopefully kept low. (Another way to choose the spilled temporary is discussed in Section 5.3.)

2.3.4. Rewrite of the code

Finally, when the allocation is completed, the code is rewritten so that each use or definition of a
temporary involves the physical register where the temporary is allocated to. On RISC architectures,
if the temporary is spilled, a load or store instruction is added to the code and a reserved physical
register is used instead of the temporary. On architectures that have fancy addressing modes, such as
the IA-32, the location of the spilled temporary can often be used directly in the instruction, in which
case no extra instruction for loading or storing the temporary is needed.

3. IMPLEMENTATION OF REGISTER ALLOCATORS IN HiPE

3.1. Graph coloring register allocator

The graph coloring register allocator is a simple variant of [13], is well-tested, and uses efficient data
structures. It uses a rather simple spill cost function: the static count of a temporary’s uses (i.e., the
number of occurrences of the temporary in the function’s code). This cost function works quite well
since loops in our context are few in number and of low nesting depth; see Section 3.5 for reasons
why this is so. A natural improvement would be to use the static prediction to give higher spill cost
to temporaries used in the most likely taken path. We have not investigated the effects of other cost
functions since this allocator seldom needs to spill on register-rich architectures such as the SPARC,
and we subsequently developed an iterated register coalescing allocator which typically spills in even
fewer cases and therefore is to be preferred when compilation time is not a concern.

In the graph coloring register allocator, the following three steps are iterated until no new temporaries
are added: (1) build interference graph; (2) color the graph; and (3) rewrite instructions with spills to
use new temporaries. These steps are described in more detail below.

3.1.1. Build interference graph

To build the interference graph we first calculate liveness information for the temporaries and we then
traverse the instructions inserting edges between interfering temporaries into the interference graph.
While doing this, we also calculate the number of uses of each temporary. This number is used in the
spill cost function.

3.1.2. Color the graph

Coloring is done straightforwardly. We use a work-list Low, a stack of colorable registers Stack,
and apply the algorithm shown in Figure 2. In the first step all nodes are examined to find nodes of
insignificant degrees. The total number of iterations of the two while loops is related to the number

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

1. Low is initialized to contain all nodes of insignificant degree /* i.e., trivially colorable */
2. While the interference graph is non-empty

While Low is non-empty
Remove X from the interference graph
Remove X from Low
Push {X, colorable} on the Stack
Decrement degree of neighbors of X
For each neighbor Y of low degree, put Y on Low

otherwise
Select a node Z to spill
Remove Z from the interference graph
Push {Z, spilled} on the Stack
Decrement the degree of neighbors of Z
Add all insignificant degree neighbors of Z to Low

3. Traverse the Stack choosing a free color for each node not marked as spilled.

Figure 2. Heuristic graph coloring implementation.

of nodes (in each iteration a node is removed from the interference graph and pushed on the stack).
The operations done at each step of the while loop are relative to the degree of the node being pushed.
When no spilling occurs this degree is less than K (the number of available registers), otherwise the
degree is only bounded by the number of nodes, but in practice few nodes are related to all other nodes.
In the third step all neighbors of each node that is not marked as spilled have to be examined in order
to find a free color.

3.1.3. Rewrite of the code

The final step of the graph coloring implementation traverses the code and rewrites each instruction so
that the constraints imposed by the instruction set architecture are respected. We explain how this is
done in Sections 3.6 and 3.7, which present the SPARC and IA-32 back-ends, respectively. This rewrite
might introduce new temporaries, in which case the allocation is repeated with the added constraint that
none of these new temporaries may be spilled.

3.2. Iterated register coalescing allocator

The iterated register coalescing allocator closely follows the algorithm described in [16]. It is optimistic
in its spilling (similar to the strategy described in [15]), and was implemented having as its main
goal to provide the HiPE compiler with a register allocator that offers good performance when the
speed of compilation is not critical. As far as this article is concerned, this allocator establishes an
approximate (practical) lower bound on the number of spills for the benchmarks. However, note that a
technique for optimal spilling by optimal live range splitting and taking into account fancy addressing

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

While the interference graph is non-empty:
/* In each step below, the interference graph is updated */
Simplify: remove all non move-related nodes of insignificant degree.
Coalesce: join all move-related nodes satisfying the coalescing criteria.
If any coalescing was performed, start over with the simplify step.
Freeze nodes: mark a move-related node of low degree as non move-related.
If any freezing was done, start over with the simplify step.
Otherwise spill a node.

Figure 3. Iterated register coalescing implementation.

modes that machines like the IA-32 offer has recently been proposed. This technique achieves an even
lower number of spills than iterated coalescing, albeit at the expense of (often significantly) increased
compilation times; see [18].

The main structure of the iterated coalescing allocator (Figure 3) is similar to that of the graph
coloring allocator; the difference lies mainly in the coloring of the interference graph. When the
interference graph is built all nodes are marked as either move-related, i.e. the source or destination
of a move, or non move-related, i.e. never the source or destination of a move. Two move-related
nodes, a and b, might be coalesced if they satisfy the coalescing criteria. (As mentioned previously
the criterion is that for every neighbor t of a, either t already interferes with b or t is of insignificant
degree.) If there are move-related nodes that cannot be coalesced, a low degree node might be freezed,
i.e. marked as non move-related (any neighbors that were move-related to only this node will also be
marked as non move-related, recursively).

By keeping each node of the interference graph in one of four work-lists (simplify, coalesce, freeze,
or spill) we can easily find all nodes matching the current step of the algorithm. The cost for each step
of the algorithm is proportional to the degree of the node being processed and the length of the work-
list of neighboring nodes. We can get an upper bound of the number of iterations of the algorithm by
considering how many times each operation might be performed on each node. For each node either
the simplify or the spill action will be performed once. In addition the freeze action might be performed
once for each node, and the coalescing might be performed at most once with every other node.

3.3. Linear scan register allocator

As mentioned, the linear scan register allocator was first implemented based on the description in [3].
Afterwards, we experimented with various options and tuned the first implementation considerably.
In this section, we only describe the chosen default implementation (i.e., the one using the options that
seem to work best in most cases) by looking at how each step of the algorithm is implemented in HiPE.
In Section 5 we will improve on [3] by describing and quantifying the impact of the alternatives that
we tried.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

3.3.1. Ordering instructions linearly

Since there is no reason to reorder the instructions within a basic block, we order only the basic blocks.
The default ordering of blocks is depth-first ordering (also called reverse postorder). The impact
of basic block orderings on the quality of the allocation obtained by linear scan is quantified in
Section 5.1.

3.3.2. Calculation of live intervals

Each live interval consists of a start and an end position: given a fixed traversal of the basic blocks,
these are instruction numbers corresponding to the first and last instruction where the temporary is
live. Given an approximation of the live-in and live-out sets for each basic block, we can set up the live
intervals for each temporary by traversing the basic blocks. All temporaries in the live-in set for a basic
block starting at instruction i have a live interval that includes i. All temporaries in the live-out set for
a basic block ending at instruction j have a live interval that includes j . If a temporary, t, occurring in
an instruction of the basic block is not included in the live-in set, then the live interval of t needs to be
extended to the first instruction defining t. If t is not included in the live-out set, the live interval of t
needs to be extended to the last instruction using t within the basic block. If t is not included in either
the live-in or the live-out set, then a new interval is added starting at the first definition and ending with
the last use of t within the basic block.

3.3.3. Allocation of registers to intervals

This step uses the following data structures:

Intervals A list of {Temporary,StartPoint,EndPoint} triples. This is a sorted (on increasing
StartPoint) representation of the interval structure calculated in the step described in
Section 3.3.2.

FreeRegs Allocatable physical registers (PhysReg) which are currently not allocated to a temporary.

Active A list of {Temporary,PhysReg,EndPoint} triples sorted on increasing EndPoint,
used to keep track of which temporaries are allocated to which physical register for what period,
in order to deallocate physical registers when the allocation has passed the EndPoint. This list
is also used to find the temporary with the longest live interval when a temporary needs to be
spilled.

Allocation An unsorted list containing the final allocation of temporaries to registers or
to spill positions. Tuples have either the form {Temporary,{reg,PhysReg}} or
{Temporary,{spill,Location}}.

For each interval in the Intervals list, the allocation traversal performs the following actions:

1. Moves to the Allocation structure the information about each interval in the Active list that ends
before or at StartPoint. Also adds the physical register assigned to the interval which has
now ended to the FreeRegs list.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

2. Finds an allocation for the current interval:

• If there is a physical register in the FreeRegs list then tentatively assigns this register to
the current interval by inserting the interval and the physical register into the Active list,
and by removing the physical register from the FreeRegs list.

• If there is no free register then the interval with the furthest EndPoint is spilled and
moved into the Allocation list. If the spilled interval is not the current one, the step taken
is to assign the physical register of the interval that was spilled to the current interval.

3.3.4. Rewrite of the code

When all intervals are processed, the Allocation structure is turned into a data structure that can be used
for O(1) mapping from a temporary to its allocated physical register (or spill position).

In contrast to the graph coloring and iterated coalescing allocators, the linear scan register allocator
does not use an iterative process to handle spills. We instead reserve two registers so that they are not
used during allocation; these registers can then be used to rewrite instructions that use spilled registers.
The downside of doing so is that our implementation of the linear scan register allocator will spill
slightly more often than really necessary. However, we found that this keeps compilation times down
for functions that spill, requiring just one more linear pass over the code to rewrite instructions in
accordance to the allocation mapping.

3.4. A naı̈ve register allocator

To establish a baseline for our comparisons, we have also implemented an extremely naı̈ve register
allocator: it allocates all temporaries to memory positions and rewrites the code in just one pass.
For example, on the SPARC, every use of a temporary is preceded by a load of that temporary to
a register, and every definition is followed by a store to memory. This means that the number of
added load and store instructions is equal to the number of temporary uses and definitions in
the program. This register allocator is very fast since it only needs one pass over the code, but the
added loads and stores increase the code size which in turn increases the total compilation time.
Obviously, we recommend this ‘register’ allocator to nobody! We simply use it to establish a lower
bound on the register allocation time and an upper bound on the number of spills in order to evaluate
the performance and effectiveness of the other register allocators.

3.5. The HiPE compiler: issues common to all back-ends

HiPE is a just-in-time native code compiler extension to a virtual-machine-based runtime system.
This has influenced the compiler in several ways: There are for example several special data structures
that are part of the virtual machine. Since we know that they are important for the execution of Erlang
programs, as they are heavily used, we would like to keep them in registers. How many registers are
preallocated in this way depends on the number of registers of the target architecture and is explained
in Sections 3.6 and 3.7 below. Because of not starting the allocation with the full set of available
machine registers, compilation of Erlang programs differs from the contexts to which linear scan has
been previously applied [4,17]. Other differences of the code handled by the HiPE compiler compared

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

with a compiler for, e.g., C or FORTRAN code are the relatively high number of function calls, the
presence of tail-calls, and the relatively low number and nesting depth of loops§.

Starting from a symbolic form of bytecode for a register-based virtual machine called BEAM,
the code is compiled to our internal representation of SPARC or pseudo-IA-32 code as a control
flow graph. Some simple optimizations are applied to the intermediate stages, such as constant
propagation, constant folding, dead code elimination, and removal of unreachable code; see e.g. [9].
Since the bytecode from which compilation starts is already register allocated, but for registers of the
virtual machine, it contains many artificial dependencies between these registers. These dependencies
follow the code during the translation from the bytecode into HiPE’s intermediate code representation
(which has an unlimited number of temporaries) and can have a negative impact on the performance of
some optimizations in the compiler. To remedy this, we can perform either some ad hoc renaming pass
or a more systematic conversion to a static single assignment (SSA) form early in the compiler.

Memory management in the code generated by the HiPE compiler is performed using a precise
generational copying garbage collector [19,2]. To keep garbage collection times low, garbage objects
should appear dead to the garbage collector as soon as possible, preferably from the exact moment that
they become unreachable. In order to achieve this, it is important to not let dead temporaries reside in
the root set of a process’s memory, for example on the stack. To this end, the HiPE compiler generates
stack descriptors (also known as stack maps [19]) to indicate to the garbage collector which stack slots
are live and which are dead.

3.6. The SPARC back-end

On the register-rich SPARC architecture, we have chosen to cache six data structures in registers
(the stack pointer, stack limit, heap pointer, heap limit, a pointer to the process control block, and
the reduction counter); see Table I. We have reserved one register (%g1) that the assembler can use
to shuffle arguments on the stack at tail-calls. There are another five registers that the HiPE compiler
cannot use (Zero (%g0), C’s SP (%o6) and FP (%i6), and the two SPARC ABI reserved registers
(%g6 and %g7)). Since we are using the ordinary SPARC call instruction, the return address is
saved in %o7. (At the moment we do not let the register allocators use this register even in non-leaf
functions where the return address is also saved on the stack.) We use 16 registers to pass arguments
to Erlang functions, but since these can also be used by the register allocators, we get a total of 19
allocatable registers. For linear scan, two of these 19 registers (%l6 and %l7) are reserved to handle
spills without having to iterate the allocation process.

The final step of all register allocators traverses the code and rewrites each instruction—exceptmove
instructions whose handling is postponed—that defines or uses a spilled temporary. For each use we
first insert an instruction that moves the spilled temporary to a new temporary and then we rewrite
the original instruction so that it uses the new temporary instead. For instructions defining a spilled
temporary, we do a similar rewrite. After this rewrite, spilled temporaries are only referenced by move

§Recursion is the only way to express iteration in Erlang. Functions that are self-tail-recursive are transformed into loops, but
in these cases most instructions in the function will be inside the loop. Also, since the HiPE compiler currently does not inline
self-recursive functions, the loop nesting depth will never be higher than one in our context. The loop nesting depth is therefore
not as important for the cost function as it is in FORTRAN or C compilers.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

Table I. Use of SPARC registers in HiPE. M: A, allocatable; R, reserved, G, global; –, reserved by C/OS; 0, zero.

reg Name M Note reg Name M Note

%g0 ZERO 0 Always 0 %l0 ARG6 A (caller-save)
%g1 TEMP0 R Scratch register %l1 ARG7 A (caller-save)
%g2 ARG11 A (caller-save) %l2 ARG8 A (caller-save)
%g3 ARG12 A (caller-save) %l3 ARG9 A (caller-save)
%g4 ARG13 A (caller-save) %l4 ARG10 A (caller-save)
%g5 ARG14 A (caller-save) %l5 TEMP3 A Local scratch
%g6 [OS] – Reserved by OS %l6 TEMP2 A Used in emu ⇔ native transitions
%g7 [OS] – Reserved by OS %l7 TEMP1 A Local scratch
%o0 ARG16 A Return value %i0 P G Current process pointer
%o1 ARG1 A (caller-save) %i1 HP G Heap pointer
%o2 ARG2 A (caller-save) %i2 H-limit G Heap limit
%o3 ARG3 A (caller-save) %i3 SP G Stack pointer
%o4 ARG4 A (caller-save) %i4 S-limit G Stack limit
%o5 ARG5 A (caller-save) %i5 FCALLS G Reduction counter
%o6 [sp] – C-stack pointer %i6 [fp] – C-frame pointer
%o7 RA/CP G Return address %i7 ARG15 A (caller-save)

instructions which can be replaced by loads and stores in a later stage that performs the register
assignment and frame handling.

3.7. The IA-32 back-end

On the IA-32, the allocators assume that the call instruction defines all physical registers, thus
preventing temporaries that are live across a function call from being allocated to a physical register.
This means that all these temporaries will be allocated on (spilled to) the stack. The approaches used
by the two back-ends differ when a temporary that lives across function calls needs to be read from or
written to memory. In the worst case, on the SPARC, a read might be needed after each call; on the
IA-32, a read is needed at each use¶. On the SPARC, a write is needed at each call; on the IA-32, a
write is needed at each definition. In a functional language with assign once variables such as Erlang
we suspect that the number of temporary uses plus the number of definitions is less than two times the
number of calls a temporary is live over. If so, the approach used by the IA-32 back-end is a winner.
It remains future work to verify this.

¶On the SPARC, we do the obvious and easy optimization of eliminating redundant load/store pairs, e.g., ld [%sp+N],rM;
. . . ; st rM,[%sp+N], where none of the instructions between the ld and the st accesses rM. The analogous optimization
of removing the second ld in the IA-32 equivalent of ld [%sp+N],rM; <use rM>; ld [%sp+N],rM; <use rM>
is currently not performed because the spilled value is most often not read to a register (it is used directly by the instruction
instead). Consequently, the opportunities to perform this optimization on the IA-32 are quite low in number.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

Table II. Use of IA-32 registers in HiPE. M: A, allocatable; G, global.

reg Name M Note reg Name M Note

%eax A (caller-save) %esp SP G Stack pointer
%ebx A (caller-save) %ebp P G Current process pointer
%ecx A (caller-save) %esi HP G Heap pointer
%edx TEMP0 A (caller-save) %edi TEMP1 A (caller-save)

We preallocate much fewer, only three, registers on the IA-32: the stack pointer is allocated to %esp,
the process pointer to %ebp, and the heap pointer is allocated to %esi; see Table II. At function calls,
all arguments are passed on the stack and the return value is passed in %eax. The register allocator will
not try to allocate the arguments in registers but will keep them in memory (on the stack). The return
value, however, is always moved to a new temporary directly after the return of the function. Hence, we
can use the %eax register as a general purpose register, leaving five registers for the register allocators
to play with. As on the SPARC, for linear scan, two of these five registers (%ebx and %ebi) are reserved
to handle spills without ever having to iterate the allocation process.

Most instructions of the IA-32 instruction set architecture can take a memory location
(e.g. register+immediate offset) as one of the operands (or the destination). By using these addressing
modes, we can in many cases use spilled temporaries directly, without having to first load them from
memory to a register.

Prior to register allocation, the code is in a pseudo-IA-32 intermediate form in which arbitrary
operands are allowed in each instruction. After register allocation, a post-pass ensures that each
instruction complies with the real IA-32 instruction set architecture, e.g., that no binary operation
uses more than one memory operand. This is done by rewriting the code to use loads and stores
to new temporaries. If any instruction has to be rewritten in this way, then the register allocator is
called again with the additional constraint that none of the newly introduced temporaries may be
spilled.

The naı̈ve register allocator is also using the memory operands of the IA-32. Thus, despite the fact
that each temporary is considered spilled by the allocator, an additional load or store instruction is
not always needed. (If loads or stores are inserted, they use a preallocated physical register instead
of introducing a new temporary.)

3.8. Tweaks for linear scan on the IA-32

All published accounts of experience using the linear scan register allocator have so far been in the
context of register-rich architectures (mainly Alphas) using a calling convention similar to the one used
by our SPARC back-end. When adapting linear scan to work in the context of the IA-32 back-end, we
found out that some small adjustments to the basic algorithm were needed. We describe them below.

First, since we represent physical registers in the register allocator as preallocated temporaries, we
had to slightly adjust the linear scan allocator to handle the case when a temporary is defined several

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

times but never used. In the calling convention used by the IA-32 back-end, such is the case with
physical registers at function calls. For these temporaries we effectively perform live range splitting
(see e.g. [14]) and end up with temporaries that have several one-instruction intervals. The alternative
would have been that the live intervals of all physical registers would range over most of the function.
However, this could render allocation of other temporaries impossible, and thus disallow the use of
linear scan.

We also discovered that extra care has to be taken when preallocated registers‖ are used with the
linear scan algorithm. This is a generic issue, but it manifests itself more often on a register-poor
architecture as the IA-32. The crude approximation of live ranges by live intervals used by linear scan
forces a temporary to appear live from its first definition to its last use. If some physical register is
used often, for example for parameter passing, then this register will appear live throughout most of
the code, preventing any other temporary from being allocated to that register. If many, or even all the
physical registers are preallocated, special care must be taken or the program will not be allocatable at
all. One way of avoiding this situation is by handling preallocated registers separately, for example by
allowing them to have several live intervals. (A non-preallocated temporary that is live through most
of the code is not a problem, since it can be handled by, e.g., live range splitting, or by simply spilling
the temporary. A preallocated register, however, cannot be spilled since its use indicates that the value
really has to be in that register.)

4. PERFORMANCE EVALUATION

The register allocator implementations described in the previous section have been evaluated by
compiling and running a set of benchmarks. All four register allocators are integrated in the HiPE
system (version 1.1) and a compiler option indicates which one to use. We have compiled the code in
the same way before and after applying each allocator.

We present most of the measurements of this section in two views: one without SSA conversion and
one with SSA conversion. In doing so, we also evaluate in detail the impact of a systematic renaming
pass prior to register allocation in general and to the linear scan algorithm in particular. For register
allocation, SSA conversion is a mixed blessing: on the one hand it introduces many new temporaries,
but on the other it reduces the live ranges of temporaries and achieves an effect similar to performing
live range splitting.

The two platforms on which we performed the experimental evaluation are: a Pentium-III 850 MHz,
256 MB memory Dell Latitude laptop running Linux, and a dual-processor Sun Enterprise 3000,
1.2 GB main memory running Solaris 7. Each processor is a 248 MHz UltraSPARC-II. (However,
the HiPE system uses only one processor.)

4.1. The benchmarks

The set of benchmarks we used together with a brief description of them appears in Table III. Some of
them (decode, eddie) have been chosen from the ‘standard’ set of Erlang benchmarks because they

‖In the context of coloring-based allocators, these registers are often referred to as ‘precolored’.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

Table III. Description of benchmark programs.

quicksort Ordinary quicksort. Sorts a list with 45 000 elements 30 times.
spillstress A synthetic benchmark consisting of a recursive function with several

continuously live variables; its only purpose is to stress the register allocators.
smith The Smith-Waterman DNA sequence matching algorithm.

Matches one sequence against 100 others; all of length 32.
life† Executes 1000 generations in Conway’s game of life on a 10 by 10 board

where each square is implemented as a process.
decode Part of a telecommunications protocol decoding an incoming message.
huff A Huffman encoder compressing and uncompressing a short string.
md5 Calculates an MD5-checksum on a file. The benchmark takes a file of size

32 026 bytes and concatenates it 10 times before calculating its checksum twice.
prettypr Consists mainly of a very large function which formats its input (a large file)

for printing, using a strict-style context passing implementation.
estone† Measures the ranking in ‘estones’ of an Erlang implementation. This is a

benchmark that aims at stressing all parts of an Erlang implementation.
beam2icode The part of the HiPE compiler that translates BEAM bytecode into intermediate

code. The program contains a very big function handling different combinations of
instructions. Because of its size, this function is problematic for some register
allocators. To get measurable execution times, we run this benchmark 10 times.

raytracer A raytracer that traces a scene with 11 objects (two of them with textures)
and two light sources to a 80×70 24-bit color bitmap file in ppm format.
The time to perform I/O is not included in the benchmark’s execution time.

eddie† An Erlang implementation of an HTTP parser which handles http-get requests.

incur spilling when compiled with linear scan. Note that, on the SPARC, no allocator spills on
many other standard Erlang benchmarks. We have also included a module of the HiPE compiler
(beam2icode) containing a very large function which is quite troublesome for some register allocators.
Benchmarks which are concurrent are marked with a †. Of them, only life spends a significant amount
of its execution time in routines of the runtime system that support concurrency (e.g., the scheduler).

Sizes of benchmark programs (lines of source code, the number of temporaries and the number of
instructions before register allocation) for both SPARC and IA-32 are shown in Table IV. Benchmark
programs marked with a ‡ use functions from standard Erlang libraries that are also dynamically
compiled. The lines reported are the number of lines excluding functions from libraries, but the other
columns in the table (and compilation times in the subsequent tables) include measurements for library
functions. The table shows the number of temporaries and instruction without SSA conversion and
with SSA conversion.

The SSA conversion often adds a significant number of temporaries (e.g., over 2500 for
beam2icode). However, due to better opportunities for optimizations, the number of instructions on
the SPARC is often reduced with SSA conversion. Smaller programs, where there are not as many
opportunities for optimizations as in large programs, might increase in size due to added move
instructions at φ-nodes during the SSA conversion.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

Table IV. Sizes of benchmark programs.

SPARC IA-32

Temporaries Instructions Temporaries Instructions

Benchmark Lines no SSA SSA no SSA SSA no SSA SSA no SSA SSA

quicksort 41 87 109 414 428 83 111 554 573
spillstress 94 74 112 573 623 81 156 768 764
smith 93 337 410 1765 1418 301 374 1596 1609
life 189 344 449 1973 1695 292 400 1916 1998
decode 381 330 552 2521 2157 288 510 2392 2536
huff 177 473 615 3114 2582 424 573 3100 3073
md5 286 611 882 4601 3950 543 809 4190 4013
prettypr 1051 1336 1992 10 070 7326 1047 1718 8696 8905
estone‡ 1134 1958 2662 12 257 10 291 1674 2456 12 095 12 429
beam2icode 1704 3046 5559 26 115 21 026 2422 4935 24 042 24 663
raytracer‡ 924 4617 6149 29 220 23 718 3778 5304 25 439 26 195
eddie‡ 2233 5022 6651 31 660 24 685 4191 5889 28 609 29 380

The BEAM has one register (x0) that is heavily used. It is often the case that BEAM code looks
like:

x0 := x0 + x1

Without SSA conversion, this maps nicely to the 2-address instructions on the IA-32. However, after
SSA conversion the above code is turned into:

t3 := t1 + t2

Now this code maps nicely to the 3-address instructions on the SPARC, but on the IA-32, it has to be
translated to:

t3 := t1
t3 := t3 + t2

As a result, SSA conversion tends to increase the code sizes more for IA-32 than for SPARC.

4.2. Compilation times

We have measured both the time to perform register allocation and the time to complete the
entire compilation for each program. The results (minimum of three compilations) are presented in
Figures 4–7 where bars show the total compilation time and their stripped part stands for the time
spent in the register allocator. In all these figures, the compilation time using the naı̈ve allocator is
denoted by N, and the ones using linear scan, graph coloring, and iterated register coalescing by L, G,
and C, respectively.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

0

1

2

3

4

5

N L G C N L G C N L G C N L G C N L G C N L G C

quicksort spillstress smith life decode huff

C
o

m
p

il
e

 t
im

e
 (

s
)

Register Allocation

Other

N: Naïve

G: Graph Coloring

L: Linear Scan

C: Coalescing

0

20

40

60

80

100

120

N L G C N L G C N L G C N L G C N L G C N L G C

prettypr estone beam2icode MD5 eddie raytracer

C
o

m
p

il
e

 t
im

e
 (

s
)

Register Allocation

Other

Figure 4. Compilation times on SPARC.

In general, both compilation times and register allocation times increase with SSA conversion, even
when the number of instructions is reduced. The complexity of the graph coloring and the coalescing
register allocator is not directly dependent on what one could naively consider as the ‘size’ of the
program. Instead the complexity depends on the number of edges in the interference graph, which
is for example high for the decode and prettypr benchmarks. In contrast, the linear scan allocator is
not affected much by the number of simultaneously live temporaries; the allocation time is instead
dominated by the time to traverse the code.

The compilation and register allocation times of beam2icode stand out since, as mentioned,
this program contains a large function with many simultaneously live temporaries. This becomes
troublesome either when many iterations are needed to avoid spilling (which is what happens with
iterated register coalescing and SSA conversion on the SPARC), or when the number of available
registers is low, the produced allocation does not respect the constraints imposed by the instruction

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

0

5

10

15

N L G C N L G C N L G C N L G C N L G C N L G C

quicksort spillstress smith life decode huff

C
o

m
p

il
e

 t
im

e
 (

s
)

Register Allocation

Other

N: Naïve

G: Graph Coloring

L: Linear Scan

C: Coalescing

0

20

40

60

80

100

120

N L G C N L G C N L G C N L G C N L G C N L G C

prettypr estone beam2Icode md5 eddie raytracer

C
o

m
p

il
e

 t
im

e
 (

s
)

Register Allocation

Other

558

Figure 5. Compilation times, with SSA conversion, on SPARC.

set architecture, and small corrections to the allocation are needed (such is the case on the IA-32).
However, estone, raytracer, and eddie which are also big programs consist of a large number of small
functions that do not exhibit this behavior to the same extent.

Compilation-time-wise, linear scan performs very well: compared with graph coloring, the time for
register allocation is significantly reduced (by at least 50% in general), and pathological cases such
as beam2icode are avoided. In fact, for eddie and especially for beam2icode with SSA conversion,
compilation with linear scan is even faster than the naı̈ve algorithm; see e.g. Figure 5. This is due to
the time needed for rewrite of the code with the obtained allocation. Due to excessive spilling this code
is larger for the naı̈ve allocator than it is for linear scan; cf. also Table V.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

0

1

2

3

4

5

N L G C N L G C N L G C N L G C N L G C N L G C

quicksort spillstress smith life decode huff

C
o

m
p

il
e

 t
im

e
 (

s
)

Register Allocation

Other

N: Naïve

G: Graph Coloring

L: Linear Scan

C: Coalescing

0

10

20

30

40

50

N L G C N L G C N L G C N L G C N L G C N L G C

prettypr estone beam2icode MD5 eddie raytracer

C
o

m
p

il
e
 t

im
e
 (

s
)

Register Allocation

Other

Figure 6. Compilation times on IA-32.

4.3. Execution times

Normalized execution times (w.r.t. the naı̈ve allocator) for each benchmark and allocator are presented
in Figures 8–11. These times correspond to the minimum of nine executions of the programs. For the
estone benchmark, which contains artificial delays and its execution time does not make sense, we
report the number of ‘estones’ (Erlang stones) assigned to each execution in Figures 12 and 13.
Contrary to execution times, more estones means faster execution.

Even though linear scan and graph coloring spill more than the iterated coalescing allocator (see data
in Tables V–VIII), the effect of spilling on execution times is limited. On a register-rich architecture
such as the SPARC, linear scan offers in most cases performance comparable to that of the graph
coloring and iterated coalescing allocators. Despite the low number of available registers, linear scan
also performs well on the IA-32. Possible reasons for this are the different calling convention that the

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

0

1

2

3

4

5

N L G C N L G C N L G C N L G C N L G C N L G C

quicksort spillstress smith life decode huff

C
o

m
p

il
e

 t
im

e
 (

s
)

Register Allocation

Other

N: Naïve

G: Graph Coloring

L: Linear Scan

C: Coalescing

0

10

20

30

40

50

N L G C N L G C N L G C N L G C N L G C N L G C

prettypr estone beam2icode md5 eddie raytracer

C
o

m
p

il
e

 t
im

e
 (

s
)

Register Allocation

Other

119
107

Figure 7. Compilation times, with SSA conversion, on IA-32.

back-end uses (passing arguments on the stack), the fact that the L1 cache can be accessed almost as
fast as the registers on the Pentium∗∗, and IA-32’s ability to access spilled temporaries directly from
the stack in most instructions.

Also, note that different register assignments might affect the dynamic instruction scheduling done
by the hardware, causing small differences in execution times. See for example the execution times of
quicksort for which none of the allocators spills on SPARC (data shown in Tables V and VI), but still
the code produced by the graph coloring allocator executes either marginally faster (without SSA) or
marginally slower (with SSA) than the code produced by the other allocators.

∗∗Hardware-level measurements on an Intel Xeon, 2.4 GHz indicate that a register to register move takes about 0.45 clock
cycles, a stack to register move takes 0.85 cycles, and a register to stack move takes 1.62 cycles. Still, when dependencies enter
the picture memory accesses can take 4–10 cycles while register moves still take around half a clock cycle.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

0.0

0.2

0.4

0.6

0.8

1.0

1.2

quicksort spillstress smith life decode huff MD5 prettypr beam2icode raytracer eddie

R
e
l
a
t
i
v
e

e
x
e
c
u

t
i
o

n

t
i
m

e

Naïve Linear scan

Graph Coloring Coalescing

Figure 8. Normalized execution times on SPARC.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

quicksort spillstress smith life decode huff md5 prettypr beam2Icode raytracer eddie

R
e
l
a
t
i
v
e

e
x
e
c
u

t
i
o

n

t
i
m

e

Naïve Linear scan

Graph Coloring Coalescing

Figure 9. Normalized execution times, with SSA conversion, on SPARC.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

0.0

0.2

0.4

0.6

0.8

1.0

1.2

quicksort spillstress smith life decode huff MD5 prettypr beam2icode raytracer eddie

R
e
l
a
t
i
v
e

e
x
e
c
u

t
i
o

n

t
i
m

e

Naïve Linear scan

Graph Coloring Coalescing

Figure 10. Normalized execution times on IA-32.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

quicksort spillstress smith life decode huff md5 prettypr beam2Icode raytracer eddie

R
e
l
a
t
i
v
e

e
x
e
c
u

t
i
o

n

t
i
m

e

Naïve Linear scan

Graph Coloring Coalescing

Figure 11. Normalized execution times, with SSA conversion, on IA-32.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

0

20

40

60

80

100

120

140

160

180

200

E
s
t
o

n
e
s

(
k
)

Naïve Linear scan Graph Coloring Coalescing

0

200

400

600

800

1000

E
s

t
o

n
e

s

(
k

)

Naïve Linear scan Graph Coloring Coalescing

Figure 12. Estone ranking on SPARC (left) and IA-32 (right). The higher the estone, the better.

0

20

40

60

80

100

120

140

160

180

200

E
s
t
o

n
e
s

(
k
)

Naïve Linear scan Graph Coloring Coalescing

0

200

400

600

800

1000

E
s
t
o

n
e
s

(
k
)

Naïve Linear scan Graph Coloring Coalescing

Figure 13. Estone ranking on SPARC (left) and IA-32 (right) with SSA conversion.
The higher the estone ranking, the better.

On the SPARC, one benchmark (md5) shows a rather unexpected behavior. This benchmark spends
most of its time in calls to built in binary operations (implemented in the runtime system) and very little
real work is performed in native code. The impact of register allocation is therefore small. Linear scan,
which manages to spill the fewest number of temporaries on this benchmark with SSA (Table VI),
performs even worse than the naı̈ve allocator; see Figure 9. This is partly due to the calling convention
that is used by the SPARC back-end: linear scan allocates some temporaries that are live over many
function calls to registers, forcing these temporaries to be written to and read from the stack several
times, while the naı̈ve allocator spills these temporaries to the stack once and for all. The IA-32 back-
end, which always spills all temporaries that are live over function calls on the stack, does not suffer
from this problem.

4.4. Spills on SPARC

Table V shows the number of temporaries spilled and the number of instructions after allocation
without SSA conversion. Table VI shows the same information for compiling these programs with

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

Table V. Number of spilled temporaries and SPARC instructions after allocation.

Naı̈ve Linear scan Graph coloring Iterated coalescing

Spills Instrs Spills Instrs Spills Instrs Spills Instrs

quicksort 87 473 0 341 0 341 0 341
spillstress 74 573 12 482 16 480 8 480
smith 337 1765 1 1164 11 1171 0 1157
life 344 1973 0 1388 4 1456 0 1388
decode 330 2521 28 1965 48 1920 20 1776
huff 473 3114 3 2261 9 2139 0 2124
md5 611 4601 22 3382 57 3495 15 3140
prettypr 1336 10 070 11 7718 14 6714 1 6797
estone 1958 12 257 3 8504 33 8596 1 8455
beam2icode 3046 26 115 38 20 444 83 20 780 4 17 737
raytracer 4617 29 220 61 19 862 124 19 746 0 19 560
eddie 5022 31 660 64 21 242 119 21 118 0 20 861

Table VI. Number of spilled temporaries and SPARC instructions after allocation (with SSA).

Naı̈ve Linear scan Graph coloring Iterated coalescing

Spills Instrs Spills Instrs Spills Instrs Spills Instrs

quicksort 109 487 0 355 0 355 0 355
spillstress 112 542 11 449 31 451 12 449
smith 410 1776 1 1169 9 1179 0 1168
life 449 2028 1 1450 4 1450 0 1443
decode 552 2615 35 1910 51 1922 20 1870
huff 615 3093 6 2120 8 2115 0 2103
md5 882 4427 21 2988 228 3293 23 2976
prettypr 1992 10 232 31 7109 49 6686 0 6595
estone 2662 12 438 16 8656 31 8691 1 8631
beam2icode 5559 26 527 96 18 562 149 18 204 0 17 998
raytracer 6149 29 758 94 20 448 100 20 220 0 20 098
eddie 6651 32 104 83 21 616 91 21 434 0 21 305

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

SSA conversion. These numbers show that even though linear scan spills fewer temporaries than the
graph colorer on decode and eddie, the total number of instructions for graph coloring is lower when
not using SSA conversion. This is because the linear scan allocator has a tendency to spill long live
intervals with many uses, while the graph colorer spills more temporaries in number but with shorter
live ranges and fewer uses. When applying SSA conversion, the number of live ranges increases but
they also become shorter which means that the number of instructions can decrease even though the
number of spilled temporaries increases.

As expected, the iterated coalescing allocator always generates fewer spilled temporaries. Also, since
the coalescing allocator is usually able to coalesce moves, the resulting number of instructions is
smaller for coalescing even with the same number of spills. As mentioned, the naı̈ve allocator spills
all non-allocated temporaries, adding load and store instructions at each use or definition site.
The number of instructions should be compared to the numbers in Table IV to see the increase in size
caused by spills introduced by each algorithm. Note that the number of instructions might decrease
after register allocation, as some move instructions might be removed.

4.5. Spills on IA-32

Table VII reports, for each benchmark, the number of temporaries that are placed on the stack by the
calling convention, the number of additional spills, and the number of instructions after allocation.
That is, the first column shows the number of temporaries that are live over a function call and hence
have to be saved on the stack during the call. The number of spills in the following columns shows
the additional number of temporaries that are stored on the stack. Table VIII shows the corresponding
numbers with SSA conversion turned on.

Our results are as follows. When the number of available registers is low, the iterated coalescing
algorithm is the clear winner as far as its ability to place temporaries in registers is concerned.
It manages to minimally spill on this benchmark set. Compared with graph coloring, this is partly
due to the fact that the coalescing allocator is optimistic in its spilling strategy. With only few available
registers, the linear scan register allocator has trouble keeping temporaries in registers and the number
of spills is high compared to coalescing; sometimes an order of magnitude higher. Compared with the
graph colorer, even though the number of spills is often much lower, the number of instructions in the
resulting code is lower to a smaller extent, suggesting that the choice of spilled temporaries is not a
good one.

We stress that, due to the different calling conventions used by the SPARC and IA-32 back-ends,
the number of spills shown in Tables V and VI are not comparable with the numbers in Tables VII
and VIII.

5. A DEEPER LOOK ON LINEAR SCAN: IMPACT OF SOME ALTERNATIVES

As mentioned, before settling on a default setting, we have experimented with a number of options that
one can consider when implementing linear scan. One of these (spilling heuristics) is also considered
in [3], the question of whether to perform liveness analysis or not comes naturally, and some others
(various orderings) are of our own invention. Nevertheless, as experimenting with all these options

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

Table VII. Number of spilled temporaries and IA-32 instructions after allocation.

Naı̈ve Linear scan Graph coloring Iterated coalescing
On

stack Spills Instrs Spills Instrs Spills Instrs Spills Instrs

quicksort 15 68 651 3 608 12 613 0 602
spillstress 31 50 902 6 863 11 877 0 841
smith 44 257 1956 19 1767 90 1833 0 1724
life 70 222 2292 17 2149 65 2178 2 2106
decode 76 212 2849 8 2679 72 2744 1 2664
huff 91 333 3744 44 3450 100 3511 1 3346
md5 74 469 5128 54 4650 95 4792 0 4555
prettypr 61 986 10 933 26 10 055 241 10 764 0 9993
estone 293 1381 14 284 147 13 277 482 13 653 6 12 978
beam2icode 291 2131 29 043 57 27 189 1048 28 519 3 26 974
raytracer 625 3153 31 044 158 28 545 922 29 391 16 28 138
eddie 603 3588 34 908 207 32 042 1208 33 060 22 31 342

Table VIII. Number of spilled temporaries and IA-32 instructions after allocation (with SSA).

Naı̈ve Linear scan Graph coloring Iterated coalescing
On

stack Spills Instrs Spills Instrs Spills Instrs Spills Instrs

quicksort 33 78 679 2 628 26 651 0 625
spillstress 68 88 890 7 828 16 846 0 819
smith 72 302 1978 27 1763 107 1880 0 1728
life 110 290 2409 26 2214 77 2264 5 2183
decode 111 399 3040 17 2725 136 2860 2 2698
huff 160 413 3712 23 3367 141 3467 1 3312
md5 197 612 4798 84 4262 166 4449 0 4169
prettypr 353 1365 11 247 85 10 084 606 10 781 2 9935
estone 528 1928 14 782 185 13 499 641 14 069 7 13 227
beam2icode 1111 3824 29 863 199 26 825 1614 28 149 12 26 410
raytracer 1178 4126 32 117 253 29 041 1433 30 377 31 28 588
eddie 1048 4841 35 998 274 32 086 1767 33 901 31 31 565

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

return T2;
T2 = 42;

B2

return T3;
T3 = T + 42;

B3

T = foo();
if (T > 0) then else ;

B1
B2 B3

(a)

1

2

3

4

5

6 7

8

{t}

{t}

{n}

{n}

{n}

{t}

9

Postorder 〈6, 7, 5, 4, 9, 3, 2, 8, 1〉
Rev. postorder 〈1, 8, 2, 3, 9, 4, 5, 7, 6〉
Inorder 〈6, 5, 7, 4, 3, 9, 2, 1, 8〉
Rev. inorder 〈8, 1, 2, 9, 3, 4, 7, 5, 6〉
Prediction 〈1, 2, 3, 4, 5, 7, 6, 9, 8〉
Preorder 〈1, 2, 3, 4, 5, 6, 7, 9, 8〉
Breadth-first 〈1, 2, 8, 3, 4, 9, 5, 6, 7〉
Source 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉

(b)

Figure 14. Control-flow graphs used to illustrate effects of orderings: (a) a simple control flow graph;
(b) a control flow graph and its orderings.

is time-consuming, we hope that our reporting on them will prove helpful to other implementors.
All experiments of this section are conducted on the SPARC.

A preliminary, conference version of this article ([20]) also measured the effect of performing an
ad hoc renaming pass before register allocation. We do not report on that experiment, as the effect of
a more systematic renaming pass, based on SSA conversion, has already been extensively presented in
the previous section.

5.1. Impact of instruction ordering

The linear scan algorithm relies on a linear approximation of the execution order of the code to
determine simultaneously live temporaries. In order to spill as few registers as possible, it is important
that this approximation introduces as few false interferences as possible. An interference is false when
the linearization places a basic block (B2) where a temporary (T) is not live between two blocks
(B1, B3) which define and use T. The live interval for Twill then include all instructions in B2, resulting
in false interferences between T and any temporaries defined in B2; see Figure 14(a). If, instead, the
linearization places B2 and B3 in the opposite order, there will not be a false interference.

Finding the optimal ordering (i.e., the one with the least number of false interferences) is not feasible;
this would seriously increase the complexity of the algorithm from linear in the number of temporaries
to exponential in the number of basic blocks. It is therefore important to try to find an ordering that on
average gives the best result. To determine such an ordering, we have applied the linear scan algorithm
on eight different orderings and counted the number of spills and the number of added instructions on
our benchmarks.

We will exemplify the following orderings which we have tried (most of them are standard;
see e.g. [7,9]) using the control-flow graph shown in Figure 14(b) where edges are annotated with
a static prediction (taken/not-taken).

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

Postorder All children are visited before the node is visited.

Reverse postorder (or Depth-first ordering) The reverse of the order in which nodes are visited in a
postorder traversal.

Preorder First the node is visited then the children.

Prediction The static prediction of branches is used to order the basic blocks in a depth first order.
This should correspond to the most executed path being explored first.

Inorder The left (fallthrough) branch is visited first, then the node followed by other children.

Reverse inorder The reverse of the inorder traversal.

Breadth-first ordering The start node is placed first, then its children followed by the grandchildren
and so on.

Source The blocks are ordered by converting the hash-table of basic blocks into a list; this list is
approximately ordered on an increasing basic block numbering, which in turn corresponds to the
order the basic blocks appear in the source and were created.

The style in which a program is written has a big impact on which ordering performs best.
Factors such as how nested the code is, or the size of each function come into play. The results
therefore, as expected, vary from benchmark to benchmark, but provided the range of benchmarks
is large a ‘winner’ can be found. Tables IX and X show the number of spilled temporaries for each
benchmark and ordering. (The number of added instructions is omitted as it shows a similar picture.)
As can be seen from these tables, the reverse postorder gives the best result. In HiPE, we are currently
using it as the default.

5.2. Impact of performing liveness analysis

In [3], a fast live interval analysis is described that does not use an iterative liveness analysis.
Instead, it extends the intervals of all live temporaries in a strongly connected component (SCC) to
include the whole SCC. After presenting the method, the authors conclude that although compilation
using linear scan based on this method is sometimes faster than normal linear scan, the resulting
allocation is usually much worse. We have independently confirmed their findings. In fact, the
allocation is sometimes so bad that excessive spilling increases the time it takes to rewrite the code
so much that the SCC-based linear scan allocator becomes slower than linear scan based on liveness
analysis. In our benchmark set, even compilation-time-wise linear scan with liveness analysis is faster
on more than half of the benchmarks. Also, using liveness analysis gives an execution time speedup
ranging from 1.13 to 1.80 compared with execution times obtained using the SCC-based linear scan
allocator.

5.3. Impact of spilling heuristics

We have also experimented with the use of a spilling heuristic based on usage counts instead of interval
length. Since information about the length of intervals is needed by the linear scan algorithm anyway

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

Table IX. Number of spilled temporaries using different basic block orderings.

Rev PO Post- Pre- Predict Rev IO In- Breadth- Source

quicksort 0 0 0 0 0 0 0 1
spillstress 12 12 12 12 12 12 12 12
smith 1 6 1 3 7 13 3 15
life 0 1 0 0 0 1 0 1
decode 28 29 30 31 35 35 30 42
huff 3 4 0 4 4 4 0 4
md5 22 22 30 30 38 39 22 30
prettypr 11 10 9 10 15 14 15 60
estone 3 9 10 11 16 22 5 47
beam2icode 38 40 46 51 48 53 46 136
raytracer 61 61 70 75 92 109 75 230
eddie 64 62 66 69 117 139 71 190

Sum 243 256 274 296 384 441 279 768

Table X. Number of spilled temporaries using different basic block orderings (with SSA).

Rev PO Post- Pre- Predict Rev IO In- Breadth- Source

quicksort 0 0 0 0 0 0 0 5
spillstress 11 11 11 11 11 11 11 33
smith 1 6 4 15 11 21 3 48
life 1 4 2 1 5 8 2 18
decode 35 38 48 54 52 54 35 117
huff 6 7 11 19 7 8 3 74
md5 21 21 125 130 45 49 20 220
prettypr 31 29 39 66 62 60 359 359
estone 16 28 22 38 36 50 10 165
beam2icode 96 117 116 270 272 291 1223 1186
raytracer 94 102 119 181 199 235 213 798
eddie 83 88 84 130 240 279 160 551

Sum 395 451 581 915 940 1066 2039 3574

(in order to free registers when an interval ends) this information can be used ‘for free’ to guide
spilling. The usage count heuristic is slightly more complicated to implement since it needs some
extra information: the usage count of each temporary. There is also a cost in finding the temporary
with the least use. As Table XI shows, the usage count heuristic spills more (as expected) but spills
temporaries which are not used much, so the size of the resulting code is not much bigger, and for life
it is even smaller. However, looking at the performance of the generated code, one can see that they
perform on a par in many cases, but the usage count heuristic performs much worse on, e.g., decode
and prettypr. We thus do not recommend the use of usage counts.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

Table XI. Impact of spilling heuristics (with SSA conversion on the SPARC).

Spills (instructions) Execution time

Interval length Usage count Interval length Usage count

quicksort 0 (355) 0 (355) 11.5 11.9
spillstress 11 (449) 32 (452) 9.0 8.0
smith 1 (1169) 8 (1182) 6.3 7.6
life 1 (1450) 2 (1446) 11.3 11.2
decode 35 (1910) 200 (2114) 11.6 21.5
huff 6 (2120) 83 (2292) 11.8 12.0
md5 21 (2988) 382 (3614) 12.7 12.9
prettypr 31 (7109) 1277 (7326) 7.6 14.0
beam2icode 96 (18 562) 2786 (22 373) 13.9 18.6
raytracer 94 (20 448) 485 (20 843) 11.0 10.7
eddie 83 (21 616) 426 (21 988) 12.5 12.6

estone 16 (8656) 125 (8839) 183 k 155 k

5.4. On using lifetime holes and live range splitting

As stated in the introduction, our motivation for implementing linear scan was to have a fast, provably
linear, register allocator to be used in a just-in-time compilation setting. Besides liveness analysis, we
have purposely avoided using any technique which requires iteration and could subtly undermine the
linear time characteristics of the linear scan algorithm.

We have therefore not considered the use of lifetime holes as proposed in [17] (a technique which
requires an iterative dataflow calculation to be performed during register allocation and thus does
not have a linear time bound) nor have we tried to integrate a separate live range splitting [14]
pass in the linear scan register allocator. We feel that either of these approaches would significantly
complicate and slow down the allocator without any clear benefits. In our implementation, by using
SSA conversion, we usually get most of the benefits from live range splitting, namely mostly short
live ranges. Even though there might still be situations where, e.g., a temporary is defined only once
and then has several late uses giving it a long live range which might force it to be spilled, we do not
think that splitting this live range would result in a significant improvement in execution performance.
Some evidence why this is so can be seen from the fact that even though the coalescing register allocator
spills much less than our other allocators, the execution time performance of the generated code is not
significantly better.

6. CONCLUDING REMARKS

We have experimented with register allocation, focusing on linear scan, and reported on its performance
in the context of a just-in-time native code compiler for a virtual-machine-based implementation

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

LINEAR SCAN REGISTER ALLOCATION

of a concurrent functional language. Besides describing our experiences in using linear scan in a
significantly different context than those in which it has so far been employed, and being the first
to report on its performance on the IA-32, we thoroughly investigated how various options to the
basic algorithm affect compilation time and the quality of the resulting code. In many cases, we have
independently confirmed the results of [3]; in many others, we provide a deeper look or improve on
those results in the hope that this will prove useful to other programming language implementors.

Stated briefly, our experience is that in a register-rich environment, such as the SPARC (or the
upcoming IA-64), linear scan is a very respectable register allocator: it is significantly faster than
algorithms based on graph coloring, resulting in code that is almost as efficient. Our experiments show
that on the IA-32, when the calling convention passes arguments on the stack anyway, the impact of
(modest) spilling on the execution time is limited. This makes linear scan a viable option even though
the number of available register on this architecture is small. When compilation time is a concern, or
at low optimization levels, linear scan should be used††. Disregarding compilation-time concerns, an
optimistic iterated coalescing register allocator (which can eliminate most register-register moves) is
a better approach to obtaining high performance.

ACKNOWLEDGEMENTS

This research was conducted while the second author was affiliated to Uppsala University. The work has been
supported in part by the ASTEC (Advanced Software Technology) competence center with matching funds by
Ericsson Development. We thank Mikael Pettersson and the anonymous reviewers for comments on the article,
Thorild Selén, Andreas Wallin, and Ingemar Åberg for the initial implementation of the coalescing allocator.

REFERENCES

1. Armstrong J, Virding R, Wikström C, Williams M. Concurrent Programming in Erlang (2nd edn). Prentice-Hall:
Englewood Cliffs, NJ, 1996.

2. Johansson E, Pettersson M, Sagonas K. HiPE: A High Performance Erlang system. Proceedings of the ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming. ACM Press: New York, 2000; 32–43.

3. Poletto M, Sarkar V. Linear scan register allocation. ACM Transactions on Programming Languages and Systems 1999;
21(5):895–913.

4. Poletto M, Hsieh WC, Engler DR, Kaashoek MF. ’C and tcc: A language and compiler for dynamic code generation. ACM
Transactions on Programming Languages and Systems 1999; 21(2):324–369.

5. Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK. Efficiently computing static single assignment form and the
control dependence graph. ACM Transactions on Programming Languages and Systems 1991; 13(4):451–490.

6. Sethi R. Complete register allocation problems. SIAM Journal on Computing 1975; 4(3):226–248.
7. Aho AV, Sethi R, Ullman JD. Compilers: Principles, Techniques and Tools. Addison-Wesley: Reading, MA, 1986.
8. Chaitin GJ. Register allocation & spilling via graph coloring. Proceedings of the ACM SIGPLAN Symposium on Compiler

Construction. ACM Press: New York, 1982; 98–105.
9. Muchnick SS. Advanced Compiler Design & Implementation. Morgan Kaufman Publishers: San Fransisco, CA, 1997.

10. Chaitin GJ, Auslander MA, Chandra AK, Cocke J, Hopkins ME, Markstein PW. Register allocation via coloring. Computer
Languages 1981; 6(1):47–57.

11. Chow FC, Hennessy JL. The priority-based coloring approach to register allocation. ACM Transactions Programming
Languages and Systems 1990; 12(4):501–536.

††HiPE currently uses linear scan by default in optimization levels up to -O2; iterated coalescing is used in -O3.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

K. SAGONAS AND E. STENMAN

12. Hendren LJ, Gao GR, Altman ER, Mukerji C. A register allocation framework based on hierarchical cyclic interval graphs.
Journal of Programming Languages 1993; 1(3):155–185.

13. Briggs P, Cooper KD, Torczon L. Improvements to graph coloring register allocation. ACM Transactions on Programming
Languages and Systems 1994; 16(3):428–455.

14. Cooper KD, Simpson LT. Live range splitting in a graph coloring register allocator. CC’98: Compiler Construction, 7th
International Conference, Koskimies K (ed.) (Lecture Notes in Computer Science, vol. 1383). Springer: Berlin, 1998;
174–187.

15. Park J, Moon S-M. Optimistic register coalescing. Proceedings 1998 International Conference on Parallel Architecture
and Compilation Techniques. IEEE Press: Los Alamitos, CA, 1998; 196–204.

16. George L, Appel AW. Iterated register coalescing. ACM Transactions on Programming Languages and Systems 1996;
18(3):300–324.

17. Traub O, Holloway G, Smith MD. Quality and speed in linear-scan register allocation. Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM Press: New York, 1998; 142–151.

18. Appel AW, George L. Optimal spilling for CISC machines with a few registers. Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM Press: New York, 2001; 243–253.

19. Jones RE, Lins R. Garbage Collection: Algorithms for Automatic Memory Management. John Wiley & Sons: New York,
1996.

20. Johansson E, Sagonas K. Linear scan register allocation in a high performance Erlang compiler. Practical Applications
of Declarative Languages: Proceedings of the PADL’2002 Symposium (Lecture Notes in Computer Science, vol. 2257).
Springer: Berlin, 2002; 299–317.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; (in press)

	1 INTRODUCTION
	2 GLOBAL REGISTER ALLOCATION
	2.1 Graph coloring register allocation
	2.2 Iterated register coalescing
	2.3 Linear scan register allocation
	2.3.1 Ordering instructions linearly
	2.3.2 Calculation of live intervals
	2.3.3 Allocation of registers to intervals
	2.3.4 Rewrite of the code

	3 IMPLEMENTATION OF REGISTER ALLOCATORS IN HiPE
	3.1 Graph coloring register allocator
	3.1.1 Build interference graph
	3.1.2 Color the graph
	3.1.3 Rewrite of the code

	3.2 Iterated register coalescing allocator
	3.3 Linear scan register allocator
	3.3.1 Ordering instructions linearly
	3.3.2 Calculation of live intervals
	3.3.3 Allocation of registers to intervals
	3.3.4 Rewrite of the code

	3.4 A naive register allocator
	3.5 The HiPE compiler: issues common to all back-ends
	3.6 The SPARC back-end
	3.7 The IA-32 back-end
	3.8 Tweaks for linear scan on the IA-32

	4 PERFORMANCE EVALUATION
	4.1 The benchmarks
	4.2 Compilation times
	4.3 Execution times
	4.4 Spills on SPARC
	4.5 Spills on IA-32

	5 A DEEPER LOOK ON LINEAR SCAN: IMPACT OF SOME ALTERNATIVES
	5.1 Impact of instruction ordering
	5.2 Impact of performing liveness analysis
	5.3 Impact of spilling heuristics
	5.4 On using lifetime holes and live range splitting

	6 CONCLUDING REMARKS

