
Just Enough Tabling

Konstantinos Sagonas
Computing Science

Dept. of Information Technology
Uppsala University, Sweden

kostis@it.uu.se

Peter J. Stuckey
National ICT Australia Victorian Laboratories

Dept. of Comp. Sci. & Soft. Eng.
University of Melbourne, Australia

pjs@cs.mu.oz.au

ABSTRACT
We introduce just enough tabling (JET), a mechanism to suspend
and resume the tabled execution of logic programs at an arbitrary
point. In particular, JET allows pruning of tabled logic programs
to be performed without resorting to any recomputation. We dis-
cuss issues that are involved in supporting pruning in tabled reso-
lution, how re-execution of tabled computations which were pre-
viously pruned can be avoided, and we describe the implementa-
tion of such a scheme based on an abstract machine like CHAT,
which implements the suspension/resumption support that tabling
requires through a combination of freezing and copying of execu-
tion states of suspended computations. Properties of just enough
tabling and possible uses of the JET mechanism in a tabling sys-
tem are also briefly discussed.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages

General Terms
Languages, Algorithms

Keywords
Logic programming, tabling, suspension/resumption in the WAM,
pruning

1. INTRODUCTION
Resolution strategies based on tabling, such as OLDT [13] or

SLG resolution [3], provide execution mechanisms for logic pro-
grams which are often more efficient and flexible than SLD res-
olution. Their efficiency stems from avoiding repeated subcom-
putations and the added flexibility is due to allowing more pro-
grams to terminate. Uses of the XSB system [11] in particular have
demonstrated that tabling can provide elegant and efficient solu-
tions to complex problem areas such as symbolic model checking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’04, August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-819-9/04/0008 ...$5.00.

and semantics-based program analysis, and be the basis for effi-
cient non-monotonic reasoning and object-oriented database sys-
tems based on logic. As a result, besides XSB, many logic pro-
gramming systems such as YAP, B-Prolog, ALS-Prolog, and Mer-
cury currently incorporate some form of tabled execution; see [9,
15, 6].

Despite the added flexibility provided by tabling, it is currently
the case that implementations of proper tabling1 do not allow prun-
ing of tabled computations. For example, the XSB compiler (up to
version 2.4) rejected programs in which a call to a tabled-dependent
predicate statically occurs in the scope of a Prolog cut; partly due
to the inadequacy of such a static test, these programs are rejected
at runtime in the current XSB version (version 2.6). Although not
all uses of pruning operators in the presence of tabling are seman-
tically valid, cases where for example pruning is used to enhance
performance in a don’t-care once/1-like context are. As a result,
many semantically valid programs are rejected unnecessarily and
effective pruning cannot be employed in tabled programs. The first
situation is unfortunate. The second, subtly undermines the rel-
evance and goal-directedness properties of the evaluation: due to
lack of pruning, many redundant computations may be performed
and unwanted answers may be produced unnecessarily.

Pruning tabled computations has been a challenging issue. For
quite some time, this line of research has been hopelessly aiming
at an integration of Prolog’s cut into the SLG resolution frame-
work. More specifically, the focus of attention was how to provide
as faithfully as possible a cut-like ‘semantics’ in the context of a
proper tabling resolution strategy (i.e., without requiring recompu-
tation). A satisfactory solution to this problem is quite tricky for
the following reasons:

1. Tabled resolution strategies have different operational seman-
tics than Prolog’s. In particular, SLG resolution requires a
suspension/resumption mechanism to handle dependencies
between calls to tabled predicates. Resolution strategies such
as linear tabling and DRA also significantly depart from Pro-
log’s clause selection strategy by reordering clauses dynam-
ically.

2. The semantics of tabled resolution strategies is based on sets
rather than sequences of answer substitutions. Stated differ-
ently, tabling eliminates duplicate answers by failing compu-
tations that produce them; under SLD resolution, these com-
putations succeed.

3. In proper tabling resolution strategies, there is an additional
1To avoid confusion, we use the term proper tabling to refer to a tabled resolution
strategy that does not perform recomputation. OLDT and SLG resolution are such
strategies, while the linear tabling strategy SLDT [15] and the dynamic reordering of
alternatives (DRA) technique [6] are not.

degree of freedom in the form of a scheduling strategy, i.e.,
the strategy that governs the order of resuming suspended
computations by returning answers to them. A scheduling
strategy can in turn directly influence the order in which com-
puted answer substitutions are produced.

From the above, it should be clear that uses of cuts in a tabled pro-
gram cannot always have their familiar Prolog operational seman-
tics. As a result, it should not come as a surprise that we find exist-
ing attempts to incorporate Prolog’s cut in improper tabling strate-
gies to be quite disappointing. For example, in [15, Section 3.4],
after a claim that “the cut operator in SLDT behaves in strictly the
same way as that in SLD resolution,” it is acknowledged that not
all programs can be handled. A recent attempt to handle Prolog
cuts in DRA ([7]) is also unsatisfactory: because of the dynamic
reordering of alternatives, a cut in some clause might prune execu-
tion of clauses which textually appear before the one containing the
cut, a situation which of course can be quite confusing to a Prolog
programmer.

In this paper we take a radically different approach to providing
pruning in tabling: Rather than attempting to include the Prolog
cut operator in a tabling environment — thus giving programmers a
weapon to shoot themselves in the foot if they are not careful — we
describe a scheme that, when guided by a static analysis which dis-
covers program points where pruning can occur, enables pruning of
tabled computations by the underlying runtime system while at the
same time avoids recomputation. This work was partly motivated
by our attempt to include tabling in Mercury’s execution model [12]
where the ability to perform pruning is actually an implementation
necessity rather than a luxury. However, even in proper tabling im-
plementations such as XSB that do not perform recomputation, the
scheme we describe, when guided by a compiler which performs
even simple analyses, has the potential of significantly improving
time performance by avoiding unnecessary computations.

For example, consider the execution of the two top-level queries
below against the following program.

?- query1.
?- query2.

query1 :- t(100000,X), X =< 50000.
query2 :- t(95000,Y), Y =< 55000.

:- table t/2.
t(N,M) :- N >= 0, p(N,N,M).

p(0,N,M) :- long(N,M). %% computation which eventually
%% succeeds with N = M

p(K,N,M) :- K > 0, N1 is N - 1, t(N1,M).
p(K,N,M) :- K > 0, K1 is K - 1, p(K1,N,M).

In the top-level of a Prolog interpreter, since none of the two queries
contains any variables, there are implicit once/1 constructs around
them.2 Execution of query1 starts by the tabled goal t(100000,X)
and after a series of long computations succeeds, with X = 50000.
Because of the single solution context, at this point we are not inter-
ested in other values of X so we should stop execution paths that will
generate answers for tables t(100000, X), . . . , t(50000, X) that the
evaluation has encountered. If we do so, we avoid generating all
possible answers for these tables, a process which involves a series
of long computations. But if we throw away the computations for
these partially filled tables, when execution of the second query be-
gins, we will have to redo most of the work that we have done so
2The queries are not explicitly shown wrapped with once/1 constructs, since we
would very much like to decouple the points where pruning of tabled computations
takes place from the implicit or explicit presence of Prolog-style pruning operators.

far. This is clearly wasteful because in our example, if we keep the
tables, the second query can be answered without performing any
program clause resolution or recomputation.

Organization of the paper. The next section overviews tabling
and aspects of its implementation. Section 3 contains definitions
which are necessary to characterize the concept of just enough
tabling in terms of the frontier of a derivation forest. A detailed ex-
ample of JET is presented in Section 4 followed by a description of
its implementation based on the CHAT engine (Sect. 5). Properties
of just enough tabling and possible uses of the JET mechanism in
a tabling system are discussed in Section 6 and the paper ends by
contrasting JET with existing approaches to pruning tabled logic
programs and some concluding remarks.

2. PRELIMINARIES
We assume familiarity with the terminology of logic program-

ming and with the WAM [14], and limit our attention to definite
logic programs.

2.1 Tabled resolution and its terminology
In a tabled logic program, some predicates are designated as

tabled by means of a declaration; all other predicates are non-tabled
and are evaluated as in Prolog. In this paper, we adopt a convention
of denoting all tabled predicates starting with a t. Following SLG
resolution [3], we will consider two tabled subgoals as identical if
they are variants of each other (i.e., identical up to variable renam-
ing). However, this is an issue which is orthogonal to the issues of
this paper as our results also hold for tabling based on subsump-
tion. Tabled subgoals which are encountered in the evaluation of a
query against a program are stored in a global memory area called
the table space.

When a tabled subgoal is encountered, a check is made to see
whether this is its first occurrence or not. This is the purpose of
the NEW SUBGOAL operation of SLG resolution. If it is new, the
subgoal is termed a generator, a table for it is created in the ta-
ble space, and evaluation uses PROGRAM CLAUSE RESOLUTION to
derive answers for the subgoal. Through the NEW ANSWER oper-
ation, these answers are also recorded in the table created for this
subgoal. All other occurrences of identical subgoals are called con-
sumers as they do not use the program clauses for deriving answers
but they instead consume answers from this table using ANSWER

RETURN operations. Note that a generator also acts as a consumer
of its table; we return to this point later.

In evaluating tabled logic programs, one final operation enters
the picture: COMPLETION. Its purpose is to determine whether a
set of subgoals is completely evaluated, meaning that all answers
for these subgoals already exist in the tables. If so, then we say
that each of these subgoals is complete and evaluation is finished
as far as these subgoals are concerned. Otherwise, at least one of
the subgoals is incomplete and evaluation continues by returning
answers to subgoals which are checked for completion. How this
is done is described in the next section.

2.2 Implementation aspects of tabling
Table space. An important ingredient for efficiently implement-
ing tabling is the table space. The organization of this area is by
now well-understood and efficient data structures for it have been
proposed; see [8]. Before a table’s status changes from incomplete
to complete, the table knows about its generator and its list of con-
sumers, maintains a list of answers in the table (in chronological
order of insertion), and keeps information about the points in this

list up to which answers have been returned to each consumer. On
the other hand, automatic memory management aspects of the ta-
ble space are less explored. Typically, after completion, space for
generators and consumers is reclaimed but information about calls
and answers to tabled predicates is persistent and only deallocated
through explicit programmer intervention, regardless of whether
there is anticipated demand for these tables. In a tabled system
that supports some form of pruning, either via Prolog’s cut ([15,
7]) or as suggested by Castro and Warren [2], tables that are still
incomplete and lie in the scope of a pruning operator are typically
abolished when pruning occurs. This is because tabling engines
do not maintain enough information to allow them to continue the
process of tabled resolution from an arbitrary execution point.

Suspension and resumption. In the context of the WAM,
whose search strategy is pure depth-first search, implementation
of proper tabling is complicated by the fact that the generation and
consumption of answers are asynchronous and interleaved events.
As a result, to avoid recomputation, a tabled engine needs to retain
or reconstruct execution environments of calls to a tabled predi-
cate until the table’s completion. Likewise, newly derived answers
must be queued to resolve against subgoals which do not neces-
sarily correspond to the current execution environment. In fact, a
tabled engine may need to switch back and forth between different
consumers multiple times.

In general, a consumer needs to be suspended when it has ex-
hausted all answers currently in the table and resumed when new
answers have been derived for it. Suspension is performed in the
SLG-WAM [10] by creating a consumer choice point to represent
the suspended environment, freezing all stacks by setting the freeze
registers to point to the current top, and then failing to a previous
choice point without reclaiming any stack space; in particular, the
freeze registers are not reset. Frozen space is not reclaimed until
completion of the corresponding table. Resuming, besides restor-
ing the WAM registers to the values saved in the consumer choice
point, uses the addresses and the values saved in a forward trail to
restore variable bindings along the path to the suspended consumer.
The next unconsumed answer is then returned to the restored con-
sumer and execution continues by taking the forward continuation
of the restored computation.

Instead of maintaining execution states of suspended computa-
tions through freezing the stacks and using an extended trail to re-
construct them, one can also preserve environments of tabled sub-
goals by copying all the relevant information about them in a sepa-
rate memory area, let execution proceed as in the WAM, and rein-
stall these copies whenever the corresponding computations need to
be resumed. In fact, the suspension/resumption needed for tabling
can also be implemented through a combination of freezing and
copying as done in CHAT [5]. CHAT leaves the WAM unchanged
for Prolog execution. It implements suspension by freezing the
heap and local stack and copying the choice points of tabled calls.
CHAT selectively and incrementally copies the trail entries (to-
gether with values for bindings) between the consumer and the gen-
erator which leads this consumer to a memory area separate from
the WAM stacks called the CHAT area. Resumption happens by
copying the saved choice point from the CHAT area back on the
CP stack, copying the saved trail segments back on the trail stack
and reinstalling the saved bindings.

Completion and leaders. To allow space reclamation during
tabled execution, implementations of tabling try to determine com-
pletion of tables: i.e. when the evaluation has produced all their
answers. Doing so, involves examining dependencies between ta-

bles and interacts with consumption of answers by consumers. The
SLG-WAM has a particular stack-based way of determining com-
pletion which is based on maintaining scheduling components; that
is, sets of subgoals which are possibly inter-dependent. A schedul-
ing component is uniquely determined by its leader: a (generator)
subgoal GL with the property that subgoals younger than GL may
depend on GL, but GL depends on no subgoal older than itself.
Besides determining completion, the leader of a scheduling com-
ponent is also responsible for scheduling consumers of all tables
that it leads to consume their answers. Obviously, leaders are gen-
erally not statically known and might change in the course of tabled
evaluation. Leaders can be maintained either approximately or pre-
cisely by having each choice point maintain information about its
root tabled subgoal (as described in [10, Section 6.4]). The root
tabled subgoal for any choice point is the table of the youngest
generator on the CP stack (the nearest generator which lead to the
creation of this choice point through tabled resolution). We elabo-
rate in Section 3. In fact, in this paper we assume that information
about root tabled subgoals is maintained and present in all choice
points, regardless of whether it is used for determining completion
or not.

Double-duty of generators. As mentioned, a generator also
needs to act as a consumer of its table. In fact, depending on the
scheduling strategy, a generator can either consume answers imme-
diately when these are produced, or can postpone their consump-
tion until all of them have been generated. The former is what
happens in batched scheduling; the latter is the action when lo-
cal scheduling is employed. In order to make this double-duty of
generators explicit, we will show generator choice points as hav-
ing an associated consumer. This consumer can be thought as a
choice point which is tightly coupled with the generator and ea-
gerly consumes the answers as these are produced (in batched) or
is a separate choice point placed immediately before the generator
choice point (in local) so that it is picked up after the generator is
exhausted.

3. DERIVATION FORESTS
Tabling implicitly involves the concurrent traversal of multiple

derivation trees, forming a derivation forest. In this section we give
theoretical definitions to explain the tabling searches we will un-
dertake, what we consider proper tabling, and set the foundation to
characterize the amount of recomputation that just enough tabling
can avoid.

As usual, an atom is of the form p(t̄) where p is a predicate
symbol and t̄ is a sequence of terms. A goal Gi is a sequence of
atoms. We use 2 to denote the empty sequence of atoms. We also
add a special goal fail to indicate failure. A set of tables T consists
of triples of the form 〈Call, Answers, Status〉 where Call is an
atom of a tabled predicate, Answers is a set of instances of the
Call, and Status is an indication of the completion status of the
table. We require — and the definitions below ensure — that in T
there are no two tables where the corresponding calls are variants
of each other.

Tabling systems start from an initial goal G0 and a set of tables
{〈G0, ∅, incomplete〉} and construct and explore a derivation for-
est F which is a set of derivation trees F and a set of tables T . To
simplify the presentation we require that the initial goal G0 is an
atom of a tabled predicate.

The construction of the forest F proceeds as a sequence of op-
erations defined below. There are operations that affect the set of
tables T only: creation of a new table, addition of a new answer
in some table, and change of a table’s status from incomplete to

complete. Likewise, there are operations that only affect deriva-
tion trees: ordinary program clause resolution and answer return
via table lookup. Given a goal G0 a derivation 〈G0〉 ⇒θ1

〈G1〉 ⇒
· · · ⇒θn

〈Gn〉 is a sequence of derivations steps defined below.
Furthermore, we will abbreviate a derivation as G0 ⇒

∗

θ Gn where
θ = θ1 ◦ · · · ◦ θn.

In operations affecting goals, the corresponding derivation step
Gi ⇒θ Gi+1 is as follows. Let Gi ≡ p(s̄), G. (In the derivation
tree, the new goal Gi+1 is added as a child of node Gi.)

(PROGRAM CLAUSE RESOLUTION) If p is a non-tabled predi-
cate or i = 0 (this is the root goal so G = 2), and p(r̄) ← B
is a (renamed-apart) rule in P then, let θ = mgu(s̄ = r̄) and
Gi+1 ≡ θ(B), θ(G). If the most general unifier does not exist,
then θ = ∅ and Gi+1 = fail .

(ANSWER RETURN) If p is a tabled predicate and i 6= 0 (so this
is not a root goal), and T contains an entry 〈p(r̄), A, 〉, A 6= ∅
where there is a bijective variable renaming ρ such that ρ(r̄) = s̄
(i.e. r̄ and s̄ are variants), and θ′(p(r̄)) ∈ A (that is θ′(p(r̄)) is
an answer for p(r̄)) then θ = {ρ(v) 7→ ρ(θ′(v)) | v ∈ vars(r̄)}
and Gi+1 ≡ θ(G). If T contains an entry 〈p(r̄), ∅, complete〉
where there is a bijective variable renaming ρ such that ρ(r̄) = s̄
(hence the table is complete and has no answers), then θ = ∅ and
Gi+1 = fail .

In operations affecting tables, the set of tables T is changed. The
operations are:

(NEW SUBGOAL) If there exists a node Gi ≡ p(s̄), G in S
where p is a tabled predicate and T does not contain a table for a
variant of p(s̄) (a table entry of the form 〈p(r̄), , 〉, where p(s̄) and
p(r̄) are variants), then T becomes T ∪ {〈p(s̄), ∅, incomplete〉}.
We also add a new derivation tree to F rooted by 〈G′

0〉 where
G′

0 ≡ p(r̄) where r̄ is a variant of s̄.
(NEW ANSWER) If there exists a leaf node Gi ≡ 2 in F and the

derivation step is part of a derivation G0 ⇒
∗

θ Gi rooted by G0 ≡
p(r̄), and if t = 〈p(r̄), A, incomplete〉 is the table for the p(r̄) call
in T and A contains no answer which is a variant of θ(p(r̄)), then
T becomes (T −{t})∪{〈p(r̄), A∪{θ(p(r̄)}, incomplete〉} (i.e.,
insert the answer substitution θ to the set of answers for t).

A derivation tree for goal G0 shares all the derivations for G0.
When a PROGRAM CLAUSE RESOLUTION operation applies at Gi

then this node has one child for each rule for p in the program.
When ANSWER RETURN operations apply at Gi then this node
has one child for each tabled answer of the call p(r̄), or a sin-
gle child fail if the corresponding table is complete without any
answers. Note that it is possible for the derivation trees to have
infinite branching factors.

Also, note that there is a strong relationship between trees in
a derivation forest and the set of tables that a derivation starting
from an initial goal creates. In particular, there is a one-to-one
correspondence between tabled calls and roots of derivation trees in
the forest and the table corresponding to the root of each derivation
tree is the root tabled subgoal for each goal Gi appearing in its
derivation tree.

Given a forest F for a goal G0, another operation comes to play:
(COMPLETION) Let C be a set of calls in F for which all pre-

ceding operations have been exhaustively performed. Moreover,
no call in C has a corresponding tree which contains a selected
atom for a call whose table has status incomplete and is not in C.
Then change the tables’ status for calls in C from incomplete to
complete and simultaneously add fail children to all nodes in F
which have a selected atom in C and have no children.

DEFINITION 1 (FRONTIER). A frontier of a derivation forest
F for goal G0 is a partial numbering of nodes in F that satisfies
the following conditions:

• The node G0 is numbered 1.

• Each numbered child node has a number greater than its par-
ent node.

• Each numbered node created by an ANSWER RETURN oper-
ation has a number greater than the number of 2 in at least
one derivation p(r̄)⇒∗

θ′ 2.

• Each root node p(r̄) apart from G0 has a number greater
than at least one node Gi ≡ p(s̄), G where p(r̄) and p(s̄)
are variants.

• Each numbered fail node created by a COMPLETION opera-
tion (where the selected atom is p(s̄)) has a number greater
than all the numbers on the fail nodes in the derivations
p(r̄)⇒∗

θ′ fail (p(r̄) is a variant of p(s̄)).

• Each fail node added by a single COMPLETION operation
has the same number.

A scheduling strategy defines an exploration of trees in a deriva-
tion forest. In particular, during execution, a scheduling strategy
S(G0) returns a frontier of the derivation forest for G0. We can
view this as an incremental exploration of the forest by considering
all the partial frontiers defined by removing nodes which are either
still unnumbered or whose number is greater than some n.

The above definition of the frontiers returned by a scheduling
strategy is restricted to proper tabling systems. A proper tabling
system executing a goal G0 never executes a derivation step in the
derivation forest for G0 more than once.

4. A STEP-BY-STEP EXAMPLE OF
JUST ENOUGH TABLING

We illustrate the concept of just enough tabling using the tabled
logic program shown in Figure 1. For presentation purposes we
have annotated it with an indication of the program points (❶, ❷)
where pruning could take place. We refer to these points as just
enough tabling points (or JET points). How these points can be
automatically discovered is discussed in Section 6.2.

4.1 Derivation forest level description
Let us examine the forest of derivation trees built when exe-

cuting this program under batched scheduling. In Figure 2, the
nodes in the forest are numbered in the order that they are created,
thus defining a frontier. The nodes explored to reach ❶ are shown
shaded, while the additional nodes explored to reach ❷ are shown
shaded surrounded by a bounding box.

The derivation proceeds as follows. The goal test finds a so-
lution to start(S) and then calls t(a) which is a subgoal of a
tabled predicate. A new derivation tree is created for this subgoal,
and execution proceeds by first trying the first alternative which en-
counters a recursive call to t(a). Since there are as yet no answers
for this table, this execution path is suspended, and we try the other
program clause for t/1 leading to the call tc(a,Y).

This begins a new derivation tree. Since variables across trees
are not shared, we denote the root of this tree by tc(a,Ya). The
derivation for tc(a,Ya) calls tle(a,Z) and a new derivation tree
with root tle(a,Za) is created. After a long computation, the
first answer (Za = a) is found. Under batched scheduling, it is
returned to the call tle(a,Z) setting Z = a. Execution proceeds
in the derivation tree for tc(a,Ya) with the call tc(a,Ya), which
currently has no answers, and this path suspends.3

3Note that this derivation path will in fact never generate any new answers for
tc(a,Ya).

:- table test/0, t/1, tc/2, tle/2.
test :- start(S), t(S)❶, tle(S,G), good(G)❷.

t(X) :- p(X). % (1)
t(X) :- tc(X,Y). % (2)

tc(X,Y) :- tle(X,Z), tc(Z,Y). % (3)
tc(X,Y) :- se(X,Y). % (4)

tle(A,C) :- long(A,B), le(B,C). % (5)

p(X) :- t(X).

% A long deterministic computation which sets V to U
long(U,V) :- . . . V = U.

?- test.

start(a).

le(a,a).
le(a,b).
le(a,g).
le(e,f).

se(a,c).
se(b,c).
se(b,d).

good(g).

Figure 1: A tabled logic program and query.

4: t(a)

5: p(a) 7: tc(a,Y)

1: test

2: start(S),t(S),tle(S,G),good(G)

3: t(a),tle(a,G),good(G) 6: t(a)

28: tle(a,G),good(G)

29: good(a)

30: fail

31: good(b)

32: fail

34: good(g)

35: true

27: Y = c

12: le(a,Za)

10: tle(a,Za)

11: long(a,B),le(B,Za)

9: tle(a,Z),tc(Z,Ya)

14: tc(a,Ya) 16: tc(b,Ya)

se(a,Ya)

26: Ya = c Ya = d

tc(g,Ya)

8: tc(a,Ya)

17: tc(b,Yb)

24: se(b,Yb)18: tle(b,Z’),tc(Z’,Yb)

23: fail 25: Yb = c Yb = d

21: le(b,Zb)

22: fail

20: long(b,B’),le(B’,Zb)

19: tle(b,Zb)

15: Za = b13: Za = a 33: Za = g

Figure 2: Forest of SLG trees explored to get to ❶ (shaded areas) and ❷ (boxed shaded areas).

Execution proceeds at node 15 by finding the next answer to
tle(a,Za), Za = b. This answer is returned to the call tle(a,Z)
setting Z = b. This leads to a call tc(b,Ya) which starts a new
derivation tree for tc(b,Yb). This derivation tree creates a new
tree for tle(b,Zb) which after another long computation fails, and
on returning to the tree for tc(b,Yb), its first answer (Yb = c) is
generated. This answer is returned to the call tc(b,Ya) setting
Ya = c. This produces the first answer for the derivation tree for
tc(a,Ya), which in turn produces the first answer for t(a). We
are now at node 27 in the forest (in the tree rooted by t(a)) and
point ❶ in the program where pruning is supposed to take place.

If pruning performs an action like Prolog’s cut, then all unex-
plored alternatives are cut away and all incomplete tables (those
of calls tc(a,Ya), tle(a,Za), and tc(b,Yb) in our example)
are abolished at this point. If pruning takes place as proposed by
Castro and Warren [2] the action is similar, because none of the
tables is demanded at this point. In either case, if a call to one of
these tables is encountered later in the computation, all execution
performed so far for these tables will need to be repeated. This is
clearly wasteful and not in accordance to using tabling as a means
to avoid recomputation.

In our example, some of the tabled computations performed thus
far are needed. In fact, immediately after JET point ❶, execution
proceeds with a call to tle(a,G). If we preserve information in the

tables and in the derivation trees, execution can begin by examining
the derivation tree for tle(a,Za) and consume answers from the
corresponding table. Here we begin to see why sharing variables
across derivation trees is not desirable. We want to reuse the an-
swers originally calculated for the call tle(a,Z) at node 9 for the
call to tle(a,G) at node 28. Execution can proceed by returning
the already calculated answer substitutions Za = a, Za = b, copy-
ing them onto the variable G. Both these fail, so we must further ex-
ecute the derivation tree for tle(a,Za). Execution proceeds find-
ing the new answer Za = g. This is returned to tle(a,G), leads
to success, and we have reached JET point ❷. The table for test
is early completed (cf. [10]) at this point and execution stops.

4.2 Abstract machine level description
For the execution of the query ?- test, a WAM-based tabling

abstract machine builds the choice point stacks shown in Figure 3.
Choice points are denoted as G, C, or P depending on whether
they correspond to generators, consumers, or calls to non-tabled
predicates which are evaluated using Prolog-style execution, re-
spectively. We explicitly associate a consumer with each genera-
tor and the two choice points are tightly coupled. In addition, all
consumers are annotated with an integer denoting the number of
answers from the corresponding table they have consumed.

On encountering the first true consumer (the call to t(X) in the

C:0 t(a)

C:0 t(a)
t(a)G

C:0 test
testG

(a) At node 6

P le(a,Za)

C:0 t(a)
t(a)G

C:0 test
testG

C:0 tle(a,Z)
tle(a,Za)G

C:0 tc(a,Y)
tc(a,Ya)G

(b) At node 13

C:0 tc(a,Ya)

P le(a,Za)

C:1 tle(a,Z)
tle(a,Za)G

C:0 tc(a,Y)
tc(a,Ya)G

C:0 t(a)
t(a)G

C:0 test
testG

(c) At node 14

C:2 tle(a,Z)
tle(a,Za)G

C:1 t(a)
t(a)G

C:0 test
testG

P se(b,Yb)

C:1 tc(b,Ya)
tc(b,Yb)G

C:1 tc(a,Y)
tc(a,Ya)G

P le(a,Za)

(d) At point ❶

C:0 test
testG

(e) After pruning

Figure 3: Choice point stacks (growing upwards) during the execution of the query test.

body of the code for p(X)), the stack is as in Figure 3(a). Since at
this point the table for t(a) contains no answers, the consumer is
suspended, taken off the choice point stack, and attached to the ta-
ble of its generator. Execution continues with the second clause of
the t/1 predicate which results in the choice point stack shown in
Figure 3(b). All generators are shown with their variables renamed
to emphasize the fact that for each generator, a new SLG tree is
created in the SLG forest. By copying answers in and out of the ta-
bles, variables are disconnected. For example, notice how e.g. the
call to tc(a,Y) from the t(a) tree is shown as a tc(a,Ya) gener-
ator on the stack. Each answer which is added to the table will be
returned to the consumer associated with each generator by copy-
ing it back from the table. This answer return will bind the answer
to the original variables that the generator’s consumer maintains
(to Y in this case). At this point the first answer substitution for
the call tle(a,Za) is generated (Za = a). Assuming a schedul-
ing strategy like batched scheduling, which ensures that generators
consume answers eagerly, the answer is returned to the tle(a,Z)

consumer associated with the generator. Execution now encounters
the consumer tc(a,Ya). A consumer choice point is created on
the stack (see Figure 3(c)), but since there are no answers to con-
sume at this point, the consumer gets suspended, is popped off the
stack and saved in a CHAT area through copying.

Execution continues with the topmost choice point which is that
of the le(a,Za) call. By picking up the le(a,b) clause, one
more tabled answer (tle(a,b)) is produced and added in the table.
This answer is returned to tle(a,Z), and forward execution re-
sults in calls to tc(b,Ya) (which becomes a canonical form call to
tc(b,Yb)) and tle(b,Zb). The latter calls le(b,Zb) which fails
and consequently the tle(b,Zb) table gets completed without any
answers. Execution backtracks to the generator choice point for the
tc(b,Yb) call which proceeds executing the second clause of tc/2
resulting in a call to se(b,Yb). This sets up a choice point and exe-
cutes the first clause of se/2 producing the answer tc(b,c) which
gets recorded in the appropriate table. By returning this answer to
the associated consumer, the answer substitution Ya = c is pro-
duced for tc(a,Ya), which in turn produces an answer for t(a).
Note that this can cause the early completion of t(a) as there can-
not be any other (different) answers for this table. By returning this
answer, point ❶ is reached. At this time the choice point stack is
as shown in Figure 3(d). The same figure shows the root tabled
subgoal of each consumer and Prolog choice point in the stack;

Call Answers Status Consumers

test ∅ ✈
t(a) {t(a)} ✔

tc(a,Ya) {tc(a,c)} ✈ {C:1 tc(a,Y), C:0 tc(a,Ya)}
tle(a,Za) {tle(a,a), tle(a,b)} ✈ {C:2 tle(a,Z)}
tc(b,Yb) {tc(b,c)} ✈ {C:1 tc(b,Ya)}
tle(b,Zb) ∅ ✔

Figure 4: State of the tables before JET point ❶.

for example, the root tabled subgoal of the tc(b,Ya) consumer is
tc(a,Ya). At this point, the tables are as shown in Figure 4; two
tables are complete (✔), and the remaining four are active (✈).

Now JET pruning happens. To be able to pick up the tabled
computations from the point that has been reached so far and avoid
recomputation, execution states of incomplete tables must be pre-
served at this point.4 The JET action for the heap and local stack
is to freeze them. Recall that the choice point stack acts like a
scheduling stack by keeping information about alternatives which
are yet to be explored for tables to get all their answers. Since we
are at a JET point and no more answers for the pruned tables are
currently needed, choice points in the scope of the pruning operator
must be taken out of the CP stack so that we avoid exploring these
alternatives unnecessarily. Thus, the JET action is to run through
the choice point stack from its top to the choice point associated
with the JET point (the test generator in this case), and preserve
through copying choice points of computations originating from
incomplete tables that are JET pruned. We can copy the choice
points as a single chunk, but since we want the ability to re-activate
the computation of an arbitrary table, we will associate each choice
point with the table that needs it. In effect, at this moment choice
points on the stack are partitioned according to their root tabled
subgoal.

The copied information, per table, is shown in Figure 5. No-
tice how the consumer parts of generators are separated from them
at this point and attached to the table of their root table subgoal.
No information is preserved for t(a) since that table is complete.
This explains why the t(a) and tc(a,Y) consumers are discarded.
Similarly, if there were any Prolog or consumer choice points which

4For complete tables, no execution state needs to be preserved since all answers are
in the tables already.

P se(b,Yb)

G tc(b,Yb)

(a) For tc(b,Yb)

P le(a,Za)

G tle(a,Za)

(b) For tle(a,Za)

C:1 tc(b,Ya)

C:2 tle(a,Z)

G tc(a,Ya)

(c) For tc(a,Ya)

Figure 5: Information from the CP stack that is preserved at JET point ❶ through copying.

C:0 test
testG

(a) 1st pruning

C:0 test
testG

C:0 tle(a,G)

(b) Consumer call

C:0 test
testG

C:2 tle(a,G)
tle(a,Za)G

P le(a,Za)

(c) Re-activation

C:0 test
testG

C:3 tle(a,G)
tle(a,Za)G

(d) At point ❷

Figure 6: Choice point stacks between the two JET pruning actions.

are younger than the test generator but older than the last genera-
tor which needs to saved (tc(a,Ya) in this case) they also would
simply be pruned away. Finally, notice how the partitioned choice
point chains correspond to the trees of Figure 2.

After JET pruning, execution calls tle(a,G). If pruning had
removed all information for this table, this call would have been a
generator and a new table would have been created at this point.
However, in our case, a table for this call exists, namely a table
that has been made inactive by pruning and is not complete, so
this call is a consumer. Therefore, a consumer choice point is put
on the choice point stack (cf. Figure 6(b)) with its next alternative
pointing to an instruction that indicates that this is a consumer of
a table which has been put on hold by JET pruning. This con-
sumer will first backtrack through the existing answers in the table
(G = a and G = b) but forward execution will in both cases fail
when calling good(G). As in any other case where failure occurs,
execution will pick up the next alternative which as mentioned in-
dicates this is a consumer of a JET-pruned table. The JET action
at this point will be to reload the saved choice points of Figure 5(b)
into the stack in order to generate more answers for this table. The
stack will now be as shown in Figure 6(c). As we re-activate the
computation for the tle(a,Za) table, we change the table’s status
to reflect the fact that this table is active again. Execution contin-
ues with the next (and last) alternative of the top-most choice point
which generates the answer tle(a,g). The answer is returned to
the tle(a,G) consumer, the call to good(G) now succeeds and
point ❷ is reached.

Another JET pruning operation will take place at this point. Al-
though table tle(a,Za) actually has all its answers, it is not yet
marked complete, as JET pruning has prevented the completion
check from occurring. Since in general it is not known whether
this table will ever need to be re-activated, information about the
point that its execution has reached needs to be preserved. Running
down the CP stack from its top to the choice point associated with
the JET point (the re-activated tle(a,Za) generator in this case)
will update the CP information saved for the tle(a,Za) table to
be just the generator choice point for this call. Execution finishes
at this point and the tables are as shown in Figure 7; now three of
them are complete and three have been put on hold (✃) by JET
pruning.

Call Answers Status Consumers

test {test} ✔

t(a) {t(a)} ✔
tc(a,Ya) {tc(a,c)} ✃ {C:1 tc(a,Ya)}
tle(a,Za) {tle(a,a), tle(a,b), tle(a,g)} ✃ {C:2 tle(a,Z) }
tc(b,Yb) {tc(b,c)} ✃ {C:1 tc(b,Ya)}
tle(b,Za) ∅ ✔

Figure 7: State of tables after JET point ❷.

5. IMPLEMENTATION ASPECTS OF
JUST ENOUGH TABLING

In this section we describe the implementation of just enough
tabling in the context of a WAM-based tabled abstract machine. We
choose CHAT [5] as a basis for our presentation because in CHAT
choice points are organized in a stack rather than a tree and, as we
will see, CHAT already contains most of the machinery which is
necessary to implement JET. We describe the actions performed
by the abstract machine when JET pruning occurs (Sect. 5.1), and
how tables which are put on hold by JET pruning are re-activated
upon encountering a subsequent call for them (Sect. 5.2).

5.1 JET pruning
First of all, tables which are already complete or put on hold as

the result of a prior JET pruning operation are not affected by the
pruning performed by just enough tabling; in Section 6.3 we elab-
orate more on this. Secondly, although the example of Section 4
does not explicitly show this, we prefer that JET pruning is local
to the clause that contains a JET point (i.e., unlike Prolog’s cut,
JET pruning does not prevent execution of clauses which follow
the clause with the JET annotation).

At the moment when a JET point is reached, the current CP
stack top is pointed to by the WAM’s B register. Let B0 denote the
topmost CP when execution reaches the point in the body of the
clause containing the JET annotation that denotes the beginning of
the scope of the JET pruning action. The fact that JET pruning is
clause-local means that the choice point pointed by B0 will not be
affected by JET pruning.

In CHAT, each table contains a pointer to a CHAT area where

for (; B != B0 ; B = cp prev(B)) {
Tr = B->RS; /* the root table of the choice point */
if (cp type(B) == generator) {
if (! complete(Tr))
copy the consumer part of the CP in CP(Tr);

Tg = the table of this generator CP;
if (! complete(Tg))
copy the generator part of the CP in CP(Tg);

}
else /* consumer or Prolog choice point */
if (! complete(Tr)) copy the CP on CP(Tr));

}

Figure 8: JET pruning action for the CP stack.

suspended consumer choice points, organized in a linked list, and
the associated trail chunks are stored. In order to support just
enough tabling, we simply extend CHAT areas with the ability to
also store pruned portions of the CP stack. For a table T, this area
is denoted CP(T).

We also assume the presence of auxiliary functions (or macros)
cp prev() and cp type() which return the previous choice point
and the choice point type of its argument, and complete() which
returns true or false depending on whether its argument is a com-
plete or incomplete table, respectively.

When JET pruning occurs, the action for the choice point stack
is as shown in Figure 8. In words: Run down the CP stack from
its current topmost choice point to, but not including, the choice
point pointed by B0 and copy each choice point to the CP(T)
area, where T is the table determined by the root parent subgoal
field of the copied choice point. Note that:

• JET pruning decouples a generator from its associated con-
sumer. If the generator is ever re-activated, a new consumer
will be associated with this generator.

• Since tables that are already complete do not have a CHAT
area (if they ever had one, it was reclaimed when they got
completed), no CP stack portion is saved for them.

• At the end of the for loop, the B register points to what will
be the new stack top after JET pruning: the choice point
denoted as B0. Choice points younger than B0 are removed
from the stack.

• As far as the CP stack is concerned, the cost of JET pruning
is linear in the number of choice points which are pruned.
Note that this is the same cost as that of checking during
run-time whether an incomplete table lies in the scope of a
pruning operator; a cost present in the current XSB version
which does not allow pruning over tabled predicates in its
default configuration.

Backtracking in the WAM, besides picking up another alterna-
tive, also allows instant reclamation of heap and local stack space
which was allocated after the creation of the choice point. In or-
der for table re-activations to pick up pruned computations from
the point reached before JET pruning occurred, backtracking can-
not perform instant reclamation after JET pruning. Thus, the JET
pruning operation has to freeze the information on the heap and lo-
cal stack. In CHAT, this can be done either 1) eagerly, by running
the CP stack till its oldest choice point and adapting the H and EB
fields of all choice points to point to the current heap and local stack
tops, or 2) lazily, by doing this adjustment in a more incremental

way (e.g. by modifying these values for the topmost CP and have a
special trust instruction that propagates the freezing to the previous
choice point upon backtracking; see [4] for more information).

In CHAT, as in the WAM, the trail is segmented by choice points
and the trail is exactly that of the WAM. The JET pruning action
for the trail is analogous to that for the CP stack. Trail segments, to-
gether with their corresponding trailed values, need to be preserved
through copying and attached to the corresponding area where the
choice point is saved. As a matter of fact, in CHAT this means that
only trail segments corresponding to generator and Prolog choice
points need to be copied. This is because CHAT eagerly saves the
execution environments of each consumer of an incomplete table
when the consumer is encountered. (The rationale for this is that
in the absence of pruning the consumer will eventually need to be
suspended anyway before execution fails back to the generator to
check for completion of its table). Note that copying of trail seg-
ments increases the total cost of tabled execution by only a constant
factor. This cost is comparable to the cost of tidying the trail after
a Prolog cut. That copying rather than freezing is required for the
trail is not surprising since, in an LP engine like the WAM that uses
untrailing rather than copying of trailed entries, the TR fields of
choice points cannot be changed without corrupting backtracking.

Finally, note that the algorithm of Figure 8 is very simple and the
machinery for JET pruning is already available in CHAT; the only
detail that is missing is the ability to save different types of choice
points in CHAT areas rather than just choice points of consumers.

JET pruning in the SLG-WAM. Although CHAT lends itself
naturally to the implementation of just enough tabling, adapting the
JET mechanism to a tabled abstract machine like the SLG-WAM
is not difficult either. One approach is that the SLG-WAM modifies
its choice point management to be like CHAT’s: have a stack orga-
nization for its choice points rather than a cactus stack. Indeed this
is possible and such an implementation has already been described
in [1]. Then the algorithm of Figure 8 is directly applicable. For
the trail the SLG-WAM can preserve execution environments of
computations which are put on hold by JET pruning via its usual
freezing mechanism and restore them using its forward trail mech-
anism. If the choice points are not organized in a stack, adapting
the JET mechanism is of course still possible but becomes more
involved as it also requires some sort of invalidation and cleanup
of the trapped choice points and trail entries. On the other hand,
this approach has the advantage that the cost of saving and restora-
tion of choice points to and from their saved area through copying
is avoided. Which implementation mechanism for JET pruning
behaves best in practice remains to be seen, and a theoretical inves-
tigation of their tradeoffs along the lines of [4] is a possible avenue
for future work.

5.2 Table re-activation
Table re-activation is initiated by a variant of the instruction that

implements the ANSWER RETURN operation. More specifically,
upon encountering a call which is a variant of a tabled call which
has been put on hold by a previous JET pruning operation, a con-
sumer choice point is put on the CP stack. Its next alternative con-
tains a modification of the answer return instruction (which is the
usual instruction for consumers) that differs from answer return
in that it flags that consumption of answers happens from a table
which is currently on hold. Execution then proceeds by consuming
answers from the table, if any. When these are exhausted, rather
than failing out from this consumer choice point, as answer return
would normally do, the action taken is to re-activate the compu-
tation of answers for the table T which is on hold. This happens

by the engine putting the choice points in the CP(T) area back to
the choice point stack — starting from the generator and naturally
by also adjusting their H and EB fields to reflect the current heap
and local stack tops — the corresponding trail segments on the trail
stack and by re-installing the saved bindings. Tabled execution then
continues as usual by picking up the next alternative of the topmost
choice point.

Resuming the generator choice point of T and any Prolog choice
points that CP(T) contains is straightforward and does not re-
quire any further action than those already presented. For con-
sumer choice points in CP(T), an extra action is required when
these choice points finish consuming the current set of answers in
the table. If they are consumers of a table T

′ which is not active
(i.e., is not on the stack) but is on hold, then backtracking out of
the consumer choice point needs to trigger the re-activation of the
T

′ table. This action is needed for proper completion: T cannot
be completed before the completion of T

′ since T depends on a
consumer of T

′. The actual re-activation takes place as described
in the previous paragraph.

5.3 Miscellaneous technical issues
As mentioned, the choice point stack of the CHAT abstract ma-

chine is like that of the WAM. Suspended consumers are taken
off the stack and their execution environments are preserved as
described in Section 2.2. Some consumers of tables which are
pruned might thus not be on the stack but already saved in CHAT
areas. The JET pruning operation therefore needs to attach these
already saved execution environments of suspended consumers to
the CP(T) area of their root tabled subgoal T. CHAT maintains
enough information to easily find these consumers.

Readers familiar with the internals of SLG-WAM and of CHAT
might wonder why we have so far not described what happens to
the completion stack. Since there is a one-to-one correspondence
between generator choice points in the CP stack and completion
stack frames, upon JET pruning the action is the expected one: the
completion stack gets pruned so that its topmost frame corresponds
to the topmost generator choice point which is not pruned (i.e., the
oldest generator not younger than B0). Upon a subsequent table
re-activation, whenever a generator choice point is put back on the
CP stack, a corresponding completion stack frame is placed on the
completion stack.

6. PROPERTIES AND DISCUSSION
In this section we discuss the properties of just enough tabling,

examine the analyses required to support and take advantage of it,
issues related to space reclamation, and show how we can employ
the JET implementation mechanism for purposes other than prun-
ing.

6.1 Evaluation properties
The key feature of just enough tabling is that we perform each

derivation step in the part of the derivation forest that is explored
at most once. This of course is a property which also holds for
proper tabling systems, but they are not able to support pruning
without resorting to recomputation when tables are thrown away.
This means they may be forced to do more computation than a non-
tabled system. This is not the case for JET, because each tree, and
in fact even each node, in the derivation forest is created at most
once.

PROPOSITION 1. JET is a proper tabling strategy which im-
plements pruning.

SLG resolution with local scheduling is a proper tabling strategy
since it never re-executes any derivation steps, but its laziness in re-
turning answers to the generator makes it inappropriate for pruning
and hence local evaluation can perform arbitrarily more computa-
tion than a computation with pruning. SLG resolution with batched
scheduling is a proper tabling strategy where pruning makes sense,
but in its current implementations pruning throws away computa-
tion, and the result is an improper tabling strategy. Other tabling
strategies like SLDT and DRA are not proper tabling strategies
and can require a significant amount of recomputation even without
pruning.

6.2 Automatic discovery of JET points
Although JET pruning can be user-controlled using a once/1-

like predicate, we have so far presented the just enough tabling
idea and its implementation decoupled from the issue of having a
source-level construct for it. This is a conscious design decision.
Indeed, we envision a system where just enough tabling is fully
guided by a separate static analysis to determine the JET points
in the program and annotate the intermediate code with the cor-
responding built-in that performs JET pruning. Note that such an
analysis is straightforward in a language like Mercury [12] in which
the compiler has precise mode and determinism information. Given
such information, the JET points are simply derived from the sin-
gle solution contexts.

A single solution context is a possibly non-deterministic subgoal
(Ai, . . . , Aj) which occurs in a rule

p(s̄) :- A1, . . . , Ai−1, Ai, . . . , Aj , Aj+1, . . . An.

when for the subgoal (Ai, . . . , Aj) none of the outputs of this goal
are used later in Aj+1, . . . , An. We can replace this by:

p(s̄) :- A1, . . . , Ai−1, cij (̄i), Aj+1, . . . An.

cij (̄i) :- Ai, . . . , Aj ❶.

where ī are the input arguments for Ai, . . . , Aj and ❶ represents
a pruning point for the choice points (and possible tables) created
by calls in the body of cij (̄i). The two programs will produce the
same answers in the same order.

We can move this pruning point earlier by noticing that if the
goal (Ak+1, . . . , Aj) is guaranteed to succeed then we can effec-
tively treat (Ai, . . . , Ak) as the single solution context. Hence we
can replace the definition of cij (̄i) by

cij (̄i) :- Ai, . . . , Ak ❶.

since we do not need to execute the goals Ak+1, . . . , Aj (they suc-
ceed and their outputs are not used).

The Mercury compiler already determines the earliest possible
places to automatically insert such commit points (and removes
useless calls). As mentioned in the introduction, our work on JET
was partly motivated by the necessity to support pruning of tabled
subcomputations in Mercury’s single solution contexts.

Adopting a full-fledged version of Mercury’s analysis for deter-
mining single solution contexts to a language like Prolog where
mode and determinism information is not present is an interesting
avenue for future work. However, note that even a rather simple
analysis can be quite effective. For our example program of Fig-
ure 1, JET points can be discovered as follows: ❶ is a JET point
since start(S) is a deterministic call (its argument is output and
start/1 only has one clause), while t(S) is a ground tabled call
(and can only succeed once). The compiler can push the JET point
from the code for t/1 to immediately after the call site in this case.
In our example, this is not done for test/0 which explains the
placement of JET point ❷.

6.3 Space reclamation
First of all, freezing the heap after JET pruning is not as bad as

it sounds because even frozen heap can be reclaimed by garbage
collection.

Regarding table space, a tabling system must in general keep
all tables for the entire computation if it wants to avoid recomputa-
tion. With just enough tabling and batched scheduling in particular,
where tables might remain incomplete for quite a while, large parts
of the execution stacks may be frozen or copied into the CHAT ar-
eas without any demand for them. This increases the desirability to
garbage collect table space too.

Given a fixed goal and logic program it is straightforward to de-
termine for each program point the “forward reachable” predicates,
that is the predicates which can possibly be called in forward ex-
ecution from any point. Unfortunately predicates which are not
forward reachable from a program point, may still be reached by
backtracking. In that sense, a priori any predicate reachable from
the original goal is always reachable. With determinism informa-
tion we can improve upon this situation. At any program point
which is guaranteed to have no choice points when reached (where
all the previous computation is semi-deterministic, or committed)
only forward reachable predicates are reachable (since backtrack-
ing is impossible). We can use this information to reclaim space for
tables that are not forward reachable (whether complete or on hold
by JET pruning).

Consider the program in Figure 1. Clearly the start(S) call
is deterministic. When execution reaches point ❶ and performs
a JET pruning action there are no current choice points, hence we
cannot backtrack into t(a). Thus only tables for the forward reach-
able tabled predicate tle/2 need to be stored. We can immediately
delete the tables for t(a), tc(a,Ya), and tc(b,Yb). In our exam-
ple program, we could incorporate this information into the builtin
that implements JET pruning, so that we do not split the choice
point stacks or perform copying of information which is then im-
mediately discarded. Similarly at point ❷ we can discard the tables
for predicate tle/2.

6.4 Applications
We now describe how we can go berserk5 with such a scheme.

Once we have the ability to effectively suspend a derivation tree we
allow many scheduling strategies to be defined. For example, given
this capability we can claim that tabled evaluation is never worse
than non-tabled evaluation given the right scheduling strategy.

PROPOSITION 2. Given a program P with tabled predicates Q,
and a scheduling strategy S, then for any goal G there is a schedul-
ing strategy S′ treating predicates Q ∪ Q′ as tabled such that the
frontier S′(G) numbers no more nodes than S(G).

PROOF. (Sketch) We can devise a scheduling strategy S′ that
mimics the scheduling strategy S on goal G by scheduling con-
sumers for predicates p ∈ Q′ in the order scheduled by Prolog. In
order to do so we must be able to move the generator until later
in the computation from where it was initially started. We can do
this by uninstalling the generator from the current stacks and rein-
stalling it using the mechanisms for JET pruning.

Now while this proposition does not allow us to construct the
scheduling strategy S′, the important point is that with the just
enough tabling mechanism the scheduling of SLG operations is
controllable at a very fine grain and is in fact so flexible that we
can simulate Prolog’s evaluation strategy. Without this capability,
5

berserk: An ancient Scandinavian warrior frenzied in battle and held to be invulner-
able (from Webster dictionary).

it is not possible to have a theoretical best case no worse than SLD
resolution.

A simple example of the above proposition is that we can im-
plement a scheduling strategy that allows us to guarantee that the
answers are obtained in the same order as Prolog computation (up
until Prolog loops infinitely). This has important consequences for
improving the programmer’s understanding of the behaviour of the
code. Consider the goal and program

?- t(A), t(B), s(A,B) ❸.

:- table t/1.
t(1).
t(2).
t(3) :- s(2,1).

s(1,2).
s(2,1) :- s(2,1).

Without tabling t/1, the goal succeeds with A = 1, B = 2 (and
then loops). With tabling and either local or batched scheduling
the goal runs forever. With local scheduling the call t(A) tries to
generate all answers for the table, and when it reaches the third
clause of t/1 it runs forever. With batched scheduling the problem
is more subtle. The call t(A) is the generator and returns its first
answer A = 1, this is used by the consumer t(B) to give answer
B = 1, but the call s(1,1) fails. The consumer t(B) suspends and
we backtrack into the generator and find the next answer A = 2,
this creates a new consumer t(B) which consumes the first answer,
creating B = 1 and the call to s(2,1) which loops forever.

Using the JET mechanism of separating the generator from its
associated consumer, we can ensure the order of answers for the
goal arrive in the same order as Prolog. The execution can (using
appropriate scheduling) run as follows. The call t(A) creates a
generator t(C) which finds the first answer C = 1. This is returned
to the consumer t(A) which then calls consumer t(B). This uses
the first answer to lead to call s(1,1). The t(B) consumer now
suspends and we backtrack to the generator t(C) which generates
the new answer C = 2. Since t(C) is separated from the consumer
t(A), we can schedule the suspended consumer t(B) first to get the
new answer. This calls s(1,2) and succeeds, the JET point ❸ is
reached where the table t(C) is put on hold.

7. RELATED WORK
The approach of Castro and Warren to approximate pruning of

tabled logic programs [2] is closer in spirit to that of Prolog where a
pruning operator forgets computations and their alternatives which
lie in its scope. Hence, it is not surprising that the pruning mecha-
nism of [2] does not cater for re-activation of tables after pruning.
Instead, the tabling engine aims to find as many as possible ta-
bles that are no longer “currently in demand” once a pruning point
is reached, and simply delete those tables. The calculation of de-
mand is approximate: when the engine is able to safely determine
that no tables in the pruning scope are demanded it deletes them
all, otherwise they are all kept, possibly causing significantly extra
computation.

Applying this approach to the example in Section 4 will execute
as shown up to point ❶. Then, because the algorithm of [2] will de-
termine no demand on any table, the tables will all be deleted. The
subsequent call to tle(a,G) will cause the derivation tree to be re-
computed (repeating the long computation). Note that support for
approximate pruning is currently not available by default in XSB.

Technically, the JET mechanism and the approximate pruning
approach of [2] are very different. However, the differences of the
two approaches are also philosophical: we hold that just enough

Call Answers Status Alternatives

test ∅ ✈

t(a) {t(a)} ✔

tc(a,Ya) {tc(a,c)} ✃ [(3),(4)]
tle(a,Za) {tle(a,a), tle(a,b)} ✃ [(5)]
tc(b,Yb) {tc(b,c)} ✃ [(4)]
tle(b,Zb) ∅ ✔

Figure 9: Tables in DRA when reaching the first cut.

tabling is closer to the spirit of memoization (remembering prior
computations) and that the issue of space reclamation of tables,
although an important one, is orthogonal to pruning unexplored al-
ternatives. As such, pruning points should not be used as program
places to perform reclamation of the table space in a rather ad hoc
way.

Guo and Gupta describe a scheme for implementing cut-based
pruning in their tabling system [7] which uses dynamic reordering
of alternatives (DRA). Their tabling engine stores and dynamically
reorders “looping alternatives” which are the clauses of the original
predicate that might still generate new answers, and should be ex-
plored after clauses that can be evaluated using Prolog-style resolu-
tion. Because the tabling abstract machine for DRA is much more
WAM-like than the SLG-WAM and DRA uses a fixed Prolog-like
scheduling strategy, their claim is that DRA can implement cuts
much like in the WAM. By keeping the “looping alternatives” in
the table when a cut occurs they can still continue the execution at
some later point. Of course the “looping alternatives” are a rather
imprecise measure of the rest of the computation and since the re-
ordering is dynamic, the operational semantics of cuts in DRA can
be extremely confusing to a Prolog programmer.

If we replaced the JET points in the program of Figure 1 by
(equivalent in this case) cuts as follows

test :- start(S), t(S), !, tle(s,G), good(G), !.

then the DRA approach would compute more or less equivalently
to JET up to point where the first cut occurs, and then rather than
keeping the saved CP stacks as shown in Figure 5, it could keep
the list of delayed alternatives (shown as lists of clause numbers
from Figure 1) for each incomplete table as shown in Figure 9.
Unfortunately the alternatives are a very crude measure of unfin-
ished computation, in particular only the first clause for the call
tc(b,Yb) has been eliminated, all remaining clauses are possible
for incomplete tables. When we call tle(a,G) the derivation tree
will need to be recomputed (including the long computation). Note
that, when compared to the approach of Castro and Warren [2],
the approach of Guo and Gupta would save the recomputation of
tle(b,Zb) if tc(b,Yb) was ever called again.

Another claim of [7] is that because the DRA implementation
is deterministic in its scheduling strategy, the effect of a cut over
tables is well-defined. It is indeed well-defined, but its operational
semantics significantly departs from the semantics of cut in Prolog
and requires a quite deep understanding the DRA technique from
the programmer, in particular in the presence of mutually recursive
calls. It is for example quite possible that in a program like:

:- table t/2.
t(A,B) :- p(A,C), !, ...
t(A,B) :- ...

p(A,B) :- t(B,C), ...

the !/0 cuts the second clause for one call to t/2 (when the t(B,C)
call is not a looping alternative) but not for other calls (when the call
is a looping alternative and the clause is dynamically reordered). Of

course, the root of the problem is not DRA, but in that the opera-
tional semantics of the Prolog cut are not compatible with a search
strategy like tabling’s which is not depth-first search. We believe
that programmer-controlled Prolog-style cuts in tabled logic pro-
grams should not be allowed just for this reason.

8. CONCLUSION
We developed the just enough tabling mechanism so as to sup-

port analysis-guided pruning in tabled logic programs and thereby
make SLG resolution more demand driven and at the same time
maintain its property of avoiding recomputation. Although this pa-
per has described the JET mechanism through a prism of pruning,
we would like to stress that JET is not just a fancy pruning mecha-
nism. Instead, it offers a tabling system the capability to arbitrarily
suspend the construction of some tables during tabled execution
and re-activate (perhaps only a subset of) them at some later point
without any re-execution except for the cost of reinstalling trailed
bindings. It is exactly this capability that allows us to treat single
solution contexts without either throwing away incomplete tables
or unnecessarily having to complete tables before returning an an-
swer to such a context. It is not difficult to give examples (such
as that in the introduction) where just enough tabling prevents an
arbitrary amount of unnecessary computations. Moreover, the ap-
plications of the just enough tabling mechanism may well extend
well beyond pruning.

9. ACKNOWLEDGMENTS
The research of the first author has been supported in part by

grant # 221-2000-165 from Vetenskapsrådet (the Swedish Research
Council). We would like to thank Zoltan Somogyi for helpful dis-
cussions on tabling and pruning in Mercury, and our anonymous
reviewers whose comments have helped improve the presentation
of this work.

10. REFERENCES
[1] L. F. Castro, T. Swift, and D. S. Warren. Suspending and

resuming computations in engines for SLG evaluation. In
S. Krishnamurthi and C. R. Ramakrishnan, editors, Practical
Applications of Declarative Languages: Proceedings of the
PADL’2002 Symposium, number 2257 in LNCS, pages
332–350. Springer, Jan. 2002.

[2] L. F. Castro and D. S. Warren. Approximate pruning in
tabled logic programming. In P. Degano, editor,
Programming Languages and Systems: Proceedings of the
European Symposium on Programming, number 2618 in
LNCS, pages 69–83. Springer, Apr. 2003.

[3] W. Chen and D. S. Warren. Tabled evaluation with delaying
for general logic programs. J. ACM, 43(1):20–74, Jan. 1996.

[4] B. Demoen and K. Sagonas. CHAT is Θ(SLG-WAM). In
H. Ganzinger, D. McAllester, and A. Voronkov, editors,
LPAR’99: Proceedings of the 6th International Conference
on Logic for Programming and Automated Reasoning,
number 1705 in LNAI, pages 337–357. Springer, Sept. 1999.

[5] B. Demoen and K. Sagonas. CHAT: the Copy-Hybrid
Approach to Tabling. Future Generation Computer Systems,
16(7):809–830, May 2000.

[6] H.-F. Guo and G. Gupta. A simple scheme for implementing
tabled logic programming systems based on dynamic
reordering of alternatives. In P. Codognet, editor,
Proceedings of the 17th International Conference on Logic
Programming, number 2237 in LNCS, pages 181–196.
Springer, Nov./Dec. 2001.

[7] H.-F. Guo and G. Gupta. Cuts in tabled logic programming.
In B. Demoen, editor, Proceedings of CICLOPS’2002, the
Colloquium on Implementation of Constraint and LOgic
Programming Systems, pages 62–73, July 2002.

[8] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S.
Warren. Efficient access mechanisms for tabled logic
programs. J. of Logic Program., 38(1):31–54, Jan. 1999.

[9] R. Rocha, F. Silva, and V. Santos Costa. YapTab: A tabling
engine designed to support parallelism. In Proceedings of
Tabulation in Parsing and Deduction (TAPD), pages 77–87,
Sept. 2000.

[10] K. Sagonas and T. Swift. An abstract machine for tabled
execution of fixed-order stratified logic programs. ACM
Trans. Prog. Lang. Syst., 20(3):586–634, May 1998.

[11] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient
deductive database engine. In Proceedings of the ACM

SIGMOD International Conference on the Management of
Data, pages 442–453. ACM Press, May 1994.

[12] Z. Somogyi, F. Henderson, and T. Conway. The execution
algorithm of Mercury, an efficient purely declarative logic
programming language. J. of Logic Program.,
26(1–3):17–64, Oct./Dec. 1996.

[13] H. Tamaki and T. Sato. OLD resolution with Tabulation. In
E. Shapiro, editor, Proceedings of the Third International
Conference on Logic Programming, number 225 in LNCS,
pages 84–98. Springer-Verlag, July 1986.

[14] D. H. D. Warren. An abstract Prolog instruction set.
Technical Report 309, SRI International, Menlo Park,
U.S.A., Oct. 1983.

[15] N.-F. Zhou, Y.-D. Shen, L.-Y. Yuan, and J.-H. You.
Implementation of a linear tabling mechanism. J. of
Functional and Logic Program., 2001(10), 2001.

