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Abstract. For any LP system, tabling can be quite handy in a variety skga
especially ifit is efficiently implemented and fully integed in the language. Im-
plementing tabling in Mercury poses special challengesdgeral reasons. First,
Mercury is both semantically and culturally quite differédrom Prolog. While
decreeing that tabled predicates must not include cutscispéable in a Prolog
system, itis not acceptable in Mercury, since if-then®tal existential quantifi-
cation have sound semantics for stratified programs andsacvery frequently
both by programmers and by the compiler. The Mercury implaatéeon thus has
no option but to handle interactions of tabling with Mercstanguage features
safely. Second, the Mercury implementation is vastly d#fe from the WAM,
and many of the differences (e.g. the absence of a trail) biaveficant impact
on the implementation of tabling. In this paper, we deschibe we adapted the
copying approach to tabling to implement tabling in Mercury

1 Introduction

By now, it is widely recognized that tabling adds power toitogrogramming. By
avoiding repeated subcomputations, it often significaintigroves the performance of
applications, and by terminating more often it allows for arennatural and declar-
ative style of programming. As a result, many Prolog systéeng., XSB, YAP, and
B-Prolog) nowadays offer some form of tabling. Mercury isasaguage with an effi-
cient implementation and comes with a module and a strong $yptem that ease the
development of industrial-scale applications. Like Pgogystems with tabling, Mer-
cury aims to encourage a more declarative style of programmhian “plain” Prolog.
This paper discusses implementation aspects of addingdetol Mercury.

When deciding which tabling mechanism to adopt, an impldores faced with
several choices. Linear tabling strategies [11, 3] aretivelly easy to implement (at
least for Prolog), but they are also relatively ad hoc androfierform recomputation.
Tabled resolution strategies such as OLDT [9] and SLG [1]cararanteed to avoid
recomputation, but their implementation is challengingaagse they require the intro-
duction of a suspension/resumption mechanism into the lexsicution engine.

In the framework of the WAM [10], currently there are two mééchniques to im-
plement suspension/resumption. The one employed bothBhaf8 in YAP [5], that of
the SLG-WAM [6], implements suspension \stack freezingnd resumption using an
extended trail mechanism called tfegward trail. The SLG-WAM mechanism relies



heavily on features specific to the WAM, and imposes a smalhbo-negligible over-
head orall programs, not just the ones which use tabling. The other maichanism,
CAT [2], completely avoids this overhead; it leaves the WAtisicks unchanged and im-
plements suspension/resumption by incrementally savidgestoring the WAM areas
that proper tabling execution needs to preserve in orderdim @aecomputation.

For Mercury, we chose to base tabling on SLG resolution. Vigidee to restrict the
implementation to the subset of SLG that handles stratifiednams. We chose CAT
as implementation platform, because the alternativesicomiith basic assumptions
of the Mercury implementation. For example, Mercury hasrad to freeze, let alone
a forward one, and freezing the staicka SLG-WAM breaks Mercury’s invariant that
calls to deterministic predicates leave the stack unchr@AT is simply the tabling
mechanism requiring the fewest, most isolated changegtvl#rcury implementation.
This has the additional benefit that it allows us to set up tistesn to minimize the
impact of tabling on the performance of program componédrasdo not use tabling;
given an appropriate static analysis, the overhead canrbpletely eliminated.

This paper documents the implementation of tabling in Mer¢we actually aim
to compute a specific minimal model of stratified programs: pilerfect model). We
describe how we adapted the CAT (Copying Approach to Taplmechanism to a dif-
ferent implementation technology, one which is closer esdkecution model of con-
ventional languages than the WAM, and present the additaptanizations that can be
performed when tabling is introduced in such an environnténally, we mention how
we ensure the safety of tabling’s interactions with Mer@&uiifythen-else and existential
guantification, constructs that would require the use ofrtétrolog.

The next section reviews Mercury and its implementatiorctiSe 3 introduces
tabling in Mercury, followed by the paper’s main sectiondan 4) which describes the
implementation of tabling in detail. A brief performancengmarison with other Prolog
systems with tabling implementations based on SLG reswolwppears in Section 5.

2 A Brief Introduction to Mercury

Mercury is a pure logic programming language intended ferdteation of large, fast,
reliable programs. While the syntax of Mercury is based ensyntax of Prolog, se-
mantically the two languages are very different due to Mgrsipurity, its type, mode,
determinism and module systems, and its support for eviddiabctions. Mercury has
a strong Hindley-Milner type system very similar to HaskelMercury programs are
statically typed; the compiler knows the type of every argahof every predicate (from
declarations or inference) and every local variable (frofarience).

The mode system classifies each argument of each predicaith@sinput or out-
put; there are exceptions, but they are not relevant to #gep If input, the argument
passed by the caller must be a ground term. If output, thenaegtipassed by the caller
must be a distinct free variable, which the predicate or fioncwill instantiate to a
ground term. It is possible for a predicate or function toeéhawre than one mode;
the usual example isppend, which has two principal modesppend (in,in,out)
and append (out ,out,in). We call each mode of a predicate or functioprace-
dure The Mercury compiler generates different code for différprocedures, even
if they represent different modes of the same predicate mction. Each procedure



has a determinism, which puts limits on the number of its ipssolutions. Proce-
dures with determinisrdetsucceed exactly oncegmidefprocedures succeed at most
once;multi procedures succeed at least once; whidedetprocedures may succeed
any number of times. A complete description of the Mercunglaage can be found at
http://www.cs.mu.oz.au/research /mercury/information /doc-latest/mercury ref.

The Mercury implementatiomhe front end of the Mercury compiler performs type
checking, mode checking and determinism analysis. Progrgithout any errors are
then subject to program analyses and transformations gsitie one being presented
in Section 4) before being passed on to a backend for codea@re

The Mercury compiler has several backends. So far, talbdingplemented only for
the original backend which generates low level C code [7¢abse it is the only one
that allows us to explicitly manipulate stacks (see Secfi®). The abstract machine
targeted by this low level backend has three main data aselhsap and two stacks.
The heap is managed by the Boehm-Demers-Weiser consergatisage collector for
C. Since this collector was not designed for logic prograngsystems, it does not
support any mechanism to deallocate all the memory blod&satkd since a specific
point in time. Thus Mercury, unlike Prolog, does not recanemory by backtracking
and recovers all memory blocks via garbage collection.

The Mercury abstract machine has two stacksdiestackand thenondet stackin
most programs, most procedures can succeed at most onsené&ans that one cannot
backtrack into a call to such a procedure after the procedasssucceeded, and thus
there is no need to keep around the arguments and local lewiabthe call after the
initial success (or failure, for semidet procedures). Meycaherefore puts the stack
frames of such procedures on the det stack, which is managtddt LIFO fashion.

Procedures that can succeed more than once have their staoksf allocated on
the nondet stack. These frames are removed only when pnaefdil. Since the stack
frames of such calls stick around when the call succeedsidhdet stack is not a true
LIFO stack. Givenaclauge(...) :- q(...), r(...), s(...),wherep, qandr are
all nondet or multi, the stack will contain the framespof) andr in order just after the
call tor. After r succeeds and control returnsptahe frames of the calls i9andr are
still on the stack. The Mercury abstract machine thus hasregasters to point to the
nondet stackmaxfr always points to the top frame, whiteirfr points to the frame
of the currently executing call. (If the currently execigticall uses the det stack, then
curfr points to the frame of its most recent ancestor that usesathéat stack.)

There are two kinds of frames on the nondet stawrlinary andtemporary An
ordinary frame is allocated for a procedure that can sucoemé than once, i.e. whose
determinism is nondet or multi. Such a frame is equivalerthto combination of a
choice point and an environment in a Prolog implementatesed on the WAM [10].
Ordinary nondet stack frames have five fixed slots and a Varrabmber of other slots.
The other slots hold the values of the variables of the praeedncluding its argu-
ments; these are accessed via offsets fearfr. The five fixed slots are:

previr The previous frame slot points to the stack frame immedjdtelow this one.
(Both stacks grow higher.)

redoip The redo instruction pointer slot contains the address efittistruction to
which control should be transferred when backtracking {otovithin) this call.



redofr The redo frame pointer slot contains the address that shmikksigned to
curfr when backtracking jumps to the address inthe&oip slot.

succip The success instruction pointer slot contains the addifeb® anstruction to
which control should be transferred when the call of thislsfeame succeeds.

succfr The success frame pointer slot contains the address ofdbk Bame that
should be assigned turfr when the call owning this stack frame succeeds; this
will be the stack frame of its caller.

The redoip andredofr slots together constitute the failure continuation, witfle
succip andsuccfr slots together constitute the success continuation. lexaenple
above, botly's andr’s stack frames have the addresgsfstack frame in theisuccfr
slots, while theirsuccip slots point to the instructions i after their respective calls.

The compiler converts multi-clause predicate definitians idisjunctions. When
executing in the code of a disjunct, thedoip slot points to the first instruction of the
next disjunct or, if this is the last disjunct, to the addrekthe failure handler whose
code removes the top frame from the nondet stack, setsr from the value in the
redofr slot of the frame that is now on top, and jumps to the addreissirdoip slot.
Disjunctions other than the outermost one are implemensatguemporary nondet
stack frames, which have onptevir, redoip andredofr slots [8].

The stack slot assigned to a variable contains garbagedabf@rariable is instanti-
ated; afterward, it contains the value of the variable. Sthe compiler knows the state
of instantiation of every visible variable at every progrpoint, the code it generates
will never look at stack slots containing garbage. This nsehat backtracking does not
have to reset variables to unbound, which in turn means tieattercury implementa-
tion does not need a trail.

3 Tabling in Mercury

In tabling systems, some predicates are decléabtbdand use tabled resolution for
their evaluation; all other predicates aren-tabledand are evaluated using SLD. Mer-
cury also follows this scheme, but it supports three difieferms of tabled evaluation:
memoization (caching), loop checking, and minimal modeleation. We concentrate
on the last form, which is the most interesting and subsuhesther two.

The idea of tabling is to remember the first invocation of eealh (henceforth re-
ferred to as @eneratoy and its computed results in tables (inall tableand aranswer
tablerespectively), so that subsequent identical calls (retetw as theonsumerscan
use the remembered answers without repeating the conutitercury programmers
who are interested in computing the an- S :

. . | - pred path(int::in, int::out) is nondet.
swers of tabled predicate calls according- pragna minimal model(path/2).
to the perfect modekemantics can use th@path(a, B) :- edge(a, B).
‘minimal model’ pragma. An example islpath(i. B) :- edge(h, ©), path(C, B).
the usuapath predicate on the right.

Predicates witlhinimal model pragmas are required to satisfy two requirements
not normally imposed on all Mercury predicates. The firsuiement is that the set of
values computed by the predicate for its output argumermrisngpletely determined by
the values of the input arguments. This means that the @tedicust not do I/O; it must




also bepure i.e., free of observable side-effects such as updatingahee of a global
variable through the foreign function interface. The setinthat each argument of a
minimal model predicate must be either fully input (groubdadl and at return) or fully
output (free at call, ground at return). In other words, ipdlytinstantiated arguments
and arguments of unknown instantiation are not allowed. tuw/restriction affects
the implementation of tabling in Mercury is discussed inftllwing section.

When a call to a minimal model predicate is made, the prograst sheck whether
the call exists in the call table or not. In SLG terminology; fhis takes place using the
NEW SUBGOAL operation. If the subgoal is new, it is entered in the table and this
call, as the subgoal’s generator, will UBBOGRAM CLAUSE RESOLUTIONtO derive
answers. The generator will use tkew ANSWER operation to record each answer it
computes in a global data structure calledahswer tableof s. If, on the other hand, (a
variant of)s already exists in the table, this call is a consumer and ediblve against
answers from the subgoal’s answer table. Answers are fétodnsumer one at a time
throughANSWER RETURNOperations.

Because in general it is not knovenpriori how many answers a tabled call will
getin its table, and because there can be mutual dependdretigeen generators and
consumers, the implementation requires: (a) a mechanisetdim (or reconstruct) and
reactivate the execution environments of consumers inatietare no more answers for
them to consume, and (b) a mechanism for returning answeisumers and deter-
mining when the evaluation of a (generator) subgoabisipletei.e. when it has pro-
duced all its answers. As mentioned, we chose the CAT sugpgresumption mech-
anism as the basis for Mercury’s tabling implementationweheer, we had to adapt it
to Mercury and extend it in order to handle existential gifization and negated con-
texts. For completion, we chose timeremental completioapproach described in [6].
A subgoal can be determined to be complete if all programselaasolution has fin-
ished and all instances of this subgoal have resolved agdirterived answers. How-
ever, as there might exist dependencies between subduoedg, have to be taken into
account by maintaining and examining the subgoal deperydgaph, finding a set of
subgoals that depend only on each other, completing theethteg and then repeating
the process until there are no incomplete subgoals. We tefhiese sets of subgoals
asscheduling componentEhe generator of some subgoal (typically the oldest) in the
componentis called the componenéader.

4 The Implementation of Tabling in Mercury

4.1 The tabling transformation and its supporting data structures

Mercury allows programmers to use impure constructs toemint a pure interface,
simply by making a promise to this effect. The tabling impétation exploits this
capability. Given a pure predicate suchpash/2, a compiler pass transforms its body
by surrounding it with impure and semipure code as shown gn &i(impure code
may write global variables; semipure code may only read Jhiiote that the compiler
promises that the transformed code behaves as a pure gaal tke side-effects inside
are not observable from the outside.



As mentioned, the arguments of tabled procedures musther &idly input or fully
output. This considerably simplifies the implementatiorcalf tables. SLG resolution
considers two calls to represent the same subgoal if theyaai@nts i.e., identical up
to variable renaming. In Mercury, this is the case if and ahtire two calls have the
same ground terms in their input argument positions, bectiesoutput arguments of
a call are always distinct variables. Conceptually, thé tedlle of a predicate with
input arguments is a tree with + 1 levels. Leveld contains only the root node. Each
node on level corresponds to a value of the first input argument that theipaee has
been called with; in general, each node on lévebrresponds to a combination of the
values of the firsk input arguments that the predicate has been called withs €aah
node on leveh uniquely identifies a subgoal.

The transformed body of a minimal model predicate startsolokihg up the call
table to see whether this subgoal has been seen before @ivert.a predicate declared
as in the code shown in Fig. 1, the minimal model tabling timmsation inserts the
code shown on the same figure at the start of its procedure body

:- pred p(int::in, string::in, int::out, tl::in, t2::out) is nondet.
:- pragma minimal.model(p/5) .

p(Inl, In2, Outl, In3, Out2) :-

pickup_call_table_root_for_p._5(CallTableRoot),

impure lookup.insert_int(CallTableRoot, Ini, CallNodel),
impure lookup_insert_string(CallNodel, In2, CallNode2),
impure lookup-insert_user(CallNode2, In3, CallNode3),
impure subgoal_setup(CallNode3, Subgoal, Status)

Fig. 1. Type-directed program transformation for arguments dethballs

We store all the information we have about each subgoasirbgoal structureWe
reach the subgoal structure of a given subgoal through agrdmthe subgoal’s level
n node in the call table. The subgoal structure has the fotigwight fields (cf. Fig. 2),
which we will discuss as we go along: 1) the subgoal’s stataw(activeor completg;

2) the chronological list of the subgoal’'s answers compustedar; 3) the root of the

subgoal’s answer table; 4) the list of the consumers of thtigeal; 5) the leader of the
scheduling component this subgoal belongs to; 6) if thigeabis the leader, the list
of its followers; 7) the address of the generator’s framehanrtondet stack; and 8) the
address of the youngest nondet stack frame that is an anaddioth this generator

and all its consumers; we call this the nearest common aoTo@$CA).

Trie Roo! Subgoal Structure

(size, num_entries, etc)
root for p/! -
Answer List

Status
Cal | Tabl eRoot Answer Table
Consumer List
Cal | Node2 Subgoal’s Leader
Follower List
Gener nondet Addr
NCA nondet Addr

Cal | Nodel Hash Table (for values of In2

Cal | Node3

Hash Table (for values of In1) Trie (for values of In3)

Fig. 2. Data structures created for the calls of predigate



. path(A, B) :-
In the code of F|g 3, promise_pure (

CallTableRoot.CallNodel pickup_call_table_root_for_path_2(CallTableRoot),
! ! impure lookup_insert_int(CallTableRoot, A, CallNodel),
CallNode2 and CallNode3 impure subgoal_setup(CallNodel, Subgoal, Status),

are all pointers to nodeg ¢ % switch on ‘Status’

Status = new,

in the call tree at levels (
01 2 and 3 respective|y- impure mark_as_active(Subgoal),
! - ! % original body of path/2 in the two lines below
see Fig. 2.CallTableRoot edge (A, C),
points to the global vari- (C=B; path(C, B) ),
semipure get_answer_table(Subgoal, AnsTabRoot),

able generated by the Mer; impure lookup_insert_int (AnsTabRoot, B, AnsNodel),
cury Compiler to serve as the impure answer_is_not_duplicate(AnsNodel),

| impure new_answer_block(Subgoal, 1, AnsBlock),
root of the call table for this impure save_answer (AnsBlock, 0, B)
procedure. This variable is . .
e e s . . impure completion(Subgoal),
initialized to NULL, indicat- fail
ing no child nodes yet. The]
fII’St Ca” to p/5 W|” cause ' Status = complete,
1ookup_insert_int to cre- semipure return_all_answers(Subgoal, AnsBlock),

semipure restore_answer (AnsBlock, 0, B)

ate a hash table in which ev

ery entry is NULL, and make Status = active,

. . impure suspend(Subgoal, AnsBlock),
the glObaI variable p0|nt to semipure restore_answer (AnsBlock, 0, B)
it. The lookup_insert_int )

).

call will then hashini, cre-
ate a new slot in the indicatedFig. 3. Example of the tabling transformation on path/2
bucket (or in one of its over-

flow cells) and return the address of the new slat#ElNodel. At later calls, the hash
table will exist, and by then we may have seen the then cuwane ofIn1 as well;
lookup_insert_int will perform a lookup if we have and an insertion if we have.not
Either way, it will return the address of the slot selected hy. The process then gets
repeated with the other input arguments. (The predicatieg loalled are different be-
cause Mercury uses different representations for diftesgres. For example, integers
are hashed directly but we hash the characters of a stringsrazldress.)

User-defined type&/alues of these types consist of a function symbol applieztto

or more arguments. In a strongly typed language such as Methe type of a variable
directly determines the set of function symbols that vdealan be bound to. The data
structure we use to represent a function symbol from usknetbtypes is therefore a
trie, a data structure which has extensively been used in tapsteras [4]. If the func-
tion symbol is a constant, we are done. If it has argumergs,bokup_insert_user
processes them one by one the same way we process the argofeneidicates, using
the slot selected by the function symbol to play the role efrthot. In this way, the path
in the call table from the root to a leaf node representingvargsubgoal has exactly
one trie node or hash table on it for each function symbolénitiput arguments of the
subgoal; their order is given by a preorder traversal ofdHaaction symbols.
Polymorphic typesThis scheme works for monomorphic predicates because ht eac
node of the tree, the type of the value at that node is fixed th@dype determines
the mechanism we use to table values of that type (integergstr float hash table
for builtin types, a trie for user-defined types). For polyptuc predicates (whose sig-
natures include type variables) the caller passes extravagts identifying the actual



types bound to those type variables. We first table theseraggts, which are terms of
a builtin type. Once we have followed the path from the roatlevel of the last of
these arguments, we have arrived at what is effectivelydbeaf the table for a given
monomorphic instance of the predicate’s signature, andreeged as described above.

4.2 The tabling primitives

Thesubgoal_setup primitive ensures the presence of the subgoal’s subgasitate.

If this is a new subgoal, theta11Node3 will point to a table node containing NULL.
In that casesubgoal_setup will (a) allocate a new subgoal structure, initializing its
fields to reflect the current situation, (b) update the tabt#erpointed to bgallNode3

to point to this new structure, and (c) return this same poiasSubgoal. If this is not
the first call to this procedure with these input argumetisntallNode3 will point

to a table node that contains a pointer to the previouslyatkd subgoal structure, so
subgoal_setup will just return this pointer.

subgoal_setup returns not jusgubgoal, but also the subgoal’s status. When first
created, the status of the subgoal is setdw It becomesctivewhen a generator has
started work on it and becomesmpleteonce it is determined that the generator has
produced all its answers.

What the transformed procedure body does next depends eultlgeal’s initial sta-
tus. If the status iactiveor completethe call becomes one of the subgoal’s consumers.
If it is new the call becomes the subgoal’'s generator and executesitiieab body of
the predicate after changing the subgoal’s statusctive When an answer is gener-
ated, we check whether this answer is new. We do this by gginganswer_tableto
retrieve the root of the answer table from the subgoal airectind inserting the output
arguments into this table one by one, as we inserted the amguments into the call
table. The node on the last level of the answer table thusiehidgdentifies this answer.

answer_is_not_duplicate looks up this node. If the tip of the answer table se-
lected by the output argument values is NULL, then this idfitls¢ time we have com-
puted this answer for this subgoal, and the call succeed®rdise it fails. (To make
later calls fail,answer_is_not_duplicate sets the tip to non-NULL on success.) We
thus get to calhew_answer_block only if the answer we just computed is new.

new_answer_block adds a new item to the end of the subgoal’'s chronological list
of answers, the new item being a fresh new memory block witmrdor the given
number of output arguments. The calkew_answer_blockis then followed by a call
to save_answer for each output argument to fill in the slots of the answer kloc

When the last call teave_answer returns, the transformed code of the tabled pred-
icate succeeds. When backtracking returns control to thledgredicate, it will drive
the original predicate body to generate more and more assWweprograms with a fi-
nite perfect model, the answer generation will eventuabty sand execution will enter
the second disjunct, which invokes thempletion primitive. This will make the an-
swers generated so far for this subgoal available to anyurness that are waiting for
such answers. This may generate more answers for this suibth@eoriginal predicate
body makes a call, directly or indirectly, to this same sudlgbhecompletion prim-
itive will drive this process to a fixed point (see Sect. 4.8)l ghen mark the subgoal



ascompleteHaving already returned all answers of this subgoal froefitist disjunct,
execution fails out of the body of the transformed predicate

If the subgoal is initiallycompletewe callreturn_all_answers, which succeeds
once for each answer in the subgoal’s chronological listnsfagers. For each answer,
calls torestore_answer pick up the output arguments put theredaywe_answer.

If the initial status of the subgoal iactive then this call is a consumer but the
generator is not known to have all its answers. We therefali¢he suspend primitive.
suspend has the same interface asturn_all_answers, but its implementation is
much more complicated. We invoke teespend primitive when we cannot continue
computing along the current branch of the SLD tree. The nask bf the suspension
operationis therefore to record the state of the curremtdiraf the SLD tree to allow its
exploration later, and then simulate failure of that braradlowing the usual process of
backtracking to switch execution to the next branch. Sametater, thecompletion
primitive will restore the state of this branch of the SLDeréeed the answers of the
subgoal to it, and let the branch compute more answers ifit ca

4.3 Suspension of consumers

The suspend primitive starts by creating aonsumer structureand adding it to the
current subgoal’s list of consumers. This structure heaesetfields: a pointer to this sub-
goal's subgoal structure (availablesnspend’s Subgoal argument), an indication of
which answers this consumer has consumed so far, and the: tave of the consumer.
Making a copy of all the data areas of the Mercury abstractinaqdet stack, non-
det stack, heap and registers) would clearly be sufficierad¢ord the state of the SLD
branch, but equally clearly it would also be overkill. To inize overhead, we want
to record only the parts of the state that contain needednr#tion which can change
between the suspension of this SLD branch and any of its qubséresumptions. For
consumer suspensions, the preserved saved state is assfollo
RegistersThe special purpose abstract machine registersfir, curfr, the det stack
pointersp, and the return address registeccip) all need to be part of the saved state,
but of all the general purpose machine registers used fanpater passing, the only one
that contains live data and thus needs to be saved is the oteiagSubgoal.

Heap With Mercury’s conservative collector, heap space is reced only by garbage
collection and never by backtracking. This means that a tertine heap will naturally
hang around as long as a pointer to it exists, regardless ethehthat pointer is in a
current stack or in a saved copy. Moreover, in the absencesifuttive updates, this
data will stay unchanged. This in turn means that, unlike MAifased implementation
of CAT, Mercury’s implementation of minimal model tablimlpes not need to save or
restore any part of the heaphis is a big win, since the heap is typically the largesaare
The tradeoff is that we need to save more data from the stheksuse the mapping
from variables to values (the current substitution) isedtiontirely in stack slots.

Stacks The way Mercury uses stack slots is a lot closer to the rungigséems of im-
perative languages than to the WAM. First of all, there ardims between variables
because the mode system does not allow two free variablesinified. Binding a vari-
able to a value thus affects only the stack slot holding thi&akite. Another difference
concerns the timing of parameter passing. If a predigpait@kes the cakj(4), and the



definition ofq has a clause with heaf{B), then in PrologA would be unified witrs

at the time of the call, and any unification insigiéhat bindsB would immediately up-
dateA in p's stack frame. In Mercury, by contrast, there is no inforigraflow between
caller and callee except at call and return. At call, theecgluts the input arguments
into abstract machine registers and the callee picks theratugturn, the callee puts
the output arguments into registers and the caller picks tle. Each invocation puts
the values it picks up into a slot of its own stack frame whereitt executes a call. The
important point is that the only code that modifies a stackn&ar is the code of the
procedure that createft.

CAT saves the frames on the stacks between the stack frarhe generator (ex-
cluded) and the consumer (included), and uses the WAM trahie and restore ad-
dresses and values of variables which have been bound $ieceréation of a con-
sumer’s generator. Mercury has no variables on its heawithiwut a mechanism like
the trail to guide the selective copying of stack slots whiight change values, it must
make sure that suspension saves informatiailistack frames that could be modified
between the suspension of a consumer and its resumptios ggiriterator. The deep-
est frame on the nondet stack that this criterion require® save is the frame of the
nearest common ancestCA) of the consumer and the generator. We find the NCA
by initializing two pointers to point to the consumer and getor stack frames, and
repeatedly replacing whichever pointer is higher with shecfr link of the frame it
points to, stopping when the two pointers are equal.

Two technical issues deserve to be mentioned. Note thanhustsave the stack
frame of the NCA because the variable bindings in it may hdanged between the
suspension and the resumption. Also, it is possible for geest common ancestor of
the generator and consumer to be a procedure that lives alettstack. The expanded
version of this paper [8] gives examples of these situatiordivates the implementa-
tion alternatives we chose to adopt, and argues for the cogss of saving (only) this
information for consumers.

4.4 Maintenance of subgoal dependencies and their influenca suspensions

We have described suspension as if consumers will be satduly by their nearest
generator. This is indeed the common case, but as explaireidtion 3 there are also
situations in which subgoals are mutually dependent andatdpe completed on an
individual basis. To handle such cases, Mercury maintagtack-based approximation
of dependencies between subgoals, in the form of schedotingponents. For each
scheduling component (a group subgoals that may dependcbrodzer), itdeaderis
the youngest generat6t,, for which all consumers younger thaty, are consumers of
generators that are not older th&n . Of all scheduling components, the one of most
interest is that on the top of the stack. This is because itasohe whose consumers
will be scheduled first. We call its leader therrent leader

The maintenance of scheduling components is reasonabtyeeffi Information
about the leader of each subgoal and the leafl@i®versis maintained in the subgoal
structure (cf. Fig. 2). Besides creation of a new generatorfiich case the generator
becomes the new current leader with no followers), thisrmfttion possibly changes
whenever execution creates a consumer suspension. If tisgiicer’'s generato€;, is



the currentleader or is younger than the current leadethange of leaders takes place.

If G is older than the current leadercauphappens(z becomes the currentleader, and

its scheduling component gets updated to contain as itswells the subgoals of all
generators younger thar. In either case, the saved state for the consumer suspension
will be till the NCA of the consumer and the current leadeiisideneralizes the scheme
described in the previous section.

Because a coup can happen even after the state of a consusedrasaved, we
also need a mechanism to extend the saved consumer stagesieEhanism we have
implemented consists of extending the saved state of abloorrs upon change of
leaders. When a coup happens, the saved state of all fobge@nsumers and genera-
tors) of the old leader is extended to the stack frame of thé MCeach follower and
the new leader. Unlike CAT which tries to share the trail heand local stack segments
it copies [2], in Mercury we have not (yet) implemented shgiof the copied stack seg-
ments. It is our intention to implement and evaluate such ehaw@ism. However, note
that the space problem is not as severe in Mercury as it is iy Bécause in Mercury
there is no trail and no information from the heap is ever edpivhich means that heap
segments for consumers are naturally shared.

On failing back to a generator which is a leader, schedulingnswers to all its
followers will take place, as described below. When the dalieg component gets
completed, execution will continue with the immediatelgiend scheduling component,
whose leader will then become the current leader.

4.5 Resumption of consumers and completion

The main body of theompletion primitive consists of three nested loops: over all
subgoals in the current scheduling comporgndver all consumers of these subgoals,
and over all answers to be returned to those consumers. Teeiedhe body of the
nested loops arranges for the next unconsumed answer tdusae® to a consumer
of a subgoal inS. It does this by restoring the stack segments saved byibpend
primitive, putting the address of the relevant answer blimtt the abstract machine
register assigned to the return valuesakpend, restoring the other saved abstract ma-
chine registers, and branching to the return address shoregspend’s stack frame.
Each consumer resumption thus simulates a return from th®causpend.

Since restoring the stack segments from saved states afio@ns clobbers the state
of the generator that does the restoring (the leade¥)pthe completion primitive
first saves the leader’'s own state, which consists of sahi@gdndet stack down to the
oldest NCA of the leader generator and any of the consumechédules, and saving
the part of the det stack allocated since the creation ofrtbiglet frame. To provide
the information required for the second part of this opergtive extend every ordinary
nondet stack frame with a sixth slot that contains the addrethe top of the det stack
at the time of the nondet stack frame’s creation.

Resumption of a consumer essentially restores the savadibod the SLD search
tree, but restoring its saved stack segmanttict is not a good idea. The reason is that
leaving theredoip slots of the restored nondet stack frames unchanged resushes
just the saved branch of the SLD search tree, but also thetdepaoints of all the
branches going off to its right. Those branches have beelvexdpimmediately after



the suspension of the consumer, because suspension isgitvelating the failure of

the consumer, thus initiating backtracking. When we resamensumer to consume
an answer, we do not want to explore the exact same alteesatain, since this could
lead to an arbitrary slowdown. We therefore replace alltbéoips in saved nondet
stack segments to make them point to the failure handleranuhtime system. This

effectively cuts off the right branches, making them faihnediately. Given the choice
between doing this pruning once when the consumer is susdadnce for each time
the consumer is resumed, we obviously choose the former.

This pruning means that when we restore the saved state afsme®r, only the
success continuations are left intact, and thus the onlgdsatack frames the restored
SLD branch can access are those of the consumer’s ancestgrstack frames that
are not the consumer’s ancestors have effectively beewn sangerestored in vain.

When a resumed consumer has consumed all the currenthableatnswers, it
fails out of the restored segment of the nondet stack. Wangeréo get control when
this happens by setting thedoip of the very oldest frame of the restored segment to
point to the code of theompletion primitive. Whencompletion is reentered in this
way, it needs to know that the three-level nested loop hasdyr started and how far it
has gone. We therefore store the state of the nested looplabal gecord. When this
state indicates that we have returned all answers to allrness of subgoals i§, we
have reached a fixed point. At this time, we mark all subgoaisascompleteand we
reclaim the memory occupied by the saved states of all theisemers and generators.

4.6 Existential quantification

Mercury supports existential quantification. This constris usually used to check
whether a component of a data structure possesses a spemjiferty as in the code:

:— pred list_contains_odd number (list(int)::in) is semidet.
list_contains_odd_number(List) :- some [N] (member(N, List), odd(N)).

Typically the code inside the quantification may have moesntbone solution, but the
code outside only wants to check whether a solugaistswithout caring about the
number of solutions or their bindings. One can thus converuli or nondet goal into
a det or semidet goal by existentially quantifying all itdfmut variables. Mercury im-
plements quantifications of that form using what we catlosnmitoperation, which
some Prologs call anceoperation. The operation savesxfr when it enters the goal
and restores it afterward, throwing away all the stack frathat have been pushed onto
the nondet stack in the meantime. The interaction with sajdirises from the fact that
the discarded stack frames can include the stack frame afergtor. If this happens,
the commit removes all possibility of the generator beingdtracked into ever again,
which in turn may prevent the generation of answers and cetiopl of the correspond-
ing subgoal. Without special care, all later calls of thdigaal will become consumers
who will wait forever for the generator to schedule the retoftheir answers.

To handle such situations, we introduce of a new stack wheleall thecut stack
This stack always has one entry for each currently activetextially quantified goal;
new entries are pushed onto it when such a goal is enteredagme@d when that goal
either succeeds or fails. Each entry contains a pointerigi aflgenerators. Whenever



a generator is created, it is added to the list in the entmeatily on top of the cut stack.
When the goal inside the commit succeeds, the code that pegsit stack entry checks
its list of generators. For all generators whose statustisommplete we erase all trace
of their existence and reset the call table node that pointed generator’s subgoal
structure back to a null pointer. This allows later callshattsubgoal to become new
generators.

If the goal inside the commit fails, the failure may have bdae to the simulated
failure of a consumer inside that goal. When the state ofdéihnsemer is restored, it may
well succeed, which means that any decision the program g taken based on the
initial failure of the goal may be incorrect. When the goalidte the commit fails, we
therefore check whether any of the generators listed in thestack entry about to be
popped off have a status other thmymplete Any such generator must have consumers
whose failure may not be final, so we throw an exception ingyegfce to computing
incorrect results. Note that this can happen only when thdde of the incomplete
generator’s scheduling component is outside the existequiantification.

4.7 Possibly negated contexts

The interaction of tabling with cuts and Prolog-style negais notoriously tricky.
Many implementation papers on tabling ignore the issugyettter, considering only
the definite subset of Prolog. An implementation of tabling Mercury cannot duck
the issue. Mercury programs rely extensively on if-theses] and if-then-elses involve
negation: 4f C then T else E”is semantically equivalentt@C A T) vV (-3C A E).
Of course, operationally the condition is executed onlyeorithe conditionC' is a
possibly negated context: it is negated only if it has notsahs. Mercury implements
if-then-else using aoft cut if the condition succeeds, it cuts away the possibility of
backtracking to the else part only (the condition may sudceeere than once).

If C fails, execution should continue at the else part of thééftelse. This poses
a problem for our implementation of tabling, because thleifaiof the condition does
not necessarily imply that’ has no solution: it may also be due to the suspension of a
consumer called (directly or indirectly) somewhere ingijes in the code below.

pC..) = t,C.0), Cif (..., t.(...), ... ) then ... else ... ), ...

If t. suspends and is later resumed to consume an answer, thé@ontiy evaluate to
true. However, by then the damage will have been done, beseisvill have executed
the code in thelse part.

We have not yet implemented a mechanism that will let us cdenghe correct
answer in such cases, because any such mechanism wouldheesuility to transfer
the “generator-ship” of the relevant subgoal from the getwerof t to its consumer,
or something equivalent. However, \waveimplemented a mechanism that guarantees
that incorrect answers will not be computed. This mechaistine possibly-negated-
context stackor pneg stackor short. We push an entry onto this stack when entering
a possibly negated context such as the condition of an if-thge. The entry contains
a pointer to a list of consumers, which is initially empty. &hcreating a consumer,
we link the consumer into the list of the top entry on the priagls When we enter
the else part of the if-then-else, we search this list logkor consumers that are sus-
pended. Since suspension simulates failure without natsisnplying the absence of



further solutions, we throw an exception if the search find$hsa consumer and abort
execution. If not, we simply pop the entry of the pneg stack&.algo perform the pop on
entry to the then part of the if-then-else. Since in that tlasee is no risk of committing
to the wrong branch of the if-then-else, we do so without Inglat the popped entry.

There are two other Mercury constructs that could computsg/ianswers if the
failure of a goal does not imply the absence of solutionstfdrhie first is negation. We
handle negation as a special case of if-then-elggis equivalentto 1f G then fail
else true”. The other is the generic all-solutions primitibeiltin_aggregate,
which serves as the basic building block for all of Mercumfksolutions predicates.
The implementation duiltin_aggregate uses afailure driven loop. To ward against
builtin_aggregate(Closure, ...) mistaking the failure otall(Closure) due
to a suspension somewhere insitiosure as implying the absence of solutions to
Closure, We treat the loop body as the condition of an if-then-else we surround it
with the code we normally insert at the start of the conditiod the start of the else
part (see [8] for the details).

Entries on both the cut stack and the pneg stack contain ali@igoints to the stack
frame of the procedure invocation that created them, wisicti course also responsible
for removing them. When saving stack segments or extendivepsstack segments, we
save an entry on the cut stack or the pneg stack if the noratek fiame they refer to
is in the saved segment of the nondet stack.

5 Performance Evaluation

We ran several benchmarks to measure the performance ofikesdth tabling sup-
port, but space limitations allow presenting only some efthere.

Overhead of the grade with full tabling suppdite compiled the Mercury compiler in
two grades that differ in that one supports minimal modéelingb the form of tabling
discussed in this paper, by including the cut and pneg stauttshe extra slot on nondet
stack frames, and while the other, lacking these extragpatgponly the other forms of
tabling (memoization and loop checking). Enabling supfmrminimal model tabling
without using it (the compiler has no minimal model predésjtincreases the size of
the compiler executable by about 5%. On the standard ber&hiask for the Mer-
cury compiler, compiling six of its own largest modules, rimgvto a minimal model
grade with full tabling support slows the compiler down byab25%. (For compari-
son, enabling debugging leads to a 455% increase in codarsiza 135% increase in
execution time.) First of all, it should be mentioned thayipg this 25% cost in time
happens only if the user selects a grade with minimal modkihignsupport: programs
that do not use minimal model tabling at all can use the defaul fast . gc grade and
thus not pay any cost whatsoever. Moreover, this 25% is figtzan upper limit. (See
also the results in Table 3 which overall show less than 19&ttmad.) Virtually all of
this cost in both space and time is incurred by the extra caglbave to insert around
possibly negated contexts; the extra code around comndttharlarger size of nondet
stack frames have no measurable overheads (see the da}p Ih@ had an analysis
that could determine that tabled predicates are not indo{dé&ectly or indirectly) in
a possibly negated context, this overhead could be totadlidad for that context. We
are now working on such an analysis.



Table 1. Times (in secs) to execute various versions of transitigveurle

chain cycle
benchmarksize iter|| XSB|{XXX [YAP [Mercury| [ XSB|XXX | YAP|Mercury
telr +- 4K|200|0.62 0.510.28 0.58/0.63 0.520.28§ 0.59
telr +- 8K|200| 1.24 1.050.62 1.27|1.27 1.070.62 1.30
tcr+- |16K|200|2.57 2.151.51 2.47|2.62 2.121.48 2.6]
tcr+-  |32K|200|5.25 4.413.79  5.23|5.20 4.443.78§  5.07
tclr -- 2K| 1{[2.58 2.461.25 3.20/6.22 6.302.89 6.24
te_rr —- 2K| 1{2.21 2.042.94 10.27|6.35 5.856.00 27.4§

Comparison against other implementations of tabliwWg compared the minimal model
grade of Mercury (using rotd-06-10-2005, based on CAT) ragjaXSB (2.7.1, based
on the SLG-WAM), the XXX system (derived from XSB but based @HAT) and
YAP (version in CVS at 28 July 2005, based on SLG-WAM). XSB %X use local
scheduling6] in the default configuration while YAP usédmtched schedulingvier-
cury’s scheduling strategy is similar but not identical &ddhed scheduling. All bench-
marks were run on an IBM ThinkPad R40 laptop with a 2.0 GHz ieem CPU and
512 Mb of memory running Linux. All times were obtained by nimg each benchmark
eight times, discarding the lowest and highest values, aarhging the rest.

The first set of benchmarks consists of left- and right-reiwerversions of transitive
closure. In each case, the edge relation is a chain or a dpcdechain of sizen, there
aren — 1 edges of the fornt — k + 1 for 0 < k < n; in a cycle of sizen, there is also
an edger — 0. We use two query forms: the query with the first argumenttiapal the
second outputH-) and the open query with both arguments outpu) ( The number
of solutions is linear in the size of the data for thequery and quadratic for-. The
second set consists of versions of the same generatiorcptediith full indexing (i) or
Prolog-style first-argument indexing only (p), with the satwo kinds of queries. Each
table entry shows how long it takes for a given system to rersgiecified query on the
specified datdéter times (iter=50 for thesg benchmarks). The tables are reset between
iterations. In Tables 1 and 2, benchmarks use a failure wtivep or its equivalent to
perform the iterations, while in Table 3 they use a tail-retue driver predicate.

Table 2. Times (in secs) to execute various versions of same geomrati

benchmark XSB| XXX| YAP|Mercury|
sgi+- 1.21 1.32 0.34 1.05
sgi-- 3.53 3.89 1.07 243
sg p+- 83.56 58.1134.58 32.14
sg p-- 237.58161.0877.63 92.64

The rows for ther- query on left recursive transitive closure show all runsna
be linear in the size of the data, as expected. Also, on leftrsdon, regardless of query,
YAP is fastest, and XSB, XXX and Mercury are pretty similan @ght recursion,
Mercury is slower than the other systems due to saving aridrieg stack segments
of consumers, and having to do so more times due to its diffesgheduling strategy
(YAP doesn’t do save/restore). It is unfortunate that niatydtems implement the same
scheduling strategy. However, local evaluation (i.e. tpmsing the return of answers
to the generator until the subgoal is complete) is not coibleatvith the pruning that



Mercury’s execution model requires in existential quacgifions, a construct not prop-
erly handled in Prolog systems with tabling. On the same igeiioa (sg) benchmark,
in which consumer suspensions are not created (varianbsiggre only encountered
when the subgoals are completed), Mercury is clearly mustiefdahan XSB and XXX,
although it is still beaten by YAP in three cases out of fowoTeasons why Mercury’s
usual speed advantage doesn’'t materialize here are th#tgd4¢ benchmarks spend
much of their time executing tabling’s primitive operatiomhich are in handwritten C
code in all four systems, and (2) the Prolog systems can ez¢be memory allocated
by an iteration by resetting the heap pointer, whereas ircMgrthis can be done only
by garbage collection. (Although the benchmark program®atalog, the all-solutions
predicate used by the benchmark harness allocates hegp) cell

Table 3. Times (in secs) to execute some standard untabled Prolaipivemks

benchmark [[cqueencrypt deriv] nreV] primeq gsorfqueenfqueny tak total
iterations 60K| 30K|500K|300K 150K|300K| 2K|100K 1K
Mercury plain|| 1.92 5.44 5.61 799 6.43 6.37 4.77) 0.70 0.52 39.8
Mercury tableq| 3.2 7.17 4.9 7.0§ 8.80 7.41 5.83 0.89 1.80 47.2

YAP 9.1 9.14 4.0 4.53 20.8915.3512.4Q 6.4412.50 94.5
XXX 15.2110.89 8.08 6.94 31.6621.7222.0917.4617.3Q| 151.4
XSB 23.6417.2311.5416.71thrashes32.83 34.5629.6524.05| > 190.3

Table 3 shows the performance of the same four systems orstandard Prolog
benchmarks that do not use tabling, taken from [7]. Mercsinjéarly the fastest system
by far, even when minimal model tabling is enabled but notu#ids beaten only on
nrev and deriv, which sperall their time in predicates that are tail recursive in Prolog
but not in Mercury.

Itis very difficult to draw detailed conclusions from theseeadl benchmarks, but we
can safely say that we succeeded in our objective of coratémirthe costs of tabling
on the predicates that use tabling, reducing the performahantabled predicates by
at most 25%. We can confidently expect Mercury to be muchrfésé® Prolog systems
on programs in which relatively few consumer suspensioagacountered. The speed
of Mercury relative to tabled Prolog systems @al tabled programs will depend on
what fraction of time they spend in tabled predicates.

Our most promising avenues for further improvement of tapiin Mercury are
clearly (1) improving the speed of saving and restoring snsns and (2) implement-
ing a scheduling strategy that reduces the number of suispsrend resumptions.

6 Concluding Remarks

Adapting the implementation of tabling to Mercury has beearhallenge because the
Mercury abstract machine is very different from the WAM. Wevb based our imple-
mentation on CAT because it is the only recomputation-figgr@ach to tabling that
does not make assumptions that are invalid in Mercury. Hewewen CAT required
significant modifications to work properly with Mercury'sassk organization, its mech-
anisms for managing variable bindings, and its type-speddta representations. We
have described all these in this paper as well as describiaghew mechanisms, the



cut and the pneg stack, which allow for safe interaction bfing with language con-
structs such as if-then-else and existential quantifinafibese constructs are either not
available or not properly handled in other tabled LP systems

In keeping with Mercury’s orientation towards industréglale systems, our design
objective was maximum performance on large programs auinggsome tabled pred-
icates, not maximum performance on the tabled predicagssgblves. The distinction
matters, because it requires us to make choices that miaithé&impact of tabling on
non-tabled predicates even when these choices slow doweadtakecution. We have
been broadly successful in achieving this objective. Ssuggoort for tabling is optional,
programs that do not use it are not affected at all. Even ignamos that do use tabling,
non-tabled predicates only pay the cost of one new mechati&rone ensuring the
safety of interactions between minimal model tabling anghtien.

The results on microbenchmarks focusing on the performahtiee basic tabled
primitives themselves show tabling in Mercury to be quitmpetitive with that of other
high-performance tabling systems. It is faster on some lreacks, slower on some
others, and quite similar on the rest, even though Mercurseatly lacks some obvi-
ous tabling optimizations, such as sharing stack segmés&®ons among consumers.
How the system behaves on real tabled applications, writtevlercury rather than
Prolog, remains to be seen. Performing such a comparisossadifferent languages
is not a trivial task because many applications of tablingrofely on features (e.qg.,
inspection of tables during runtime or dynamic modificasiaf the Prolog database)
which are not available in Mercury. But one should not unstémgate either the diffi-
culty or the importance of adding proper tabling in a safe wawg truly declarative,
high-performance LP system and the power that this brings to
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