
Minimal Model Tabling in Mercury

Zoltan Somogyi1 and Konstantinos Sagonas2

1 Department of Computer Science and Software Engineering, University of Melbourne, Australia
2 Department of Information Technology, Uppsala University, Sweden

zs@cs.mu.OZ.AU kostis@it.uu.se

Abstract. Prolog systems such as XSB have proven that tabling can be quite helpful in a variety of tasks,
especially if it is efficiently implemented and fully integrated in the language. Implementing tabling in Mer-
cury poses special challenges for several reasons. First, Mercury is both semantically and culturally quite
different from Prolog. While decreeing that tabled predicates must not include cuts (or Prolog-style nega-
tions) is acceptable in a Prolog system, it is not acceptablein Mercury, since if-then-elses and existential
quantification have sound semantics and are used very frequently both by programmers and by the com-
piler. The Mercury implementation thus has no option but to handle interactions of tabling with Mercury’s
language features safely. Second, the Mercury implementation is vastly different from the WAM, and many
of the differences (e.g. storing values directly in stack slots without indirection, the absence of a trail) have
significant impact on the implementation of tabling. In thispaper, we describe how we adapted the copying
approach to tabling to implement minimal model tabling in Mercury.

1 Introduction

By now, it is widely recognized that tabling adds power to a logic programming system. By avoiding
repeated subcomputations, it often significantly improvesthe performance of applications, and by ter-
minating more often it allows for a more natural and declarative style of programming. It is therefore
not a fluke that tabling has so far been used for a variety of tasks ranging from program analysis via
abstract interpretation [4, 5] to model checking [11], learning via statistical abduction [15] and various
other forms of non-monotonic reasoning. All these applications would have been significantly more
difficult to program without tabling.

When deciding which tabling mechanism to adopt, an implementor is faced with various choices.
The first one concerns the resolution strategy. Tabling resolution strategies which arelinear, such as
SLDT [19] and DRA [8], are relatively easy to implement, but they are also relatively ad hoc and often
perform recomputation. On the other hand,propertabled resolution strategies, such as OLDT [17] and
SLG [3], avoid recomputation, but their implementation is significantly more challenging because they
require the introduction of a suspension/resumption mechanism into the basic execution engine.

In the framework of the WAM [18], there are two main techniques to implement suspen-
sion/resumption. The one employed both in XSB [14] and in Yap[12], that of the SLG-WAM [13],
implements suspension viastack freezingand resumption using an extended trail mechanism called
forward trail. The SLG-WAM mechanism relies heavily on features specific to the WAM, and im-
poses a small but non-negligible overhead onall programs, not just the ones which use tabling. The
other main mechanism, CAT (the Copying Approach to Tabling [6]), completely avoids this overhead;
it leaves the WAM stacks unchanged and implements suspension/resumption by incrementally sav-
ing and restoring the WAM areas that proper tabling execution needs to preserve in order to avoid
recomputation.

For Mercury, we chose to base tabling on SLG resolution, partly because when we started this
work (eight years ago) linear tabling resolution strategies did not exist, but more importantly because
we wanted to make the Mercury tabling mechanism premium quality, no matter how much imple-
mentation effort this required. We decided to restrict the implementation to the subset of SLG that

handles stratified programs (i.e., we compute theminimal modelof these programs). As implementa-
tion platform we chose CAT. The main reason for this choice isbecause the alternatives conflict with
basic assumptions of the Mercury implementation. For example, Mercury has no trail to freeze, let
alone a forward one; also freezing the stackà la SLG-WAM breaks Mercury’s invariant that a call to a
predicate which can succeed at most once leaves the stack unchanged. Simply put, CAT is the tabling
mechanism requiring the fewest, most isolated changes to the Mercury implementation. This has the
additional benefit that it allows us to set up the system to minimize the impact of tabling on the per-
formance of programs and program components that do not use tabling. This is in line with Mercury’s
general philosophy of “no distributed fat”, which requiresthat, if possible, programs should not pay
(in performance) for features they do not use.

Contributions The contributions of this paper are as follows:

– We fully describe the implementation of minimal model tabling in Mercury, a language which is
strongly typed and moded, and describe the additional optimizations that can be performed when
tabling is introduced in such an environment.

– As a by-product, we adapt the CAT mechanism to a different implementation technology, one
which is closer to the execution model of conventional languages than the WAM.

– We mention how we ensure the safety of tabling’s interactions with Mercury’s if-then-else and
existential quantification, constructs that would requirethe use of cut in Prolog.

Overview To make the paper self-contained, the next two sections briefly review the Mercury lan-
guage and its implementation, respectively. Section 4 shows the various forms of tabling in Mercury,
followed by the paper’s main section (§ 5) which fully describes the implementation of minimal model
tabling and the technical issues that needed to be addressed. A brief performance comparison with
other Prolog systems with tabling appears in§ 6, and the paper ends with some concluding remarks.

2 The Mercury language: Capsule description

Mercury is a pure logic programming language intended for the creation of large, fast, reliable pro-
grams. While the syntax of Mercury is based on the syntax of Prolog, semantically the two languages
are very different due to Mercury’s purity, its type, mode, determinism and module systems, and its
support for evaluable functions.

Mercury has a strong Hindley-Milner type system very similar to Haskell’s. Mercury programs are
statically typed; the compiler knows the type of every argument of every predicate (from declarations
or inference) and every local variable (from inference).

The mode system classifies each argument of each predicate aseither input or output; there are
exceptions, but they are not relevant to this paper. If input, the argument passed by the caller must
be a ground term. If output, the argument passed by the callermust be a distinct free variable, which
the predicate or function will instantiate to a ground term.It is possible for a predicate or func-
tion to have more than one mode; the usual example isappend, which has two principal modes:
append(in,in,out) andappend(out,out,in). We call each mode of a predicate or function a
procedure. The Mercury compiler generates different code for different procedures, even if they rep-
resent different modes of the same predicate or function. The mode checking pass of the compiler is
responsible for reordering conjuncts as necessary to ensure that for each variable the goal that gen-
erates the value of the variable comes before all goals that use this value. This means that for each
variable in each procedure, the compiler knows exactly which atomic goal (call or unification) in that
procedure makes that variable ground.

2

Each procedure has a determinism, which puts limits on the number of its possible solutions.
Procedures with determinismdet succeed exactly once;semidetprocedures succeed at most once;
multi procedures succeed at least once; whilenondetprocedures may succeed any number of times.

A complete description of Mercury can be found in the language reference manual [9].

3 The Mercury implementation

The front end of the Mercury compiler performs type checking, mode checking and determinism
analysis. Programs without any errors are then subject to program analyses and transformations (such
as the one being presented in Sect. 5) before being passed on to a backend for code generation.

The Mercury compiler has several backends. The original backend [16] generates very low level C
code; its output is essentially assembly code in C syntax forportability. Newer backends [10] generate
higher level code that can be translated to Java or the intermediate language of Microsoft’s .NET
platform. So far, tabling is implemented only for the original, low level backend, because it is the only
one that allows us to explicitly manipulate stacks (see Sect. 5.3). The following is a brief introduction
to the parts of this backend relevant to this paper.

The abstract machine targeted by the low level backend has three main data areas: a heap and
two stacks. In the absence of a native Mercury garbage collector, the heap is managed by the Boehm-
Demers-Weiser conservative garbage collector for C [2]. Since this collector was not designed for
logic programming systems, it has no notion of backtracking, and does not support any mechanism to
deallocate all the memory blocks allocated since a specific point in time. Unlike Prolog, Mercury thus
cannot recover memory by backtracking and must recover all allocated blocks via garbage collection.

The two stacks of the Mercury abstract machine are called thedet stackand thenondet stack. In
most programs, most procedures can succeed at most once. This means that one cannot backtrack into
a call to such a procedure after the procedure has succeeded,and therefore there is no need to keep
around the arguments and local variables of the call after the initial success (or failure, for semidet
procedures). Mercury therefore puts the stack frames of such procedures on the det stack, which is
managed exactly like the stacks of conventional imperativelanguages, i.e. in strict LIFO fashion.

Procedures that can succeed more than once have their stack frames allocated on the nondet stack,
from which stack frames are removed only when procedures fail. Since the stack frames of such
calls stick around when the call succeeds, the nondet stack is not a true LIFO stack; it is more like a
spaghetti stack. Given a clausep(. . .) :- q(. . .), r(. . .), s(. . .), wherep, q andr are all nondet
or multi, the stack will contain the frames ofp, q andr in order just after the call tor. After r succeeds
and control returns top, the frames of the calls toq andr are still on the stack. The Mercury abstract
machine thus has two registers to point to the nondet stack:maxfr always points to the top frame,
while curfr points to the frame of the currently executing call. (If the currently executing call uses
the det stack, thencurfr points to the frame of its most recent ancestor that uses the nondet stack.)

There are two kinds of frames on the nondet stack:ordinary and temporary. An ordinary frame
is allocated for a procedure that can succeed more than once,i.e. whose determinism is nondet or
multi. Such a frame is equivalent to the combination of a choice point and an environment in a Prolog
implementation based on the WAM [18]. Ordinary nondet stackframes have five fixed slots and a
variable number of other slots. The other slots hold the values of the variables of the procedure,
including its arguments; these are accessed via offsets from curfr. The fixed slots are the following:

prevfr The previous frame slot points to the stack frame immediately below this one. (Both Mercury
stacks grow toward higher addresses.) The difference between the address of a nondet stack frame
and the address in itsprevfr slot is the size of that frame.

3

redoip The redo instruction pointer slot contains the address of the instruction to which control
should be transferred when backtracking into (or within) this call.

redofr The redo frame pointer slot contains the address that shouldbe assigned tocurfr when
backtracking jumps to the address in theredoip slot.

succip The success instruction pointer slot contains the address of the instruction to which control
should be transferred when the call that owns this stack frame succeeds.

succfr The success frame pointer slot contains the address of the stack frame that should be as-
signed tocurfr when the call owning this stack frame succeeds; this will be the stack frame of
its caller.

The redoip and redofr slots together constitute the failure continuation, whilethe succip and
succfr slots together constitute the success continuation.

In the example above, bothq’s andr’s stack frames have the address ofp’s stack frame in their
succfr slots, while theirsuccip slots point to the instructions inp after their respective calls.

Suppose the definition ofq is as in the program below.

:- pred q(int::in, int::out) is multi.

q(A, A).

q(A, A+1).

q(A, A+2).

The compiler will convert this multi-clause definition intoa disjunction. Throughout the execution of
q, theredofr slot ofq’s stack frame will point toq’s stack frame. When control entersq, theredoip
slot will contain the address of the first instruction in the implementation of the second disjunct. When
control enters the second disjunct, theredoip slot will be updated to contain the address of the first
instruction of the third disjunct. When control enters the third disjunct, theredoip slot will be updated
to contain the address of the failure handler in the Mercury runtime system. This code removes the
top frame from the nondet stack, setscurfr from the value in theredofr slot of the frame that is
now on top, and jumps to the instruction pointed to by itsredoip slot.

This system can handle predicates whose bodies have any number of disjunctions as long as those
disjunctions are properly nested, like in Fig. 1(a). However, it cannot handle non-nested disjunctions,
because oneredoip slot cannot store the state of more than one non-nested disjunction. Non-nested
disjunctions are implemented using temporary nondet stackframes, which have onlyprevfr, redoip
andredofr slots. When control enters the first disjunct of the second disjunction ins (Fig. 1(b)), the
nondet stack will contain these frames, in order:

1. The ordinary stack frame of this call tos, whoseredoip records the next alternative in the first
disjunction.

2. The ordinary stack frame of this call tor.
3. Any other nondet stack frames left by the call tor.
4. The temporary stack frame whoseredoip records the next alternative ins’s second disjunction.

:- pred p(int::in, int::out) is multi.

p(A, A).

p(A, O) :-

q(A, B),

(O = B ; O = B + 1).

(a) Disjunctions are properly nested

:- pred s(int::in, int::out) is multi.

s(A, O) :-

(B = A ; B = A + 1),

r(B, C),

(O = C ; O = C * 2).

(b) Disjunctions are not properly nested

Fig. 1. Mercury programs with nested disjunctions

4

A given call to a procedure that lives on the nondet stack willcreate exactly one ordinary frame
and zero or more temporary frames on the nondet stack. Theredoip slots of these frames will all
point either to the failure handler in the Mercury runtime system, or to an instruction in the code of
the procedure itself. Theredofr slots of these frames will all point to the ordinary frame of the call,
which contains all the call’s variables, for use by the coderedoip points to.

The stack slot assigned to a variable will contain garbage before the variable is generated. Af-
terward, it will contain the value of the variable, which maybe an atomic value such as an integer
or a pointer to the heap. Since the compiler knows the state ofinstantiation of every visible variable
at every program point, the code it generates will never lookat stack slots containing garbage. This
means that backtracking does not have to reset variables to unbound, which in turn means that the
Mercury implementation does not need a trail.

4 Tabling in Mercury

In all existing tabling systems, some predicates are designated astabledby means of a declaration and
use tabled resolution for their evaluation; all other predicates arenon-tabledand are evaluated using
SLD. Mercury also follows this scheme, but it supports threedifferent forms of tabled evaluation:
memoization (automatic caching), loop checking, and minimal model evaluation.

For predicates that can succeed at most once (i.e. whose determinism is det or semidet), the effect
of tabling is similar to memoization in functional languages: when used judiciously, it can increase
performance. The idea is to remember the first invocation of each call (henceforth referred to as agen-
erator) and its computed result in tables (in acall and ananswer tablerespectively), so that subsequent
identical calls (referred to as theconsumers) can use the remembered answer without repeating the
computation. Mercury supports this form of tabling though the‘pragma memo’ declaration; Fig. 2(a)
shows one such example.

Another use of tabling is forloop detection; see e.g. Fig. 2(b). If a predicate with a‘pragma
loop check’ declaration makes a recursive call to itself with identicalinput arguments, execution
will throw an exception with a message about the infinite loop. Implementing both loop checking and
memoization is relatively straightforward and is done withsimplified variants of the transformation
we present in Sect. 5. The challenge they pose is the design ofefficient data structures for the tables.
Due to space limitations, we will not further describe theseforms of tabling in this paper.

The really interesting uses of tabling in (stratified) logicprograms occur when one is inter-
ested in computing the answers of tabled predicate calls according to theminimal modelseman-
tics. In Mercury, programmers can request this form of tabled evaluation for a predicate using the
‘pragma minimal model’ declaration. An example (for some appropriate definition ofedge/2) is
the familiarpath predicate of Fig. 3.

Predicates withminimal model pragmas are required to satisfy two requirements not normally
imposed on all Mercury predicates. The first requirement is that the set of values computed by the

:- func mfib(int) = int.

:- pragma memo(mfib/1).

mfib(N) = F :-

(N < 2 -> F = 1

; F = mfib(N-1) + mfib(N-2)

).

(a) Tabling purely for efficiency

:- pred return(int::in) is semidet.

:- pragma loop check(return/1).

return(X) :- no return(X).

return(42).

no return(X) :- return(X).

(b) Tabling purely for avoiding loops

Fig. 2.Two types of tabling fully implemented in Mercury but not further considered in this paper

5

:- pred path(int::in, int::out) is nondet.

:- pragma minimal model(path/2).

path(A, B) :- edge(A, B).

path(A, B) :- edge(A, C), path(C, B).

Fig. 3. Transitive closure predicate in Mercury using minimal model tabling

predicate for its output arguments is completely determined by the values of the input arguments. This
means that the predicate must not do I/O; it must also bepure, i.e., free of side-effects such as updating
the value of a global variable through the foreign function interface. The second restriction is that
each argument of a minimal model predicate must be either fully input (ground at call and at return)
or fully output (free at call, ground at return). In other words, partially instantiated arguments and
arguments of unknown instantiation (a mode system extension used for constraint programming [1])
are not allowed. How this restriction affects the implementation of minimal model tabling in Mercury
is discussed in the following section.

When a call to a minimal model predicate is made, a check must be made to see whether it exists
in the call table or not. In the terminology of SLG resolution[3], this takes place using theNEW

SUBGOAL operation. If the subgoals is new, it is entered in the table and this call, as the subgoal’s
generator, will usePROGRAM CLAUSE RESOLUTIONto derive answers. The generator will use the
NEW ANSWERoperation to record each answer it computes in a global data structure called theanswer
tableof s. If, on the other hand, (a variant of)s already exists in the table, this call is a consumer and
will resolve against answers from the subgoal’s answer table. Answers are fed to the consumer one at
a time through theANSWER RETURNoperation.

Because in general it cannot be knowna priori how many answers a minimal model tabled call
will get in its table, and because there can be mutual dependencies between (sets of) generators and
consumers, correctly computing the minimal model requires:

1. a mechanism to retain (or reconstruct) and reactivate theexecution environments of consumers
until there are no more answers for them to consume, and

2. a mechanism for returning answers to consumers and determining when the evaluation of a (gen-
erator) subgoal iscomplete, i.e. when it has produced all its answers.

As mentioned, we chose the CAT suspension/resumption mechanism as the basis for Mercury’s min-
imal model tabling implementation. However, we had to adaptit to Mercury and extend it in order to
handle existential quantification and negated contexts in the manner described in the next section. For
completion, we chose theincremental completionapproach followed by XSB. A subgoal can be de-
termined complete if all program clause resolution has finished and all instances of this subgoal have
resolved against all derived answers. However, as there might exist dependencies between subgoals,
these have to be taken into account by maintaining and examining (a conservative approximation of)
the subgoal dependency graph, finding a set of subgoals that depend only on each other, completing
them together, and then repeating the process until there are no incomplete subgoals. We refer to these
sets of subgoals asscheduling components. The generator of one of the subgoals in the component
(typically the oldest one) is called the component’sleader.

5 The implementation of minimal model tabling in Mercury

First, we describe the implementation of minimal model evaluation for the subset of Mercury without
if-then-else, negation or quantification; we will considerthose constructs later.

6

5.1 The minimal model tabling transformation and tabling data structures

Mercury allows programmers to use impure constructs to implement a pure interface, simply by mak-
ing a promise to this effect. The implementation of minimal model tabling exploits this capability.
Given a pure predicate, like e.g.,path/2, a compiler pass transforms its body by surrounding it with
impure and semipure code; see Fig. 4 (impure code may write global variables; semipure code may
only read them). Since the transformed code implements the same semantics as the original but is
more complete (e.g., it terminates even for queries for which the original body could loop forever),
the compiler promises that transformed code actually behaves as a pure goal.3

path(A, B) :-

promise pure (

pickup call table root for path 2(CallTableRoot),

impure lookup insert int(CallTableRoot, A, CallNode1),

impure subgoal setup(CallNode1, Subgoal, Status),

(% switch on ‘Status’

Status = new,

(

impure mark as active(Subgoal),

% original body of path/2 in the two lines below

edge(A, C),

(C = B ; path(C, B)),

semipure get answer table(Subgoal, AnswerTableRoot),

impure lookup insert int(AnswerTableRoot, B, AnswerNode1),

impure answer is not duplicate(AnswerNode1),

impure new answer block(Subgoal, 1, AnswerBlock),

impure save answer(AnswerBlock, 0, B)

;

impure completion(Subgoal),

fail

)

;

Status = complete,

semipure return all answers(Subgoal, AnswerBlock),

semipure restore answer(AnswerBlock, 0, B)

;

Status = active,

impure suspend(Subgoal, AnswerBlock),

semipure restore answer(AnswerBlock, 0, B)

)

).

Fig. 4. The minimal model tabling program transformation illustrated on the predicate of Fig. 3

As mentioned, arguments of minimal model tabling must be either fully input or fully output.
This considerably simplifies the implementation of call tables. SLG resolution considers two calls to
represent the same subgoal if they arevariants(i.e., are identical up to variable renaming). In Mercury,
this is the case if and only if the two calls have the same ground terms in their input argument positions,
because the output arguments of a call are always distinct variables. Conceptually, the call table of a
predicate withn input arguments is a tree withn+1 levels. Level0 contains only the root node. Each
node on level1 corresponds to a value of the first input argument that the predicate has been called
with; in general, each node on levelk corresponds to a combination of the values of the firstk input
arguments that the predicate has been called with. Thus eachnode on leveln uniquely identifies a
subgoal. We store all the information we have about each subgoal in asubgoal structure. We reach the
subgoal structure of a given subgoal through a pointer in thesubgoal’s leveln node in the call table.
The subgoal structure has several fields (cf. Fig. 5), which we will discuss as we go along:

3 Although tabling modifies the state by updating globally accessible data structures (the tables), this is not an observable
side-effect as Mercury provides no table inspection built-ins like XSB’sget calls andget returns.

7

root for p/5

CallTableRoot

(size, num_entries, etc) Header Trie RootHeader

CallNode1

Hash Table (for values of In1)

CallNode2

Hash Table (for values of In2)

Trie (for values of In3)

CallNode3

Subgoal Structure

Status

Answer Table

Answer List

Consumer List

Subgoal’s Leader

Follower List

Gener nondet Addr

NCA nondet Addr

Fig. 5. Data structures created for the calls of predicatep/5

– the subgoal’s status (new, activeor complete)
– the chronological list of the subgoal’s answers computed sofar
– the root of the subgoal’s answer table
– the list of the consumers of this subgoal
– the leader of the clique of subgoals this subgoal belongs to
– if this subgoal is the leader, the list of its followers
– the address of the generator’s frame on the nondet stack
– the address of the nondet stack frame that is the youngest ancestor of both this generator and all

its consumers; we call this the nearest common ancestor (NCA)

The transformed body of a minimal model predicate starts by looking up the call table to see
whether this subgoal has been seen before or not. Given a predicate declared as:

:- pred p(int::in, string::in, int::out, t1::in, t2::out) is nondet.

:- pragma minimal model(p/5).

p(In1, In2, Out1, In3, Out2) :-

...

the minimal model tabling transformation inserts the following code at the start of its procedure body:

pickup call table root for p 5(CallTableRoot),

impure lookup insert int(CallTableRoot, In1, CallNode1),

impure lookup insert string(CallNode1, In2, CallNode2),

impure lookup insert user(CallNode2, In3, CallNode3),

impure subgoal setup(CallNode3, Subgoal, Status)

CallTableRoot, CallNode1, CallNode2 andCallNode3 are all pointers to nodes in the call
tree at levels 0, 1, 2 and 3 respectively; see Fig. 5.CallTableRoot points to the global vari-
able generated by the Mercury compiler to serve as the root ofthe call table for this procedure.
This variable is initialized to NULL, indicating no child nodes yet. The first call top/5 will cause
lookup insert int to create a hash table in which every entry is NULL, and make the global vari-
able point to it.lookup insert int will then hashIn1, create a new slot in the indicated bucket (we
currently use separate chaining to avoid fixed limits on the sizes of tables) and return the address of
the new slot asCallNode1. At later calls, the hash table will exist, and by then we may have seen
the then current value ofIn1 as well;lookup insert int will perform a lookup if we have and an
insertion if we have not. Either way, it will return the address of the slot selected byIn1.

The process then gets repeated with the other input arguments. The predicates being called are
different because Mercury uses different representationsfor different types. Unlike the WAM, the
Mercury runtime system cannot look at the first argument of a hypothetical genericlookup insert

predicate and say “that’s an integer” or “that’s a string”: agiven bit pattern can be an integer in one
call and a string in another. This affects how the hash table works: we hash integers directly but we
hash the characters of a string, not its address.

8

User-defined typesValues of user-defined types consist of a function symbol applied to zero or more
arguments. In a strongly typed language such as Mercury, thetype of a variable directly determines
the set of function symbols that variable can be bound to. Thedata structure we use to represent a
function symbol from user-defined types is therefore a trie.If the function symbol is a constant, we
are done. If it has arguments, thenlookup insert user processes them one by one the same way
we process the arguments of predicates, using the slot selected by the function symbol to play the role
of the root. In this way, the path in the call table from the root to a leaf node representing a given
subgoal has exactly one trie or hash table on it for each function symbol in the input arguments of the
subgoal; their order is given by a preorder traversal of those function symbols.

Polymorphic typesThis scheme works for monomorphic predicates because at each node of the tree,
the type of the value at that node is fixed, and the type determines the mechanism we use to table
values of that type (integer hash table, string hash table orfloat hash table for builtin types, a trie for
user-defined types). For polymorphic predicates (whose signatures include type variables) the caller
passes extra arguments identifying the actual types bound to those type variables [7]. We table these
arguments first; they have a fixed type whose structure is similar to that of terms of user-defined types.
Once we have followed the path from the root to the level of thelast of these arguments, we have
arrived at what is effectively the root of the table for a given monomorphic instance of the predicate’s
signature, and we proceed as described above.

5.2 The tabling primitives

Thesubgoal_setup primitive ensures the presence of the subgoal’s subgoal structure. If this is a new
subgoal, thenCallNode3 will point to a table node containing NULL. In that case,subgoal_setup

will allocate a new subgoal structure, initializing its fields to reflect the current situation, it will update
the table node pointed to byCallNode3 to point to this new structure, and will return this same
pointer asSubgoalVar. If this is not the first call to this procedure with these input arguments, then
CallNode3 will point to a table node that contains a pointer to the previously allocated subgoal
structure, sosubgoal_setup will just return this pointer.

subgoal_setup returns not justSubgoalVar, but also the subgoal’s status. When first created,
the status of the subgoal is set tonew. It becomesactivewhen a generator has started work on it and
becomescompleteonce it is determined that the generator has produced all itsanswers.

What the transformed procedure body does next depends on thesubgoal’s initial status. If the
status isactiveor complete, the call becomes one of the subgoal’s consumers. If it isnew, the call
becomes the subgoal’s generator and executes the original body of the predicate after changing the
subgoal’s status toactive. When an answer is generated, we check whether we have derived this
answer before. We do this by usingget_answer_table to retrieve the root of the answer table from
the subgoal structure, and inserting the output arguments into this table one by one, just as we inserted
the input arguments one by one into the call table. The node onthe last level of the answer table thus
uniquely identifies this answer.

answer_is_not_duplicate looks up this node. If the tip of the answer table selected by the
output argument values is NULL, then this is the first time we have computed this answer for this
subgoal, andanswer_is_not_duplicate succeeds. Otherwise it fails. (To make later calls fail, suc-
cessful calls toanswer_is_not_duplicate replace the tip with a non-NULL value.) We thus get to
the call tonew_answer_block only if the answer we just computed has not been seen before.

new_answer_block adds a new element to the end of the subgoal’s chronological list of answers,
the new element being a fresh new block with room for the givennumber of output arguments. The

9

call to new_answer_block is then followed by a call tosave_answer for each output argument to
fill in the slots of the answer block.

When the last call tosave_answer returns, the transformed code of the tabled predicate succeeds.
When backtracking returns control to the tabled predicate,it will drive the original predicate body to
generate more and more answers. In programs with a finite minimal model, the answer generation
will eventually stop, and execution will enter the second disjunct, which invokes thecompletion
primitive. This will make the answers generated so far for this subgoal available to any consumers
that are waiting for such answers. This may generate more answers for this subgoal if the original
predicate body makes a call, directly or indirectly, to thissame subgoal. Thecompletion primitive
will drive this process to a fixed point using the algorithm wedescribe in Sect. 5.5 and then mark the
subgoal ascomplete. Having already returned all the answers of this subgoal from the first disjunct,
execution fails out of the body of the transformed predicate.

If the initial status of the subgoal iscomplete, we callreturn_all_answers, which succeeds
once for each answer in the subgoal’s chronological list of answers. For each answer, the calls to
restore_answer pick up the individual output arguments put there bysave_answer.

If the initial status of the subgoal isactive, then this call is a consumer but the generator is
not known to have all its answers. We therefore call thesuspend primitive. suspend has the
same interface asreturn_all_answers, but its implementation is completely different. Whereas
return_all_answers simply iterates through a pre-existing list of answer blocks, the implementa-
tion of suspend is quite complicated. We invoke thesuspend primitive when we cannot continue
computing along the current branch of the SLD tree. The main task of the suspension operation is
therefore to record the state of the current branch of the SLDtree to allow its exploration later, and
then simulate failure of that branch, allowing the usual process of backtracking to switch execution to
the next branch. Sometime later, thecompletion primitive will restore the state of this branch of the
SLD tree, feed the answers of the subgoal to it, and let the branch compute more answers if it can.

5.3 Suspension of consumers

Thesuspend primitive starts by creating aconsumer structureand adding it to the current subgoal’s
list of consumers. The consumer structure has three fields: apointer to this subgoal’s subgoal struc-
ture (available insuspend’s Subgoal argument), an indication of which answers of the subgoal this
consumer has consumed so far, and the saved state of the SLD branch of the consumer.

Making a copy of all the data areas of the Mercury abstract machine (det stack, nondet stack, heap
and registers) would clearly be sufficient to record the state of the SLD branch, but equally clearly
it would also be overkill. To minimize overhead, we want to record only the parts of the state that
contain needed information which can change between the suspension of this SLD branch and any of
its subsequent resumptions. For consumer suspensions, thepreserved saved state is as follows.

RegistersOf all the abstract machine registers used for parameter passing, the only one that contains
live data is that containingSubgoal. The special purpose abstract machine registers (maxfr, curfr,
the det stack pointersp, and the return address registersuccip) do need to be part of the saved state.

Heap With Mercury’s current conservative collector, heap spaceis recovered only by garbage col-
lection and never by backtracking. This means that a term on the heap will naturally hang around
as long as a pointer to it exists, regardless of whether that pointer is in a current stack or in a saved
copy. Moreover, in the absence of instantiations of heap terms and destructive updates, this data will
stay unchanged. This in turn means that, unlike a WAM-based implementation of CAT, Mercury’s

10

implementation of minimal model tablingdoes not need to save or restore any part of the heap. (We
argue for the correctness of doing so below.) In practice this is a big win, since it is typically the heap
which is the largest area. The tradeoff is that we may need to save more data from the stacks, because
the mapping from variables to values (the current substitution) is stored entirely in stack slots.

StacksThe way Mercury uses stack slots is a lot closer to the runtimesystems of imperative languages
than to the WAM. First of all, there are no links between variables because the mode system does not
allow two free variables to be unified. So, binding a variableto a value affects only the stack slot
holding the variable. Another difference with Prolog concerns the timing of parameter passing. If a
predicatep makes the callq(A), and the definition ofq has a clause with headq(B), then in Prolog,
A would be unified withB at the time of the call, and any unification insideq that bindsB would
immediately updateA in p’s stack frame. In Mercury, by contrast, there is no information flow between
caller and callee except at call and (successful) return. Atcall, the caller puts the input arguments into
abstract machine registers and the callee picks them up; at return, the callee puts the output arguments
into those registers and the caller picks them up. Each invocation puts the values it picks up into a
slot of its own stack frame when it next executes a call. The important point is that the only code that
modifies a stack frame is the code of the predicate that created that stack frame.

CAT saves the frames on the stacks between the stack frame of the generator (excluded) and the
consumer (included), and uses the WAM trail to save and restore addresses and values of variables
which have been bound since the creation of a consumer’s generator. (Only trail entries referring to the
unsaved parts of the heap and local stack need to be preservedby copying. Saving those pointing to the
saved parts is obviously redundant.) Mercury has no variables on its heap, but without a mechanism
like the trail to guide the selective copying of stack slots which might change values, it must make sure
that suspension saves information inall stack frames that could be modified between the suspension
of a consumer and its resumption by its generator. The deepest frame on the nondet stack that this
criterion requires us to save is the frame of thenearest common ancestor(NCA) of the consumer and
the generator. We find the NCA by initializing two pointers topoint to the consumer and generator
stack frames, and repeatedly replacing whichever pointer is higher with thesuccfr link of the frame
it points to, stopping when the two pointers are equal.

Note that wemustsave the stack frame of the NCA because the variable bindingsin it may have
changed between the suspension and the resumption. To see this, consider the code in Fig. 6, in which
the first call toz in the body ofy is a generator while the secondz call is a consumer (hence their
subscripts), andy is their nearest common ancestor.

– Whenzc first suspends, the value ofG in y’s stack frame is 3.
– After zc’s first suspension, the generatorzg returns 4 toy, which stores it as the new value ofG.
– Whenzg finishes generating its last answer, it resumes the consumerzc. Whenzc returns, its

return valueC, is tested for equality with the stored value ofG.
– The stored value ofG in y will be 4, unless the resumption ofzc restoresy’s stack frame to the

state it had when the consumer was suspended.

Note that it is also possible for the nearest common ancestorof the generator and consumer to be
a procedure that lives on the det stack. Consider for example

p(A, B) :- (if some [X, Y] (q(A, X), q(A, Y), X = 2 * Y) then B = yes else B = no).

wherep is det whileq is a minimal model nondet procedure. In such cases, the algorithm we gave
above for finding the NCA will actually find the stack frame that was on top of the nondet stack when
the det stack frame of the NCA (in this casep) was created. Sincep may not know whetherq is tabled,

11

:- pred x(int::out) is nondet.

:- pred y(int::out) is nondet.

:- pred z(int::out) is nondet.

:- pragma minimal model(y/1).

:- pragma minimal model(z/1).

x(X) :- y(X), X = 3.

y(G) :- zg(G), zc(C), G = C.

z(A) :- a(A), b(B), A = B.

a(3). b(4).

a(4). b(3).

(a) Tabled program in Mercury

x

y

zg

G =
C =

X =

B =
A =

x

y G = 4
C =

X =

2nd consumer
z(4)

zc

B =
A =

x

y

zg

G = 4
C =

X =

B = 4
A = 4

2nd answer

x

y G = 3
C =

X =

z(3)

zc

B =
A =

zg

B = 4
A = 4

x

y

zg

G = 3
C =

X =

B = 3
A = 3

1st answer 1st consumer

zg

B = 3
A = 3

Call to
generator

(b) Nondet stack while executingx(X); shaded frames are those copied

Fig. 6. Information on the stack (growing upwards) while executingthe program on the left.

we cannot makep perform any special action to mark its stack frame; not without slowing down all
procedures that live on the det stack. We prefer instead to slow down all procedures that live on the
nondet stack. Since in our experience there are many fewer such procedures, this is the lesser of the
two evils. In minimal model grades we extend each nondet stack frame with an extra slot holding
the value of the det stack pointer at the time when the nondet stack frame was created. By saving
everything on the det stack above the stack pointer value recorded in the computed, nondet NCA’s
stack frame, we guarantee that we will save the stack frame ofthe real, det NCA.

Correctness of saved information from the stacksThe variables in the nondet stack frames below
the NCA and in the det stack frame the NCA points to fall into two classes. The variables that were
bound when the NCA call was made cannot have their bindings changed unless the goal that made
the binding fails. This can happen only if everything to their right has also failed. Since the call to
NCA and thus the generator are to the right of this code, the generator must have failed. This can
happen in only two circumstances. The first is that the generator has computed all the answers to its
subgoal and has fed them all back to their consumers. In that case, none of those consumers will ever
be restored; in fact, their saved states will have been deleted. The second circumstance is that the
generator is simulating failure because it has yielded to another generator which is now its leader. In
such situations, which we will discuss in the next section, we do in fact save beyond this NCA (we
save to the nearest common ancestor of the consumer and the leader generator.)

On the other hand, the variables that were not yet bound when the NCA call was made may be
bound after the NCA succeeds, but if backtracking ever returns control to the NCA and through it to
the consumer, those bindings will have been implicitly unbound by then.

Therefore, whether or not a variable in a nondet stack frame below the NCA is bound when the
NCA is called, we donot need to save its value when suspending a consumer. Since the contents of
the fixed slots in those frames do not need to be saved either, the segment of the nondet stack that we
need to save ends at the nearest common ancestor.

Correctness of not saving information from the heapThe only two ways that a heap term pointed
to from a saved copy of a stack frame could be changed between the saving of that stack frame and its
restoration are variable instantiation and destructive update. We rule out both of these through the use
of grades. A grade is a set of settings for the compilation options thatmodify the Mercury abstract
machine in some fashion; for example, the minimal model tabling grade adds some new stacks (as we
will see later). The Mercury implementation ensures that all parts of the program are compiled with the
same grade. In minimal model grades, compilation options and program constructs that could result
in non-ground terms on the heap (required for plugging in constraint solvers [1]) are disallowed, as
are optimizations that destructively update ground heap terms.

12

5.4 Maintenance of subgoal dependencies and their influenceon suspensions

We have described suspension as if consumers will be scheduled only by their nearest generator. This
is indeed the common case, but as explained in Sect. 4 there are also situations in which subgoals are
mutually dependent and cannot be completed on an individualbasis. To handle such cases, Mercury
maintains a stack-based approximation of dependencies between subgoals, in the form of scheduling
components. For each scheduling component (a group subgoals that may depend on each other), its
leader is the youngest generatorGL for which all consumers younger thanGL are consumers of
generators that are not older thanGL.

Of all scheduling components, the one of most interest is that on the top of the stack. This is
because it is the one whose consumers will be scheduled first.We call its leader thecurrent leader.

The maintenance of scheduling components is reasonably efficient. Information about the leader
of each subgoal and the leader’sfollowers is maintained in the subgoal structure (cf. Fig. 5). Besides
creation of a new generator (in which case the generator becomes the new current leader with no
followers), this information possibly changes whenever execution creates a consumer suspension. If
the consumer’s generator,G, is the current leader or is younger than the current leader,no change of
leaders takes place. IfG is older than the current leader, acouphappens,G becomes the current leader,
and its scheduling component gets updated to contain as its followers the subgoals of all generators
younger thanG. In either case, the saved state for the consumer suspensionwill be till the NCA of the
consumer and the current leader. This generalizes the scheme described in the previous section.

However, because a coup can happen even after the state of a consumer has been saved, we also
need a mechanism to extend the saved consumer states. The mechanism we have implemented is
simple and consists of extending the saved state of all consumers upon change of leaders. When a coup
happens, the saved state of all followers (consumers and generators) of the old leader is extended to the
stack frame of the NCA of each follower and the new leader. (The NCA point up to which followers
have copied their state is maintained in the consumer and subgoal structures.) Unlike CAT which
tries to share the trail, heap, and local stack segments it copies [6], in Mercury we have not (yet)
implemented a mechanism to share the copied stack segments.Note, however, that the space problem
is not as severe in Mercury as it is in CAT, because in Mercury there is no trail and no information
from the heap is ever copied, which means that heap segments for consumers are naturally “shared”.

On failing back to a generator which is a leader, scheduling of answers to all its followers will take
place, as described below. When the scheduling component gets completed, execution will continue
with the immediately older scheduling component whose leader will then become the current leader.

5.5 Resumption of consumers and completion

The main body of thecompletion primitive consists of three nested loops: over all subgoalsin
the current scheduling componentS, over all consumers of these subgoals, and over all answers
to be returned to those consumers. The code in the body of the nested loop arranges for the next
unconsumed answer to be returned to a consumer of a subgoal inS. It does this by restoring the
stack segments saved by thesuspend primitive, putting the address of the relevant answer block
into the abstract machine register assigned to the return value of suspend, restoring the other saved
abstract machine registers, and branching to the return address stored insuspend’s stack frame. Each
consumer resumption thus simulates a return from the call tosuspend.

Since restoring the stack segments from saved states of consumers clobbers the state of the gen-
erator that does the restoring (the leader ofS), thecompletion primitive first saves the leader’s own
state, which consists of saving the nondet stack down to the oldest NCA of the leader generator and
any of the consumers it schedules, and saving the det stack tothe point indicated by this nondet frame.

13

Resumption of a consumer essentially restores the saved branch of the SLD search tree, but restor-
ing its saved stack segmentsintact is not a good idea. The reason is that leaving theredoip slots of
the restored nondet stack frames unchanged resumes not justthe saved branch of the SLD search
tree, but also the departure points of all the branches goingoff to its right. Those branches have been
explored immediately after the suspension of the consumer,because suspension involves simulating
the failure of the consumer, thus initiating backtracking.When we resume the consumer to consume
an answer, we do not want to explore the exact same alternatives again, since this could lead to an
arbitrary slowdown. We therefore replace all theredoips in saved nondet stack segments to make
them point to the failure handler in the runtime system. Thiseffectively cuts off the right branches,
making them fail immediately. Given the choice between doing this pruning once when the consumer
is suspended or once for each time the consumer is resumed, weobviously choose the former.

This pruning means that when we restore the saved state of a consumer, only the success con-
tinuations are left intact, and thus the only saved stack frames the restored SLD branch can access
are those of the consumer’s ancestors. Any stack frames thatare not the consumer’s ancestors have
effectively been saved and restored in vain. The advantage of this approach is that the code to save and
restore stack segments is quite fast (has a low constant factor). In addition, the direct correspondence
between the original and saved stack copies makes the code ofthe pruning operation much easier to
write compared to an approach that would try to remove those unnecessary frames. For the programs
we have looked at so far, our approach looks to be the right tradeoff.

When a resumed consumer has consumed all the currently available answers, it fails out of the
restored segment of the nondet stack. We arrange to get control when this happens by setting the
redoip of the very oldest frame of the restored segment to point to the code of thecompletion
primitive. Whencompletion is re-entered in this way, it needs to know that the three-level nested
loop has already started and how far it has gone. We thereforestore the state of the nested loop in a
global record. When this state indicates that we have returned all answers to all consumers of subgoals
in S, we have reached a fixed point. At this time, we mark all subgoals inS ascompleteand we reclaim
the saved states of all their consumers and generators.

5.6 Existential quantification

Mercury supports existential quantification. This construct is usually used to check whether a compo-
nent of a data structure possesses a specific property as in the code fragment below:

(if some [Element] (member(Element, List), test(Element)) then . . . else . . .)

It is typically the case that the code inside the quantification’s scope may have more than one solution,
but the code outside the quantification only wants to check whether a solutionexistswithout caring
about the number of solutions or their bindings. One can thusconvert a goal that can succeed more
than once into one that can succeed at most once by existentially quantifying all its output variables.

Mercury implements quantifications of that form using what we call acommitoperation, which
some Prologs call aonceoperation. The operation savesmaxfr when it enters the goal and restores
it afterward, throwing away all the stack frames that have been pushed onto the nondet stack in the
meantime. The interaction with minimal model tabling arises from the fact that the discarded stack
frames can include the stack frame of a generator. If this happens, the commit removes all possibility of
the generator being backtracked into ever again, which in turn may prevent the generation of answers
and completion of the corresponding subgoal. Without special care, all later calls of that subgoal will
become consumers who will wait forever for the generator to schedule the return of their answers.

14

To handle such situations, we introduce of a new stack which we call thecut stack. This stack
always has one entry for each currently active existentially quantified goal; new entries are pushed
onto it when such a goal is entered and popped when that goal either succeeds or fails. Each entry
contains a pointer to a list of generators. Whenever a generator is created, it is added to the list in the
entry on the current top of the cut stack. When the goal insidethe commit succeeds, the code that
pops the cut stack entry checks its list of generators. For all generators whose status is notcomplete,
we erase all trace of their existence and reset the call tablenode that points to the generator’s subgoal
structure back to a null pointer. This allows later calls to that subgoal to become new generators.

If the goal inside the commit fails, the failure may have beendue to the simulated failure of a
consumer inside that goal. When the state of the consumer is restored, it may well succeed, which
means that any decision the program may have taken based on the initial failure of the goal may be
incorrect. When the goal inside the commit fails, we therefore check whether any of the generators
listed in the cut stack entry about to be popped off have a status other thancomplete. Any such
generator must have consumers whose failure may not be final,so we throw an exception in preference
to computing incorrect results. Note that this can happen only when the leader of the incomplete
generator’s scheduling component is outside the existential quantification.

5.7 Possibly negated contexts and aggregates

The interaction of tabling with cuts and Prolog-style negation is notoriously tricky. Many implemen-
tation papers on tabling ignore the issue altogether, considering only the definite subset of Prolog.
An implementation of tabling for Mercury cannot duck the issue. Typical Mercury programs rely
extensively on if-then-elses, and if-then-elses involve negation: “if C then T else E” is semanti-
cally equivalent to(C ∧ T) ∨ (¬∃C ∧ E). Of course, operationally the condition is executed only
once. The conditionC is a possibly negated context: it is negated only if it has no solutions. Mer-
cury implements if-then-else using asoft cut: if the condition succeeds, it cuts away the possibility of
backtracking to the else part only.

If C fails, execution should continue at the else part of the if-then-else. This poses a problem for
our implementation of tabling, because the failure of the condition does not necessarily imply that
C has no solution: it may also be due to the suspension of a consumer called (directly or indirectly)
somewhere insideC as in the code below.

p(. . .) :- tg(. . .), (if (. . ., tc(. . .), . . .) then . . . else . . .), . . .

If tc suspends and is later resumed to consume an answer, the condition may evaluate to true. However,
by then the damage will have been done, because we will have executed the code in theelse part.

We have not yet implemented a mechanism that will let us compute the correct answer in such
cases, because any such mechanism would need the ability to transfer the “generator-ship” of the
relevant subgoal from the generator oft to its consumer. However, wehaveimplemented a mechanism
that guarantees that incorrect answers will not be computed. This mechanism is thepossibly-negated-
context stack, or pneg stackfor short. We push an entry onto this stack when entering a possibly
negated context such as the condition of an if-then-else. The entry contains a pointer to a list of
consumers, which is initially empty. When creating a consumer, we link the consumer into the list
of the top entry on the pneg stack. When we enter the else part of the if-then-else, we search this
list looking for consumers that are suspended. Since suspension simulates failure without necessarily
implying the absence of further solutions, we throw an exception if the search finds such a consumer.
If not, we simply pop the entry of the pneg stack. We also perform the pop on entry to the then

15

part of the if-then-else. Since in that case there is no risk of committing to the wrong branch of the
if-then-else, we do so without looking at the popped entry.

There are two other Mercury constructs that can compute wrong answers if the failure of a goal
does not imply the absence of solutions for it. The first is negation. We handle negation as a special
case of if-then-else:¬G is equivalent to “if G then fail else true”. The other is the generic all-
solutions primitivebuiltin_aggregate, which serves as the basic building block for all the user-
visible all-solutions predicates, such assolutions/2. builtin_aggregate itself is implemented as
an impure Mercury predicate based on the idea of the failure-driven loop shown in Fig. 7(a).

builtin aggregate(P, . . ., Answers) :-

impure 〈setup code〉
(

P(Answer),

impure 〈record Answer〉
fail

;

impure 〈pickup all Answers〉
).

(a) In non minimal model grades

builtin aggregate(P, . . ., Answers) :-

impure 〈setup code〉
impure 〈push pneg stack entry〉 %(1)

(P(Answer),

impure 〈record Answer〉
fail

; impure 〈check for suspensions, pop pneg stack〉 %(2)

impure 〈pickup all Answers〉
).

(b) In minimal model grades

Fig. 7. Implementation of aggregates without and with support for minimal model tabling

To guard againstbuiltin_aggregatemistaking the failure ofP due to a suspension somewhere
inside it as implying the absence of solutions toP, we treat its loop as the condition of an if-then-else.
We surround it with the code we normally insert at the start ofthe condition(1) and the start of the
else part(2) in Fig. 7(b). This gives all-solutions predicates the same protection as if-then-elses.

Entries on both the cut stack and the pneg stack contain a fieldthat points to the stack frame of
the procedure invocation that created them, which is of course also responsible for removing them.
When saving stack segments or extending saved stack segments, we save an entry on the cut stack or
the pneg stack if the nondet stack frame they refer to is in thesaved segment of the nondet stack.

6 Performance evaluation

We ran several benchmarks to measure the performance of Mercury with tabling support, but space
limitations allow presenting only some of them here; some more information appears in the appendix.

Overhead of the minimal model gradeWe compiled the Mercury compiler in two grades that differ
only in that one supports minimal model tabling. Enabling support for minimal tabling without using
it (the compiler has no minimal model predicates) increasesthe size of the compiler executable by
about 5%. On the standard benchmark task for the Mercury compiler, compiling six of its own largest
modules, moving to a minimal model grade slows the compiler down by about 25%. (For comparison,
enabling debugging leads to a 455% increase in code size and a135% increase in execution time.)
Our analysis shows that virtually all of this cost in both space and time is incurred by the extra code
we have to insert around possibly negated contexts; the extra code around commits and the larger size
of nondet stack frames have no measurable overheads. For details, see the appendix.

While a 25% hit on execution time may seem a lot, one must remember that a given amount of
overhead added to a fast system will result in a larger percentage slowdown than the same absolute
overhead added to a slower one. The performance results in [16] indicate that Mercury is faster than
other Prolog systems by integer factors, for real programs as well as benchmarks. Even with this 25%
overhead, Mercury is still much faster than any current Prolog system.

16

Table 1.Times (in secs) to execute various versions of transitive closure and same generation

chain cycle
bench size query iter XSB XXX Merc XSB XXX Merc

tc lr 2000 +- 200 0.24 0.20 0.22 0.23 0.19 0.27
tc lr 4000 +- 200 0.50 0.40 0.58 0.50 0.40 0.55
tc lr 8000 +- 200 1.02 0.83 1.25 1.01 0.85 1.19
tc lr 16000 +- 200 2.04 1.73 2.11 2.08 1.66 2.30
tc lr 32000 +- 200 4.18 3.59 4.97 4.20 3.57 5.07
tc lr 64000 +- 200 8.60 7.30 9.15 8.78 7.44 9.34
tc lr 2000 -- 1 2.18 2.04 2.93 5.00 4.83 5.63
tc rr 2000 -- 1 1.71 1.46 9.33 5.31 5.23 25.22

bench size query iter XSB XXX Merc

sg 24 × 24 × 2 +- 10 14.34 8.60 5.64
sg 24 × 24 × 2 -- 10 41.51 24.01 15.96

Comparison against other implementations of tabling We compare the minimal model grade of
Mercury rotd-09-05-2005 (based on CAT) against XSB 2.7.1 (based on the SLG-WAM) and the XXX
system (derived from XSB but based on CHAT).4 Mercury’s scheduling strategy isbatched-like, while
the other two systems uselocal scheduling[13] by default. All benchmarks were run on a 2.4 GHz
P4-based laptop with 512 Mb of memory running Linux. Times inTable 1 were obtained by running
the benchmark at least eight times, discarding the lowest and highest values, and averaging the rest.

The first set of benchmarks consists of left- and right-recursive versions of transitive closure. In
each case, the edge relation is a chain or a cycle. In a chain ofsizen, there aren − 1 edges of the
form k → k + 1 for 0 ≤ k < n; in a cycle of sizen, there is also an edgen → 0. We use two
query forms: the query with the first argument input and the second output (+-) and the open query
with both arguments output (--). The number of solutions is linear in the size of the data forthe+-
query and quadratic for--. Each entry in Table 1 shows how long it takes for a given system to run the
specified query on the specified data iter times. Each system uses a failure driven loop or its equivalent
to generate all answers of the query. The tables are reset between iterations.

The six rows for the+- query on left recursive transitive closure show the runtimes of all three
systems to be linear in the size of the data, which is as expected. Also, on left recursion, regardless
of query, all three systems are pretty much on the same performance ballpark. On right recursion,
Mercury is slower than the other two systems due to saving andrestoring stack segments of consumers,
and having to do so more times due to its different schedulingstrategy.

In some sense, it is unfortunate that not all systems implement the same scheduling strategy.
However, local evaluation (i.e., postponing the return of answers to the generator until the subgoal is
complete) is not compatible with the pruning that Mercury’sexecution model requires in existential
and possibly negated contexts, constructs not properly handled in Prolog systems with tabling.

On the same generation (sg) benchmark where consumer suspensions are not created (variant sub-
goals are only encountered when the subgoals are completed), Mercury is clearly the fastest system.

It is very difficult to draw general conclusions from these synthetic tabled benchmarks (also notice
they are all Datalog programs), but the following observations can safely be made:

1. Mercury has opted to pay a cost for suspension/resumptionto avoid penalizing non-tabled execu-
tion;

2. Mercury can be a lot faster that other tabled Prolog systems in programs where only few consumer
suspensions are encountered;

3. How faster Mercury is onreal tabled programs depends to a great extent on the number of con-
sumer suspensions and on employing a scheduling strategy that can avoid some of them.

4 We also wanted to include Yap in the comparison, but in running the benchmarks with Yap 4.4.4, we experienced some
problems we do not yet understand. We expect that we will include Yap numbers in the final version of the paper.

17

We intend to explore the latter issue as future work.

7 Concluding remarks

Adapting the implementation of minimal model tabling to Mercury has been a challenge because
the Mercury abstract machine is very different from the WAM.We have based our implementation on
CAT because it is the only recomputation-free approach to tabling that does not make assumptions that
are invalid in Mercury. However, even CAT required significant modifications to work properly with
Mercury’s stack organization, its mechanisms for managingvariable bindings, and its type-specific
data representations. We have described all these in this paper as well as describing two new mecha-
nisms, the cut and the pneg stack, which allow for safe interaction of tabling with language constructs
such as if-then-else and existential quantification. Finally, note that Mercury also provides new oppor-
tunities for optimization of tabled programs. For example,the strong mode system greatly simplifies
variant checking and the type system allows for a type-tailored design of tabling data structures.

In keeping with Mercury’s orientation towards industrial-scale systems, our design objective was
maximum performance on large programs containing some tabled predicates, not maximum perfor-
mance on the tabled predicates themselves. The distinctionmatters, because it requires us to make
choices that minimize the impact of tabling on non-tabled predicates even when these choices slow
down tabled execution. We have been broadly successful in achieving this objective. Since supporting
minimal model tabling is optional, programs that do not use it are not affected at all. Even in programs
that do use tabling, non-tabled predicates only pay the costof one new mechanism: the one ensuring
the safety of interactions between minimal model tabling and negation. Even with this cost, Mercury
is much faster than any Prolog implementation that supportstabling.

The results on microbenchmarks focusing on the performanceof minimal model tabled predicates
themselves show Mercury to be quite competitive with existing tabling systems. It is faster on some
benchmarks, slower on some others, and quite similar on the rest, even though Mercury currently lacks
some obvious optimizations, such as sharing stack segment extensions among consumers. How the
system behaves on real tabled applications, written in Mercury rather than Prolog, remains to be seen.
But one should not underestimate neither the difficulty nor the importance of adding proper tabling to
a high-performance LP system and the power that this brings to the system.5

Acknowledgements We thank Bart Demoen for discussions on the copying approachto tabling for
Mercury at the start of this work, Oliver Hutchinson for his work on the infrastructure of tabling
in Mercury, and Michael Day for the original version of the program in Fig. 6. The research of the
first author has been partially supported by the Australian Research Council and by Microsoft. The
research of the second author has been partially supported by the Swedish Research Council.

References

1. R. Becket, M. Garcia de la Banda, P. Stuckey, K. Marriott, M. Wallace, and Z. Somogyi. Adding constraint solving to
Mercury. Submitted to ICLP 2005, May 2005.

2. H. Boehm and M. Weiser. Garbage collection in an uncooperative environment.Software Practice and Experience,
18:807–820, 1988.

3. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.J. ACM, 43(1):20–74, Jan.
1996.

5 The system we have described is available in the next Mercuryrelease (0.12) as well as in recent releases-of-the day
from the Mercury web site.

18

4. M. Codish, B. Demoen, and K. Sagonas. Semantics-based program analysis for logic-based languages using XSB.
Springer International Journal of Software Tools for Technology Transfer, 2(1):29–45, Nov. 1998.

5. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practicalprogram analysis using general purpose logic program-
ming systems — a case study. InProceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 117–126. ACM Press, May 1996.

6. B. Demoen and K. Sagonas. CAT: the Copying Approach to Tabling. J. of Functional and Logic Program., Nov. 1999.
7. T. Dowd, Z. Somogyi, F. Henderson, T. Conway, and D. Jeffery. Run time type information in Mercury. InProceedings

of the International Conference on Principles and Practiceof Declarative Programming, pages 224–243, Sept. 1999.
8. H.-F. Guo and G. Gupta. A simple scheme for implementing tabled logic programming systems based on dynamic

reordering of alternatives. In P. Codognet, editor,Proceedings of the 17th International Conference on Logic Program-
ming, number 2237 in LNCS, pages 181–196. Springer, Nov./Dec. 2001.

9. F. Henderson, T. Conway, Z. Somogyi, and D. Jeffery. The Mercury language reference manual. Technical Report
96/10, Department of Computer Science, University of Melbourne, Melbourne, Australia, 1996.

10. F. Henderson and Z. Somogyi. Compiling Mercury to high-level C code. In N. Horspool, editor,Proceedings of the
2002 International Conference on Compiler Construction, Grenoble, France, Apr. 2002. Springer-Verlag.

11. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift, and D. S. Warren. Efficient
model checking using tabled resolution. In O. Grumberg, editor, Proceedings of the 9th International Conference on
Computer-Aided Verification, volume 1254 ofLNCS, pages 143–154. Springer, July 1997.

12. R. Rocha, F. Silva, and V. Santos Costa. On applying or-parallelism and tabling to logic programs.Theory and Practice
of Logic Program., 5(1 & 2):161–205, Jan. 2005.

13. K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order stratified logic programs.ACM Trans.
Prog. Lang. Syst., 20(3):586–634, May 1998.

14. K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database engine. InProceedings of the ACM
SIGMOD International Conference on the Management of Data, pages 442–453. ACM Press, May 1994.

15. T. Sato and Y. Kameya. Statistical abduction with tabulation. In A. C. Kakas and F. Sadri, editors,Computational
Logic: Logic Programming and Beyond, volume 2408 ofLNCS, pages 567–587. Springer, 2002.

16. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an efficient purely declarative logic
programming language.J. of Logic Program., 26(1–3):17–64, Oct./Dec. 1996.

17. H. Tamaki and T. Sato. OLD resolution with Tabulation. InE. Shapiro, editor,Proceedings of the Third International
Conference on Logic Programming, number 225 in LNCS, pages 84–98. Springer-Verlag, July 1986.

18. D. H. D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI International, Menlo Park, California,
Oct. 1983.

19. N.-F. Zhou, Y.-D. Shen, L.-Y. Yuan, and J.-H. You. Implementation of a linear tabling mechanism.J. of Functional
and Logic Program., 2001(10), 2001.

A More information on the benchmarks

When the paper is published, the information in this appendix will be available from the Mercury web
site, from a link right next to the link to this paper.

This set of benchmarks attempts to analyze the source of the difference between the performance
of theasm_fast.gc andasm_fast.gc.mm grades. Each block in Table 2 identifies the parameters
with which the given version of the Mercury compiler was built. The final number gives the time (in
seconds) it took that version of the compiler to compile six files, which happen to be six of the largest
modules of the compiler itself, totalling 34,426 lines of code. This time was obtained by getting each
tested version of the compiler to compile those six files twelve times, discarding the highest and lowest
times, and averaging the other ten times.

The unmodifiedasm_fast.gc configuration is listed as version 1, while the unmodified
asm_fast.gc.mm configuration is version 7. The other five versions are in between: they have some
of the extra overheads incurred by theasm_fast.gc.mm version, but not all of them. We therefore
expect version 1 to be the fastest and version 7 to be the slowest. That this is not so is due to cache ef-
fects, which make it possible for a version of a program that executes a strict subset of the instructions
executed by another version of the program to nevertheless take more time to run.

19

Table 2.The Mercury compiler compiled and run in different configurations: performance results

How obtained Size of executable Time

1
EXTRA MCFLAGS =

EXTRA CFLAGS =

GRADE = asm fast.gc

8,928,116 49.41

2
EXTRA MCFLAGS =

EXTRA CFLAGS = -DMR USE MINIMAL MODEL STACK COPY EXTRA SLOT

GRADE = asm fast.gc

8,928,724 48.53

3
EXTRA MCFLAGS = --no-allow-hijacks

EXTRA CFLAGS =

GRADE = asm fast.gc

8,924,020 48.62

4
EXTRA MCFLAGS = --disable-mm-pneg

EXTRA CFLAGS =

GRADE = asm fast.gc.mm

8,940,648 48.69

5
EXTRA MCFLAGS = --disable-mm-cut

EXTRA CFLAGS =

GRADE = asm fast.gc.mm

9,338,248 62.56

6
EXTRA MCFLAGS = --disable-mm-pneg --disable-mm-cut

EXTRA CFLAGS =

GRADE = asm fast.gc.mm

8,936,552 48.83

7
EXTRA MCFLAGS =

EXTRA CFLAGS =

GRADE = asm fast.gc.mm

9,342,344 61.95

Version 2 differs from version 1 in making each frame on the nondet stack contain an extra slot,
which is filled in from the current value of the det stack pointer. This does not add any measurable
overhead (in fact it gets a speedup).

Version 3 differs from version 1 in not allowing the compilerto employ the optimization of using
theredoip slot of a nondet stack frame to record the current state of several nested disjunctions; in
version 3, every disjunction, even nested ones, will have a temporary nondet stack frame created for
it. Minimal model tabling needs this to happen because it needs to see the state of every disjunction
in the redoip slot of some frame on the nondet stack to allow it clobber thatstate when pruning
right branches of the SLD tree. In the presence of the optimization, this is not possible. Disabling the
optimization does not add any measurable overhead (in fact it gets a speedup).

Version 4 is in theasm_fast.gc.mm grade, but differs from version 7 in not generating code for
pushing entries on the nondet stack when entering possibly negated contexts and popping them off
and inspecting them when leaving such contexts. This gets a huge savings compared to version 7,
and does not add any measurable overhead compared to version1 (in fact it is slightly faster than
version 1). This proves that pretty much all of the overhead of minimal model tabling for this program
(the Mercury compiler) is in the handling of pneg contexts.

Version 5 is also in theasm_fast.gc.mm grade, but differs from version 7 in not generating
code for pushing entries on the cut stack when entering commit contexts and popping them off and
inspecting them when leaving such contexts. This does not get any saving to version 7 (in fact it is
slightly slower).

Version 6 is also in theasm_fast.gc.mm grade, but differs from version 7 in missing both the
code dealing with pneg contexts and the code dealing with commit contexts. The result is essentially
identical to version 4, which shows that commit contexts have no measurable impact on performance.

The story is similar with respect to executable size. Theasm_fast.gc.mm version of the compiler
(version 7) is 414 Kb larger than theasm_fast.gc version (version 1). Of this increase, only about
12 Kb remains in version 4, which shows that all the rest is dueto the code surrounding possibly
negated contexts.

20

