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Abstract. Prolog systems such as XSB have proven that tabling can ke laglpful in a variety of tasks,
especially if it is efficiently implemented and fully integed in the language. Implementing tabling in Mer-
cury poses special challenges for several reasons. Figstuvy is both semantically and culturally quite
different from Prolog. While decreeing that tabled pretisamust not include cuts (or Prolog-style nega-
tions) is acceptable in a Prolog system, it is not acceptabMercury, since if-then-elses and existential
guantification have sound semantics and are used very frdgumth by programmers and by the com-
piler. The Mercury implementation thus has no option butaodie interactions of tabling with Mercury’s
language features safely. Second, the Mercury implemientetvastly different from the WAM, and many
of the differences (e.g. storing values directly in stadtsslvithout indirection, the absence of a trail) have
significant impact on the implementation of tabling. In théper, we describe how we adapted the copying
approach to tabling to implement minimal model tabling inrey.

1 Introduction

By now, it is widely recognized that tabling adds power togidgprogramming system. By avoiding
repeated subcomputations, it often significantly impratesperformance of applications, and by ter-
minating more often it allows for a more natural and decleeastyle of programming. It is therefore
not a fluke that tabling has so far been used for a variety &Steenging from program analysis via
abstract interpretation [4, 5] to model checking [11], téag via statistical abduction [15] and various
other forms of non-monotonic reasoning. All these applicet would have been significantly more
difficult to program without tabling.

When deciding which tabling mechanism to adopt, an impldoraa faced with various choices.
The first one concerns the resolution strategy. Tablingluéea strategies which adénear, such as
SLDT [19] and DRA [8], are relatively easy to implement, buty are also relatively ad hoc and often
perform recomputation. On the other hapohpertabled resolution strategies, such as OLDT [17] and
SLG [3], avoid recomputation, but their implementationiggwficantly more challenging because they
require the introduction of a suspension/resumption m@shainto the basic execution engine.

In the framework of the WAM [18], there are two main technigu® implement suspen-
sion/resumption. The one employed both in XSB [14] and in &}, that of the SLG-WAM [13],
implements suspension viiack freezingand resumption using an extended trail mechanism called
forward trail. The SLG-WAM mechanism relies heavily on features speatfithe WAM, and im-
poses a small but non-negligible overheadatimprograms, not just the ones which use tabling. The
other main mechanism, CAT (the Copying Approach to Tabl8jyj completely avoids this overhead;
it leaves the WAM stacks unchanged and implements susperesamption by incrementally sav-
ing and restoring the WAM areas that proper tabling exeautieeds to preserve in order to avoid
recomputation.

For Mercury, we chose to base tabling on SLG resolution lyphdcause when we started this
work (eight years ago) linear tabling resolution strategl& not exist, but more importantly because
we wanted to make the Mercury tabling mechanism premiumitgualb matter how much imple-
mentation effort this required. We decided to restrict timplementation to the subset of SLG that



handles stratified programs (i.e., we computerttieimal modebf these programs). As implementa-
tion platform we chose CAT. The main reason for this choideeisause the alternatives conflict with
basic assumptions of the Mercury implementation. For exaniercury has no trail to freeze, let
alone a forward one; also freezing the stadk SLG-WAM breaks Mercury’s invariant that a call to a
predicate which can succeed at most once leaves the stalcangex. Simply put, CAT is the tabling
mechanism requiring the fewest, most isolated changestdtrcury implementation. This has the
additional benefit that it allows us to set up the system tammie the impact of tabling on the per-
formance of programs and program components that do noabBeg. This is in line with Mercury’s
general philosophy of “no distributed fat”, which requithat, if possible, programs should not pay
(in performance) for features they do not use.

Contributions The contributions of this paper are as follows:

— We fully describe the implementation of minimal model taglin Mercury, a language which is
strongly typed and moded, and describe the additional agdiions that can be performed when
tabling is introduced in such an environment.

— As a by-product, we adapt the CAT mechanism to a differentiémpntation technology, one
which is closer to the execution model of conventional laggs than the WAM.

— We mention how we ensure the safety of tabling’s interastiatith Mercury’s if-then-else and
existential quantification, constructs that would reqtiire use of cut in Prolog.

Overview To make the paper self-contained, the next two sectiongiyorieview the Mercury lan-
guage and its implementation, respectively. Section 4 stbe/various forms of tabling in Mercury,
followed by the paper’s main sectiofi%) which fully describes the implementation of minimal mbde
tabling and the technical issues that needed to be addre&dmief performance comparison with
other Prolog systems with tabling appearg i, and the paper ends with some concluding remarks.

2 The Mercury language: Capsule description

Mercury is a pure logic programming language intended ferdieation of large, fast, reliable pro-
grams. While the syntax of Mercury is based on the syntax obBr semantically the two languages
are very different due to Mercury’s purity, its type, modetetminism and module systems, and its
support for evaluable functions.

Mercury has a strong Hindley-Milner type system very simiteHaskell's. Mercury programs are
statically typed; the compiler knows the type of every argaiof every predicate (from declarations
or inference) and every local variable (from inference).

The mode system classifies each argument of each predicatthasinput or output; there are
exceptions, but they are not relevant to this paper. If infhe argument passed by the caller must
be a ground term. If output, the argument passed by the callst be a distinct free variable, which
the predicate or function will instantiate to a ground teftnis possible for a predicate or func-
tion to have more than one mode; the usual exampkepisnd, which has two principal modes:
append(in,in,out) andappend(out,out,in). We call each mode of a predicate or function a
procedure The Mercury compiler generates different code for diffiéngrocedures, even if they rep-
resent different modes of the same predicate or function.rmbde checking pass of the compiler is
responsible for reordering conjuncts as necessary to erisat for each variable the goal that gen-
erates the value of the variable comes before all goals #®this value. This means that for each
variable in each procedure, the compiler knows exactly wvatomic goal (call or unification) in that
procedure makes that variable ground.



Each procedure has a determinism, which puts limits on tmaben of its possible solutions.
Procedures with determinisifet succeed exactly oncegmidetprocedures succeed at most once;
multi procedures succeed at least once; whiladetprocedures may succeed any number of times.

A complete description of Mercury can be found in the languagference manual [9].

3 The Mercury implementation

The front end of the Mercury compiler performs type checkimpde checking and determinism
analysis. Programs without any errors are then subjecioigram analyses and transformations (such
as the one being presented in Sect. 5) before being passecdratkend for code generation.

The Mercury compiler has several backends. The origindtdrat[16] generates very low level C
code; its output is essentially assembly code in C syntagddrbility. Newer backends [10] generate
higher level code that can be translated to Java or the iegiate language of Microsoft's .NET
platform. So far, tabling is implemented only for the origlinow level backend, because it is the only
one that allows us to explicitly manipulate stacks (see.$e8j. The following is a brief introduction
to the parts of this backend relevant to this paper.

The abstract machine targeted by the low level backend hae thain data areas: a heap and
two stacks. In the absence of a native Mercury garbage totleébe heap is managed by the Boehm-
Demers-Weiser conservative garbage collector for C [2jc&ithis collector was not designed for
logic programming systems, it has no notion of backtrackamgl does not support any mechanism to
deallocate all the memory blocks allocated since a speaifitt n time. Unlike Prolog, Mercury thus
cannot recover memory by backtracking and must recovetiafladed blocks via garbage collection.

The two stacks of the Mercury abstract machine are calledeéhstackand thenondet stackin
most programs, most procedures can succeed at most onsen&ans that one cannot backtrack into
a call to such a procedure after the procedure has succeanitdherefore there is no need to keep
around the arguments and local variables of the call afeirttial success (or failure, for semidet
procedures). Mercury therefore puts the stack frames df puacedures on the det stack, which is
managed exactly like the stacks of conventional imperdéimguages, i.e. in strict LIFO fashion.

Procedures that can succeed more than once have their istaetsfallocated on the nondet stack,
from which stack frames are removed only when procedurésSaice the stack frames of such
calls stick around when the call succeeds, the nondet staustia true LIFO stack; it is more like a
spaghetti stack. Given aclaugé...) :- q(...), r(...), s(...), wherep, g andr are all nondet
or multi, the stack will contain the frames pfq andr in order just after the call te. After r succeeds
and control returns tp, the frames of the calls t9 andr are still on the stack. The Mercury abstract
machine thus has two registers to point to the nondet stackfr always points to the top frame,
while curfr points to the frame of the currently executing call. (If therently executing call uses
the det stack, theaurfr points to the frame of its most recent ancestor that usesathéeat stack.)

There are two kinds of frames on the nondet stackinary andtemporary An ordinary frame
is allocated for a procedure that can succeed more than oacegyhose determinism is nondet or
multi. Such a frame is equivalent to the combination of achgioint and an environment in a Prolog
implementation based on the WAM [18]. Ordinary nondet stiraknes have five fixed slots and a
variable number of other slots. The other slots hold the eslof the variables of the procedure,
including its arguments; these are accessed via offsetsdtafr. The fixed slots are the following:

previr The previous frame slot points to the stack frame immedidtelow this one. (Both Mercury
stacks grow toward higher addresses.) The difference leetie address of a nondet stack frame
and the address in ifgrevfr slot is the size of that frame.
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redoip The redo instruction pointer slot contains the address @firtstruction to which control
should be transferred when backtracking into (or withimg tall.

redofr The redo frame pointer slot contains the address that sHmilassigned teurfr when
backtracking jumps to the address in teloip slot.

succip The success instruction pointer slot contains the addfgé® dnstruction to which control
should be transferred when the call that owns this stackdrsmeceeds.

succfr The success frame pointer slot contains the address ofdbk ame that should be as-
signed tocurfr when the call owning this stack frame succeeds; this willHeestack frame of
its caller.

The redoip and redofr slots together constitute the failure continuation, witile succip and
succfr slots together constitute the success continuation.
In the example above, botis andr’s stack frames have the addressp&f stack frame in their
succfr slots, while theirsuccip slots point to the instructions imafter their respective calls.
Suppose the definition efis as in the program below.

:- pred q(int::in, int::out) is multi.
q(a, ).

q(A, A+1).

q(a, A+2).

The compiler will convert this multi-clause definition indodisjunction. Throughout the execution of
q, theredofr slot of g's stack frame will point tay’s stack frame. When control entefstheredoip

slot will contain the address of the first instruction in thiementation of the second disjunct. When
control enters the second disjunct, theloip slot will be updated to contain the address of the first
instruction of the third disjunct. When control enters thied disjunct, theredoip slot will be updated

to contain the address of the failure handler in the Mercuntime system. This code removes the
top frame from the nondet stack, setsrfr from the value in theredofr slot of the frame that is
now on top, and jumps to the instruction pointed to byri#doip slot.

This system can handle predicates whose bodies have anyenwifntisjunctions as long as those
disjunctions are properly nested, like in Fig. 1(a). Howeiteeannot handle non-nested disjunctions,
because oneedoip slot cannot store the state of more than one non-nesteddigjn. Non-nested
disjunctions are implemented using temporary nondet dtaokes, which have onlyrevfr, redoip
andredofr slots. When control enters the first disjunct of the secosflidction ins (Fig. 1(b)), the
nondet stack will contain these frames, in order:

1. The ordinary stack frame of this call $p whoseredoip records the next alternative in the first
disjunction.

2. The ordinary stack frame of this call to
3. Any other nondet stack frames left by the calkto
4. The temporary stack frame whasedoip records the next alternative #'s second disjunction.
:- pred p(int::in, int::out) is multi. :- pred s(int::in, int::out) is multi.
p(A, 4). s(A, Q) :-
p(a, 0) :- (B=A;B=A+1),
q(4, B), r(B, 0,
(0=B;0=B+1). (0=C;0=C=x*2).
(a) Disjunctions are properly nested (b) Disjunctions are not properly nested

Fig. 1. Mercury programs with nested disjunctions



A given call to a procedure that lives on the nondet stack evdhte exactly one ordinary frame
and zero or more temporary frames on the nondet stackr&heip slots of these frames will all
point either to the failure handler in the Mercury runtimestsyn, or to an instruction in the code of
the procedure itself. Theedofr slots of these frames will all point to the ordinary frametué call,
which contains all the call's variables, for use by the codeéoip points to.

The stack slot assigned to a variable will contain garbaderéehe variable is generated. Af-
terward, it will contain the value of the variable, which miag an atomic value such as an integer
or a pointer to the heap. Since the compiler knows the staitestdntiation of every visible variable
at every program point, the code it generates will never labktack slots containing garbage. This
means that backtracking does not have to reset variablesbmund, which in turn means that the
Mercury implementation does not need a trail.

4 Tabling in Mercury

In all existing tabling systems, some predicates are daggnatabledby means of a declaration and
use tabled resolution for their evaluation; all other pratBs araon-tabledand are evaluated using
SLD. Mercury also follows this scheme, but it supports thild&erent forms of tabled evaluation:
memoization (automatic caching), loop checking, and mahimodel evaluation.

For predicates that can succeed at most once (i.e. whogenitd@tem is det or semidet), the effect
of tabling is similar to memoization in functional languagevhen used judiciously, it can increase
performance. The idea is to remember the first invocatioradfeall (henceforth referred to agen-
erator) and its computed result in tables (icall and aranswer tableespectively), so that subsequent
identical calls (referred to as ttmnsumerscan use the remembered answer without repeating the
computation. Mercury supports this form of tabling thoulgé tpragma memo’ declaration; Fig. 2(a)
shows one such example.

Another use of tabling is foloop detection see e.g. Fig. 2(b). If a predicate with‘@ragma
loop_check’ declaration makes a recursive call to itself with identicgdut arguments, execution
will throw an exception with a message about the infinite ldogplementing both loop checking and
memoization is relatively straightforward and is done vgimplified variants of the transformation
we present in Sect. 5. The challenge they pose is the desigffi@ént data structures for the tables.
Due to space limitations, we will not further describe thfssens of tabling in this paper.

The really interesting uses of tabling in (stratified) logicograms occur when one is inter-
ested in computing the answers of tabled predicate callsrdicg to theminimal modelseman-
tics. In Mercury, programmers can request this form of thl#ealuation for a predicate using the
‘pragma minimal model’ declaration. An example (for some appropriate definitioedye/2) is
the familiarpath predicate of Fig. 3.

Predicates witlhinimal model pragmas are required to satisfy two requirements not néymal
imposed on all Mercury predicates. The first requiremenhas the set of values computed by the

:— func mfib(int) = int. :— pred return(int::in) is semidet.
:— pragma memo(mfib/1). :— pragma loop_check(return/1).
mfib(N) = F :- return(X) :- noreturn(X).
(N<2->F-=1 return(42).
; F = mnfib(N-1) + mfib(N-2)
). no_return(X) :- return(X).
(a) Tabling purely for efficiency (b) Tabling purely for avoiding loops

Fig. 2. Two types of tabling fully implemented in Mercury but not iwer considered in this paper



:- pred path(int::in, int::out) is nondet.
:- pragma minimal_model(path/2).

path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), path(C, B).

Fig. 3. Transitive closure predicate in Mercury using minimal rmdeeling

predicate for its output arguments is completely deterchimethe values of the input arguments. This
means that the predicate must not do I/O; it must algoure i.e., free of side-effects such as updating
the value of a global variable through the foreign functiaterface. The second restriction is that
each argument of a minimal model predicate must be eithirifyput (ground at call and at return)
or fully output (free at call, ground at return). In other wsy partially instantiated arguments and
arguments of unknown instantiation (a mode system extensied for constraint programming [1])
are not allowed. How this restriction affects the implenagioh of minimal model tabling in Mercury
is discussed in the following section.

When a call to a minimal model predicate is made, a check maustdxle to see whether it exists
in the call table or not. In the terminology of SLG resolutif3], this takes place using theew
SUBGOAL operation. If the subgoal is new, it is entered in the table and this call, as the sufsgoal
generator, will USPROGRAM CLAUSE RESOLUTIONtO derive answers. The generator will use the
NEW ANSWERoOperation to record each answer it computes in a global tfaketgre called thanswer
tableof s. If, on the other hand, (a variant of)already exists in the table, this call is a consumer and
will resolve against answers from the subgoal’s answeetakhswers are fed to the consumer one at
a time through theNSWER RETURNOperation.

Because in general it cannot be knoepriori how many answers a minimal model tabled call
will get in its table, and because there can be mutual depeieiebetween (sets of) generators and
consumers, correctly computing the minimal model requires

1. a mechanism to retain (or reconstruct) and reactivatexkeution environments of consumers
until there are no more answers for them to consume, and

2. a mechanism for returning answers to consumers and dategmvhen the evaluation of a (gen-
erator) subgoal isompletei.e. when it has produced all its answers.

As mentioned, we chose the CAT suspension/resumption mechas the basis for Mercury’s min-
imal model tabling implementation. However, we had to adtaiot Mercury and extend it in order to
handle existential quantification and negated contextsamtanner described in the next section. For
completion, we chose thiacremental completioapproach followed by XSB. A subgoal can be de-
termined complete if all program clause resolution hastimisand all instances of this subgoal have
resolved against all derived answers. However, as therhtraidst dependencies between subgoals,
these have to be taken into account by maintaining and exagnfa conservative approximation of)
the subgoal dependency graph, finding a set of subgoalsépand only on each other, completing
them together, and then repeating the process until thenecsincomplete subgoals. We refer to these
sets of subgoals acheduling component$he generator of one of the subgoals in the component
(typically the oldest one) is called the componeidader.

5 The implementation of minimal model tabling in Mercury

First, we describe the implementation of minimal model estibn for the subset of Mercury without
if-then-else, negation or quantification; we will consitlense constructs later.
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5.1 The minimal model tabling transformation and tabling data structures

Mercury allows programmers to use impure constructs toémgint a pure interface, simply by mak-
ing a promise to this effect. The implementation of minimaidel tabling exploits this capability.
Given a pure predicate, like e.gpath/2, a compiler pass transforms its body by surrounding it with
impure and semipure code; see Fig. 4 (impure code may woteaghariables; semipure code may
only read them). Since the transformed code implementsdiree semantics as the original but is
more complete (e.g., it terminates even for queries for kvithe original body could loop forever),
the compiler promises that transformed code actually beshas a pure goal.

path(A, B) :-
promise_pure (
pickup_call_table_root_for_path_2(CallTableRoot),
impure lookup_insert_int(CallTableRoot, A, CallNodel),
impure subgoal_setup(CallNodel, Subgoal, Status),
( % switch on ‘Status’
Status = new,
(
impure mark_as_active(Subgoal),
% original body of path/2 in the two lines below
edge(A, C),
( C =B ; path(C, B) ),
semipure get_answer_table(Subgoal, AnswerTableRoot),
impure lookup_insert_int(AnswerTableRoot, B, AnswerNodel),
impure answer_is not_duplicate(AnswerNodel),
impure new_answer_block(Subgoal, 1, AnswerBlock),
impure save_answer (AnswerBlock, 0, B)

impure completion(Subgoal),
fail
)

Status = complete,
semipure return_all_answers(Subgoal, AnswerBlock),
semipure restore_answer (AnswerBlock, 0, B)

Status = active,
impure suspend(Subgoal, AnswerBlock),
semipure restore_answer (AnswerBlock, 0, B)

Fig. 4. The minimal model tabling program transformation illuséchon the predicate of Fig. 3

As mentioned, arguments of minimal model tabling must beeeifully input or fully output.
This considerably simplifies the implementation of calllésb SLG resolution considers two calls to
represent the same subgoal if theyemgants(i.e., are identical up to variable renaming). In Mercury,
this is the case if and only if the two calls have the same giderms in their input argument positions,
because the output arguments of a call are always distimietolas. Conceptually, the call table of a
predicate withn input arguments is a tree with+ 1 levels. Level contains only the root node. Each
node on levell corresponds to a value of the first input argument that thdigaee has been called
with; in general, each node on levelcorresponds to a combination of the values of the finstput
arguments that the predicate has been called with. Thusresdd on level uniquely identifies a
subgoal. We store all the information we have about eachaalligasubgoal structureWe reach the
subgoal structure of a given subgoal through a pointer irsthgoal’s leveh node in the call table.
The subgoal structure has several fields (cf. Fig. 5), whielwi discuss as we go along:

8 Although tabling modifies the state by updating globallyessible data structures (the tables), this is not an otislerva
side-effect as Mercury provides no table inspection bogtlike XSB'sget_calls andget_returns.
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7 (size, num_entries, etc) Trie Roo Subgoal Structure

Status

Answer List
Answer Table
Consumer List

root for p/

Cal | Tabl eRoot

Cal | Node2 Subgoal’'s Leader
Foll List
Cal | Nodel Hash Table (for values of In2 G(;nogironljet eI
Cal | Node3

NCA nondet Addr

Hash Table (for values of In1) Trie (for values of In3)

Fig. 5. Data structures created for the calls of predigate

— the subgoal’s statusmi€w, activeor completg

— the chronological list of the subgoal’s answers computefduso

— the root of the subgoal’s answer table

— the list of the consumers of this subgoal

— the leader of the clique of subgoals this subgoal belongs to

— if this subgoal is the leader, the list of its followers

— the address of the generator’s frame on the nondet stack

— the address of the nondet stack frame that is the youngess@mnof both this generator and all
its consumers; we call this the nearest common ancestor [NCA

The transformed body of a minimal model predicate startsookihg up the call table to see
whether this subgoal has been seen before or not. Given eaedeclared as:

:— pred p(int::in, string::in, int::out, tl::in, t2::out) is nondet.
:- pragma minimal _model(p/5).

p(Inl, In2, Outl, In3, Out2) :-

the minimal model tabling transformation inserts the feflog code at the start of its procedure body:

pickup_call_table_root_for_p_5(CallTableRoot),

impure lookup_insert_int(CallTableRoot, Inl, CallNodel),
impure lookup_insert_string(CallNodel, In2, CallNode2),
impure lookup_insert_user(CallNode2, In3, CallNode3),
impure subgoal_setup(CallNode3, Subgoal, Status)

CallTableRoot, CallNodel, CallNode2 andCallNode3 are all pointers to nodes in the call
tree at levels 0, 1, 2 and 3 respectively; see FigC&llTableRoot points to the global vari-
able generated by the Mercury compiler to serve as the rotieotcall table for this procedure.
This variable is initialized to NULL, indicating no child des yet. The first call tp/5 will cause
lookup_insert_int to create a hash table in which every entry is NULL, and makegtbbal vari-
able point to it1ookup_insert_int will then hashIni, create a new slot in the indicated bucket (we
currently use separate chaining to avoid fixed limits on thessof tables) and return the address of
the new slot a€allNodel. At later calls, the hash table will exist, and by then we mayehseen
the then current value dhn1 as well;lookup_insert_int will perform a lookup if we have and an
insertion if we have not. Either way, it will return the adsseof the slot selected [n1.

The process then gets repeated with the other input argsméEmé predicates being called are
different because Mercury uses different representationglifferent types. Unlike the WAM, the
Mercury runtime system cannot look at the first argument of@othetical generi@ookup_insert
predicate and say “that’s an integer” or “that’s a string§igen bit pattern can be an integer in one
call and a string in another. This affects how the hash taloksv we hash integers directly but we
hash the characters of a string, not its address.
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User-defined type&/alues of user-defined types consist of a function symboliegpo zero or more
arguments. In a strongly typed language such as Mercuryyfieeof a variable directly determines
the set of function symbols that variable can be bound to. ddta structure we use to represent a
function symbol from user-defined types is therefore a tfithe function symbol is a constant, we
are done. If it has arguments, theaokup_insert user processes them one by one the same way
we process the arguments of predicates, using the sloteglieg the function symbol to play the role
of the root. In this way, the path in the call table from thetrtma leaf node representing a given
subgoal has exactly one trie or hash table on it for eachifumsymbol in the input arguments of the
subgoal; their order is given by a preorder traversal ofétfaaction symbols.

Polymorphic typesThis scheme works for monomorphic predicates because latneale of the tree,
the type of the value at that node is fixed, and the type detersnine mechanism we use to table
values of that type (integer hash table, string hash tabflvat hash table for builtin types, a trie for
user-defined types). For polymorphic predicates (whoseatiges include type variables) the caller
passes extra arguments identifying the actual types bautitbse type variables [7]. We table these
arguments first; they have a fixed type whose structure idagitoi that of terms of user-defined types.
Once we have followed the path from the root to the level oflgs of these arguments, we have
arrived at what is effectively the root of the table for a giveonomorphic instance of the predicate’s
signature, and we proceed as described above.

5.2 The tabling primitives

Thesubgoal _setup primitive ensures the presence of the subgoal’s subgaattate. If this is a new
subgoal, thergallNode3 will point to a table node containing NULL. In that casebgoal _setup
will allocate a new subgoal structure, initializing its élelto reflect the current situation, it will update
the table node pointed to b§allNode3 to point to this new structure, and will return this same
pointer asSubgoalVar. If this is not the first call to this procedure with these ihptguments, then
CallNode3 will point to a table node that contains a pointer to the pasly allocated subgoal
structure, s@ubgoal _setup Will just return this pointer.

subgoal_setup returns not jusBubgoalVar, but also the subgoal’s status. When first created,
the status of the subgoal is setrtew It becomesactivewhen a generator has started work on it and
becomegompleteonce it is determined that the generator has produced alhgwers.

What the transformed procedure body does next depends csubigmal’s initial status. If the
status isactive or complete the call becomes one of the subgoal’s consumers. Ifneig the call
becomes the subgoal’s generator and executes the origidgldf the predicate after changing the
subgoal’'s status tactive When an answer is generated, we check whether we have diehige
answer before. We do this by usiggt_answer_table to retrieve the root of the answer table from
the subgoal structure, and inserting the output argumetughis table one by one, just as we inserted
the input arguments one by one into the call table. The nodbetast level of the answer table thus
uniquely identifies this answer.

answer_is_not_duplicate looks up this node. If the tip of the answer table selectedhiey t
output argument values is NULL, then this is the first time veeencomputed this answer for this
subgoal, andnswer_is_not_duplicate succeeds. Otherwise it fails. (To make later calls fail; suc
cessful calls tanswer_is_not_duplicate replace the tip with a non-NULL value.) We thus get to
the call tonew_answer_block only if the answer we just computed has not been seen before.

new_answer_block adds a new element to the end of the subgoal’s chronologgtalflanswers,
the new element being a fresh new block with room for the givember of output arguments. The
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call tonew_answer_block is then followed by a call t@ave_answer for each output argument to
fill in the slots of the answer block.

When the last call tesave_answer returns, the transformed code of the tabled predicate sdsce
When backtracking returns control to the tabled predidateill drive the original predicate body to
generate more and more answers. In programs with a finitemalmnodel, the answer generation
will eventually stop, and execution will enter the seconsjudict, which invokes theompletion
primitive. This will make the answers generated so far fas #ubgoal available to any consumers
that are waiting for such answers. This may generate mongeaador this subgoal if the original
predicate body makes a call, directly or indirectly, to tkéene subgoal. Theompletion primitive
will drive this process to a fixed point using the algorithm describe in Sect. 5.5 and then mark the
subgoal azomplete Having already returned all the answers of this subgoah filoe first disjunct,
execution fails out of the body of the transformed predicate

If the initial status of the subgoal omplete we callreturn_all_answers, which succeeds
once for each answer in the subgoal’'s chronological listnswaers. For each answer, the calls to
restore_answer pick up the individual output arguments put theredaye_answer.

If the initial status of the subgoal iactive then this call is a consumer but the generator is
not known to have all its answers. We therefore call #w@pend primitive. suspend has the
same interface aseturn_all_answers, but its implementation is completely different. Whereas
return_all_answers simply iterates through a pre-existing list of answer bfgake implementa-
tion of suspend is quite complicated. We invoke theispend primitive when we cannot continue
computing along the current branch of the SLD tree. The mask bf the suspension operation is
therefore to record the state of the current branch of the 8&®to allow its exploration later, and
then simulate failure of that branch, allowing the usuatpss of backtracking to switch execution to
the next branch. Sometime later, enpletion primitive will restore the state of this branch of the
SLD tree, feed the answers of the subgoal to it, and let thechraompute more answers if it can.

5.3 Suspension of consumers

The suspend primitive starts by creating eonsumer structurand adding it to the current subgoal’s
list of consumers. The consumer structure has three fieldsirger to this subgoal’'s subgoal struc-
ture (available irsuspend’s Subgoal argument), an indication of which answers of the subgoal thi
consumer has consumed so far, and the saved state of the 8h€hlwf the consumer.

Making a copy of all the data areas of the Mercury abstractinaddet stack, nondet stack, heap
and registers) would clearly be sufficient to record theestdtthe SLD branch, but equally clearly
it would also be overkill. To minimize overhead, we want tocawl only the parts of the state that
contain needed information which can change between thpesa®n of this SLD branch and any of
its subsequent resumptions. For consumer suspensionmetarved saved state is as follows.

RegistersOf all the abstract machine registers used for parametsirgaghe only one that contains
live data is that containin§ubgoal. The special purpose abstract machine registetsfir, curfr,
the det stack pointesp, and the return address registerccip) do need to be part of the saved state.

Heap With Mercury’s current conservative collector, heap spacecovered only by garbage col-
lection and never by backtracking. This means that a termherneap will naturally hang around
as long as a pointer to it exists, regardless of whether thiatqy is in a current stack or in a saved
copy. Moreover, in the absence of instantiations of heapgend destructive updates, this data will
stay unchanged. This in turn means that, unlike a WAM-basgzleémentation of CAT, Mercury’s
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implementation of minimal model tablindpes not need to save or restore any part of the héaje
argue for the correctness of doing so below.) In practiceitha big win, since it is typically the heap
which is the largest area. The tradeoff is that we may neeav® sore data from the stacks, because
the mapping from variables to values (the current subginyis stored entirely in stack slots.

StacksThe way Mercury uses stack slots is a lot closer to the runsiystgems of imperative languages
than to the WAM. First of all, there are no links between Valga because the mode system does not
allow two free variables to be unified. So, binding a variaiolea value affects only the stack slot
holding the variable. Another difference with Prolog camsethe timing of parameter passing. If a
predicatep makes the caly (A), and the definition o§ has a clause with heag{B), then in Prolog,

A would be unified withB at the time of the call, and any unification insigehat bindsB would
immediately update in p’s stack frame. In Mercury, by contrast, there is no infolioraflow between
caller and callee except at call and (successful) returcaltthe caller puts the input arguments into
abstract machine registers and the callee picks them ugtuaihr the callee puts the output arguments
into those registers and the caller picks them up. Each &ti@t puts the values it picks up into a
slot of its own stack frame when it next executes a call. Thaoirtant point is that the only code that
modifies a stack frame is the code of the predicate that ¢l stack frame.

CAT saves the frames on the stacks between the stack frarhe gkherator (excluded) and the
consumer (included), and uses the WAM trail to save and mrestddresses and values of variables
which have been bound since the creation of a consumer’'sagengOnly trail entries referring to the
unsaved parts of the heap and local stack need to be predsreegying. Saving those pointing to the
saved parts is obviously redundant.) Mercury has no vasabh its heap, but without a mechanism
like the trail to guide the selective copying of stack slotdah might change values, it must make sure
that suspension saves informationaih stack frames that could be modified between the suspension
of a consumer and its resumption by its generator. The deép@se on the nondet stack that this
criterion requires us to save is the frame of tiearest common ancest@dCA) of the consumer and
the generator. We find the NCA by initializing two pointerspmint to the consumer and generator
stack frames, and repeatedly replacing whichever poisteigher with thesuccfr link of the frame
it points to, stopping when the two pointers are equal.

Note that wemustsave the stack frame of the NCA because the variable bindinigsnay have
changed between the suspension and the resumption. Tdseamtisider the code in Fig. 6, in which
the first call toz in the body ofy is a generator while the secoadcall is a consumer (hence their
subscripts), ang is their nearest common ancestor.

— Whenz, first suspends, the value 6fin y’s stack frame is 3.

— After z.s first suspension, the generatgrreturns 4 toy, which stores it as the new value @f

— Whenz, finishes generating its last answer, it resumes the consuméWVhenz. returns, its
return valuec, is tested for equality with the stored valueof

— The stored value of in y will be 4, unless the resumption af restoresy’s stack frame to the
state it had when the consumer was suspended.

Note that it is also possible for the nearest common ancestbe generator and consumer to be
a procedure that lives on the det stack. Consider for example

p(A, B) :- ( if some [X, Y] ( q(A, X), q(A, Y), X =2 * Y ) then B = yes else B = no ).

wherep is det whileq is a minimal model nondet procedure. In such cases, theitlgowe gave
above for finding the NCA will actually find the stack frametthas on top of the nondet stack when
the det stack frame of the NCA (in this cggewas created. Singemay not know whetheq is tabled,
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:- pred x(int::out) is nondet. Z A= Z. A=
:- pred y(int::out) is nondet. B = B=
:- pred z(int::out) is nondet. Z; A= Z, A=3 Z, A=3 Z, A=4 Z, A=4
:- pragma minimal_model(y/1). B= B=3 B=3 B=4 B=4
;- pragma minimal model(z/1). Y G= Y G=3 Y G=3 Y G=4 Y G=4
x(X) :- y(X), X = 3. Cc= C= C= C= C=
y(G) :- Zg(G), z.(C), G = C. X X = X X = X X = X X = X X =
z(A) :- a(A), b(B), A = B.
a(3). b(4). Call to 1st answer 1st consume2nd answer 2nd consume
a(4). b(3). generator z(3) z(4)
(a) Tabled program in Mercury (b) Nondet stack while executingX) ; shaded frames are those copied

Fig. 6. Information on the stack (growing upwards) while executimg program on the left.

we cannot make perform any special action to mark its stack frame; not withelowing down all
procedures that live on the det stack. We prefer insteadbto dbwn all procedures that live on the
nondet stack. Since in our experience there are many fewbrgocedures, this is the lesser of the
two evils. In minimal model grades we extend each nondekdftame with an extra slot holding
the value of the det stack pointer at the time when the nortdek §rame was created. By saving
everything on the det stack above the stack pointer valugraded in the computed, nondet NCA'’s
stack frame, we guarantee that we will save the stack frartteeateal, det NCA.

Correctness of saved information from the stacksThe variables in the nondet stack frames below
the NCA and in the det stack frame the NCA points to fall into telasses. The variables that were
bound when the NCA call was made cannot have their bindingagdd unless the goal that made
the binding fails. This can happen only if everything to thight has also failed. Since the call to
NCA and thus the generator are to the right of this code, timemgeor must have failed. This can
happen in only two circumstances. The first is that the géoehams computed all the answers to its
subgoal and has fed them all back to their consumers. In #s&, mone of those consumers will ever
be restored; in fact, their saved states will have been etkl&the second circumstance is that the
generator is simulating failure because it has yielded athear generator which is now its leader. In
such situations, which we will discuss in the next sectios,de in fact save beyond this NCA (we
save to the nearest common ancestor of the consumer andhtlez generator.)

On the other hand, the variables that were not yet bound wiehNCA call was made may be
bound after the NCA succeeds, but if backtracking ever mstaontrol to the NCA and through it to
the consumer, those bindings will have been implicitly wnimbby then.

Therefore, whether or not a variable in a nondet stack fraet@\bthe NCA is bound when the
NCA is called, we danot need to save its value when suspending a consumer. Sincerttents of
the fixed slots in those frames do not need to be saved eiligesegment of the nondet stack that we
need to save ends at the nearest common ancestor.

Correctness of not saving information from the heap The only two ways that a heap term pointed
to from a saved copy of a stack frame could be changed betweeating of that stack frame and its
restoration are variable instantiation and destructiveatg We rule out both of these through the use
of grades A grade is a set of settings for the compilation options thatify the Mercury abstract
machine in some fashion; for example, the minimal modelnglirade adds some new stacks (as we
will see later). The Mercury implementation ensures thaiais of the program are compiled with the
same grade. In minimal model grades, compilation optiomkspangram constructs that could result
in non-ground terms on the heap (required for plugging irstramt solvers [1]) are disallowed, as
are optimizations that destructively update ground heapge
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5.4 Maintenance of subgoal dependencies and their influenom suspensions

We have described suspension as if consumers will be satkdualy by their nearest generator. This
is indeed the common case, but as explained in Sect. 4 theegdsar situations in which subgoals are
mutually dependent and cannot be completed on an indivisksik. To handle such cases, Mercury
maintains a stack-based approximation of dependenciesbrtsubgoals, in the form of scheduling
components. For each scheduling component (a group subti@dlmay depend on each other), its
leader is the youngest generat@s;, for which all consumers younger thdr; are consumers of
generators that are not older th@f .

Of all scheduling components, the one of most interest it dhathe top of the stack. This is
because it is the one whose consumers will be scheduledVllestall its leader theurrent leader

The maintenance of scheduling components is reasonabtjeeffi Information about the leader
of each subgoal and the leadeicdlowersis maintained in the subgoal structure (cf. Fig. 5). Besides
creation of a new generator (in which case the generatornbesdhe new current leader with no
followers), this information possibly changes whenevezoeion creates a consumer suspension. If
the consumer’s generatdr, is the current leader or is younger than the current leaechange of
leaders takes place.® is older than the current leadercauphappens(z becomes the current leader,
and its scheduling component gets updated to contain agllitsvers the subgoals of all generators
younger tharGz. In either case, the saved state for the consumer suspenidiibe till the NCA of the
consumer and the current leader. This generalizes the sctieseribed in the previous section.

However, because a coup can happen even after the state n$anver has been saved, we also
need a mechanism to extend the saved consumer states. Thaniset we have implemented is
simple and consists of extending the saved state of all coesiupon change of leaders. When a coup
happens, the saved state of all followers (consumers arat@ens) of the old leader is extended to the
stack frame of the NCA of each follower and the new leadere(NICA point up to which followers
have copied their state is maintained in the consumer angoslifstructures.) Unlike CAT which
tries to share the trail, heap, and local stack segmentsiesd6], in Mercury we have not (yet)
implemented a mechanism to share the copied stack segrivetés.however, that the space problem
is not as severe in Mercury as it is in CAT, because in Mercheyd is no trail and no information
from the heap is ever copied, which means that heap segnoerdsrisumers are naturally “shared”.

On failing back to a generator which is a leader, schedulfrajmewers to all its followers will take
place, as described below. When the scheduling componéntgmpleted, execution will continue
with the immediately older scheduling component whosedeadll then become the current leader.

5.5 Resumption of consumers and completion

The main body of thecompletion primitive consists of three nested loops: over all subgdaals
the current scheduling componefit over all consumers of these subgoals, and over all answers
to be returned to those consumers. The code in the body ofesited loop arranges for the next
unconsumed answer to be returned to a consumer of a subgéallirdoes this by restoring the
stack segments saved by thespend primitive, putting the address of the relevant answer block
into the abstract machine register assigned to the retuue wd suspend, restoring the other saved
abstract machine registers, and branching to the retumessldtored isuspend’s stack frame. Each
consumer resumption thus simulates a return from the call#pend.

Since restoring the stack segments from saved states dfimens clobbers the state of the gen-
erator that does the restoring (the leadeShfthe completion primitive first saves the leader's own
state, which consists of saving the nondet stack down toltlesbNCA of the leader generator and
any of the consumers it schedules, and saving the det stéoi pwint indicated by this nondet frame.
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Resumption of a consumer essentially restores the savedrbodithe SLD search tree, but restor-
ing its saved stack segmeritgact is not a good idea. The reason is that leavingrtééoip slots of
the restored nondet stack frames unchanged resumes nohgusaved branch of the SLD search
tree, but also the departure points of all the branches gufirtg its right. Those branches have been
explored immediately after the suspension of the consubeeiquse suspension involves simulating
the failure of the consumer, thus initiating backtrackivghen we resume the consumer to consume
an answer, we do not want to explore the exact same altegsadigain, since this could lead to an
arbitrary slowdown. We therefore replace all thedoips in saved nondet stack segments to make
them point to the failure handler in the runtime system. H®iisctively cuts off the right branches,
making them fail immediately. Given the choice between ddiris pruning once when the consumer
is suspended or once for each time the consumer is resumeaxhwaeisly choose the former.

This pruning means that when we restore the saved state afsamer, only the success con-
tinuations are left intact, and thus the only saved staakdsathe restored SLD branch can access
are those of the consumer’s ancestors. Any stack framesitbatot the consumer’s ancestors have
effectively been saved and restored in vain. The advantitis@pproach is that the code to save and
restore stack segments is quite fast (has a low constaot¥akt addition, the direct correspondence
between the original and saved stack copies makes the calle pfuning operation much easier to
write compared to an approach that would try to remove thosecessary frames. For the programs
we have looked at so far, our approach looks to be the rigtietf

When a resumed consumer has consumed all the currenthalaleadnswers, it fails out of the
restored segment of the nondet stack. We arrange to getotoviten this happens by setting the
redoip of the very oldest frame of the restored segment to point éocttde of thecompletion
primitive. Whencompletion is re-entered in this way, it needs to know that the threelleested
loop has already started and how far it has gone. We thersfore the state of the nested loop in a
global record. When this state indicates that we have retuatl answers to all consumers of subgoals
in S, we have reached a fixed point. At this time, we mark all sulsgo& ascompleteand we reclaim
the saved states of all their consumers and generators.

5.6 Existential quantification

Mercury supports existential quantification. This constis usually used to check whether a compo-
nent of a data structure possesses a specific property as dodle fragment below:

( if some [Element] ( member(Element, List), test(Element) ) then ... else ... )

It is typically the case that the code inside the quantificesi scope may have more than one solution,
but the code outside the quantification only wants to checktiadr a solutiorexistswithout caring
about the number of solutions or their bindings. One can tlomsert a goal that can succeed more
than once into one that can succeed at most once by exi#ffeqtiantifying all its output variables.
Mercury implements quantifications of that form using what eall acommitoperation, which
some Prologs call anceoperation. The operation savesxfr when it enters the goal and restores
it afterward, throwing away all the stack frames that havenbgushed onto the nondet stack in the
meantime. The interaction with minimal model tabling asi$e®m the fact that the discarded stack
frames can include the stack frame of a generator. If thip&ag, the commit removes all possibility of
the generator being backtracked into ever again, whichrmray prevent the generation of answers
and completion of the corresponding subgoal. Without sppeaire, all later calls of that subgoal will
become consumers who will wait forever for the generatoctedule the return of their answers.
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To handle such situations, we introduce of a new stack whietcall thecut stack This stack
always has one entry for each currently active existegtigllantified goal; new entries are pushed
onto it when such a goal is entered and popped when that gbar eiucceeds or fails. Each entry
contains a pointer to a list of generators. Whenever a geasacreated, it is added to the list in the
entry on the current top of the cut stack. When the goal ingidecommit succeeds, the code that
pops the cut stack entry checks its list of generators. Fgealerators whose status is rmamplete
we erase all trace of their existence and reset the call tadgle that points to the generator’s subgoal
structure back to a null pointer. This allows later callshtattsubgoal to become new generators.

If the goal inside the commit fails, the failure may have beewe to the simulated failure of a
consumer inside that goal. When the state of the consumestsred, it may well succeed, which
means that any decision the program may have taken base& dmitthl failure of the goal may be
incorrect. When the goal inside the commit fails, we themftheck whether any of the generators
listed in the cut stack entry about to be popped off have aistather tharcomplete Any such
generator must have consumers whose failure may not bedonak throw an exception in preference
to computing incorrect results. Note that this can happdyg when the leader of the incomplete
generator’s scheduling component is outside the existequiantification.

5.7 Possibly negated contexts and aggregates

The interaction of tabling with cuts and Prolog-style nagrats notoriously tricky. Many implemen-
tation papers on tabling ignore the issue altogether, densig only the definite subset of Prolog.
An implementation of tabling for Mercury cannot duck theuiss Typical Mercury programs rely
extensively on if-then-elses, and if-then-elses involegation: if C' then T else E” is semanti-
cally equivalent to(C' A T") v (-3C A E). Of course, operationally the condition is executed only
once. The conditior is a possibly negated context: it is negated only if it has elat®ns. Mer-
cury implements if-then-else usingsaft cut if the condition succeeds, it cuts away the possibility of
backtracking to the else part only.

If C fails, execution should continue at the else part of thaeftelse. This poses a problem for
our implementation of tabling, because the failure of thediiion does not necessarily imply that
C has no solution: it may also be due to the suspension of a nwrscalled (directly or indirectly)
somewhere insidé’ as in the code below.

pC...) = t,C.0), Cif C ..., t.(...), ... ) then ... else ... ), ...

If t. suspends and is later resumed to consume an answer, théaonthy evaluate to true. However,
by then the damage will have been done, because we will haeited the code in thelse part.

We have not yet implemented a mechanism that will let us caenfhe correct answer in such
cases, because any such mechanism would need the abilignsfer the “generator-ship” of the
relevant subgoal from the generatordb its consumer. However, waveimplemented a mechanism
that guarantees that incorrect answers will not be compiigd mechanism is thgossibly-negated-
context stackor pneg stackfor short. We push an entry onto this stack when entering ailplys
negated context such as the condition of an if-then-else. &iiry contains a pointer to a list of
consumers, which is initially empty. When creating a consymve link the consumer into the list
of the top entry on the pneg stack. When we enter the else panmedf-then-else, we search this
list looking for consumers that are suspended. Since ssgperimulates failure without necessarily
implying the absence of further solutions, we throw an ekioepf the search finds such a consumer.
If not, we simply pop the entry of the pneg stack. We also perfthe pop on entry to the then
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part of the if-then-else. Since in that case there is no fistommitting to the wrong branch of the
if-then-else, we do so without looking at the popped entry.

There are two other Mercury constructs that can compute gvamswers if the failure of a goal
does not imply the absence of solutions for it. The first isatieg. We handle negation as a special
case of if-then-elsexG is equivalent to 1f G then fail else true”. The other is the generic all-
solutions primitivebuiltin_aggregate, which serves as the basic building block for all the user-
visible all-solutions predicates, suchsaslutions/2.builtin_aggregate itself is implemented as
an impure Mercury predicate based on the idea of the faduren loop shown in Fig. 7(a).

builtin_aggregate(P, ..., Answers) :- builtin_aggregate(P, ..., Answers) :-—

impure (setup code) impure (setup code)

( impure (push pneg stack entry) %(1)
P(Answer), ( P(Answer),
impure (record Answer) impure (record Answer)
fail fail

; ; tmpure (check for suspensions, pop pneg stack) %(2)
impure (pickup all Answers) impure (pickup all Answers)

). ).

(&) In non minimal model grades (b) In minimal model grades

Fig. 7. Implementation of aggregates without and with support forimal model tabling

To guard againghuiltin_aggregate mistaking the failure oP due to a suspension somewhere
inside it as implying the absence of solution®tave treat its loop as the condition of an if-then-else.
We surround it with the code we normally insert at the stathefcondition(z) and the start of the
else part(2) in Fig. 7(b). This gives all-solutions predicates the samo¢getion as if-then-elses.

Entries on both the cut stack and the pneg stack contain atfietcpoints to the stack frame of
the procedure invocation that created them, which is of ssafso responsible for removing them.
When saving stack segments or extending saved stack segmensave an entry on the cut stack or
the pneg stack if the nondet stack frame they refer to is iséved segment of the nondet stack.

6 Performance evaluation

We ran several benchmarks to measure the performance ofihesith tabling support, but space
limitations allow presenting only some of them here; someenieformation appears in the appendix.

Overhead of the minimal model grade We compiled the Mercury compiler in two grades that differ
only in that one supports minimal model tabling. Enablingmart for minimal tabling without using

it (the compiler has no minimal model predicates) incredbessize of the compiler executable by
about 5%. On the standard benchmark task for the Mercury temg@ompiling six of its own largest
modules, moving to a minimal model grade slows the compiberrdby about 25%. (For comparison,
enabling debugging leads to a 455% increase in code size &B8% increase in execution time.)
Our analysis shows that virtually all of this cost in both@pand time is incurred by the extra code
we have to insert around possibly negated contexts; tha eatte around commits and the larger size
of nondet stack frames have no measurable overheads. dsdste the appendix.

While a 25% hit on execution time may seem a lot, one must rdmeltinat a given amount of
overhead added to a fast system will result in a larger pé&genslowdown than the same absolute
overhead added to a slower one. The performance result§jiindicate that Mercury is faster than
other Prolog systems by integer factors, for real prograsngeadl as benchmarks. Even with this 25%
overhead, Mercury is still much faster than any currentdyalystem.
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Table 1. Times (in secs) to execute various versions of transitiewrle and same generation

chain cycle
[bench| size]queny iter[ XSB]XXX [Merc||XSB|XXX | Merc

tc.1r| 2000 +- |200] 0.24 0.20 0.22] 0.23 0.19 0.27
i o oo b 08 05 0 853 s oo
tc_1lr += . . . . . .

tc1r[16000 +- (200 2.04 173 2.11]| 208 166 230 |8 |21 21*2) 7 | 10]°4.34 860 504
tc_1r|32000 +- |200|| 4.18 3.59 4.97| 4.20| 3.57| 5.07 & XX e E B
tc1r|64000 +- |200] 8.60 7.30 9.15| 8.78 7.44 9.34
tcir| 2000 — | 1]|2.18 2.04 2.93]5.00 4.83 5.63
torr| 2000 — | 1]/ 1.71] 1.46 9.33] 5.31] 5.2325.22

Comparison against other implementations of tabling We compare the minimal model grade of
Mercury rotd-09-05-2005 (based on CAT) against XSB 2.7ak€éd on the SLG-WAM) and the XXX
system (derived from XSB but based on CHATlercury’s scheduling strategy imtchedlike, while
the other two systems usecal scheduling13] by default. All benchmarks were run on a 2.4 GHz
P4-based laptop with 512 Mb of memory running Linux. Time3atle 1 were obtained by running
the benchmark at least eight times, discarding the lowabshaghest values, and averaging the rest.

The first set of benchmarks consists of left- and right-reigerversions of transitive closure. In
each case, the edge relation is a chain or a cycle. In a chaizef, there aren — 1 edges of the
foomk — k+ 1for 0 < k < n; in a cycle of sizen, there is also an edge — 0. We use two
query forms: the query with the first argument input and treosed output £-) and the open query
with both arguments output€). The number of solutions is linear in the size of the datatier+-
query and quadratic for-. Each entry in Table 1 shows how long it takes for a given systerun the
specified query on the specified data iter times. Each syssesaifailure driven loop or its equivalent
to generate all answers of the query. The tables are resetbetiterations.

The six rows for ther- query on left recursive transitive closure show the runsirokall three
systems to be linear in the size of the data, which is as exg@eétiso, on left recursion, regardless
of query, all three systems are pretty much on the same peafure ballpark. On right recursion,
Mercury is slower than the other two systems due to savingesidring stack segments of consumers,
and having to do so more times due to its different scheddliragegy.

In some sense, it is unfortunate that not all systems imphértiee same scheduling strategy.
However, local evaluation (i.e., postponing the returnrafveers to the generator until the subgoal is
complete) is not compatible with the pruning that Mercupecution model requires in existential
and possibly negated contexts, constructs not properlgilédrn Prolog systems with tabling.

On the same generatiosd) benchmark where consumer suspensions are not createh{\samb-
goals are only encountered when the subgoals are compl&tedjury is clearly the fastest system.

Itis very difficult to draw general conclusions from thesatketic tabled benchmarks (also notice
they are all Datalog programs), but the following obsenraican safely be made:

1. Mercury has opted to pay a cost for suspension/resumpgianoid penalizing non-tabled execu-
tion;

2. Mercury can be a lot faster that other tabled Prolog sysiamrograms where only few consumer
suspensions are encountered;

3. How faster Mercury is oreal tabled programs depends to a great extent on the number of con
sumer suspensions and on employing a scheduling strataggeah avoid some of them.

4 We also wanted to include Yap in the comparison, but in ruptite benchmarks with Yap 4.4.4, we experienced some
problems we do not yet understand. We expect that we willideelYap numbers in the final version of the paper.
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We intend to explore the latter issue as future work.

7 Concluding remarks

Adapting the implementation of minimal model tabling to Mery has been a challenge because
the Mercury abstract machine is very different from the WAMe have based our implementation on
CAT because it is the only recomputation-free approachdinigthat does not make assumptions that
are invalid in Mercury. However, even CAT required signifitanodifications to work properly with
Mercury’s stack organization, its mechanisms for manageggble bindings, and its type-specific
data representations. We have described all these in thex pa well as describing two new mecha-
nisms, the cut and the pneg stack, which allow for safe intena of tabling with language constructs
such as if-then-else and existential quantification. linabte that Mercury also provides new oppor-
tunities for optimization of tabled programs. For examie, strong mode system greatly simplifies
variant checking and the type system allows for a type+@dalesign of tabling data structures.

In keeping with Mercury’s orientation towards industrsalale systems, our design objective was
maximum performance on large programs containing somedgiedicates, not maximum perfor-
mance on the tabled predicates themselves. The distingtatters, because it requires us to make
choices that minimize the impact of tabling on non-tableeldprates even when these choices slow
down tabled execution. We have been broadly successfuhiedng this objective. Since supporting
minimal model tabling is optional, programs that do not usee not affected at all. Even in programs
that do use tabling, non-tabled predicates only pay theafaste new mechanism: the one ensuring
the safety of interactions between minimal model tablind aegation. Even with this cost, Mercury
is much faster than any Prolog implementation that suppahbtiing.

The results on microbenchmarks focusing on the performaficeénimal model tabled predicates
themselves show Mercury to be quite competitive with exgstiabling systems. It is faster on some
benchmarks, slower on some others, and quite similar oreiteaven though Mercury currently lacks
some obvious optimizations, such as sharing stack segm&rissons among consumers. How the
system behaves on real tabled applications, written in Mgnather than Prolog, remains to be seen.
But one should not underestimate neither the difficulty herimportance of adding proper tabling to
a high-performance LP system and the power that this brmgsetsystens.
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A More information on the benchmarks

When the paper is published, the information in this appewdi be available from the Mercury web
site, from a link right next to the link to this paper.

This set of benchmarks attempts to analyze the source offteestice between the performance
of the asm_fast.gc andasm_fast.gc.mm grades. Each block in Table 2 identifies the parameters
with which the given version of the Mercury compiler was builhe final number gives the time (in
seconds) it took that version of the compiler to compile desfiwhich happen to be six of the largest
modules of the compiler itself, totalling 34,426 lines ofleo This time was obtained by getting each
tested version of the compiler to compile those six filesteé¢imes, discarding the highest and lowest
times, and averaging the other ten times.

The unmodifiedasm_fast.gc configuration is listed as version 1, while the unmodified
asm_fast.gc.mm configuration is version 7. The other five versions are in betw they have some
of the extra overheads incurred by them_fast.gc.mm version, but not all of them. We therefore
expect version 1 to be the fastest and version 7 to be the sioWeat this is not so is due to cache ef-
fects, which make it possible for a version of a program tikatates a strict subset of the instructions
executed by another version of the program to neverthedsgsmore time to run.
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Table 2. The Mercury compiler compiled and run in different configigas: performance results

|#How obtained Size of executable Tinje
EXTRA_MCFLAGS =
1| EXTRA_CFLAGS = 8,928,116 49.41

GRADE = asm_fast.gc
EXTRA_MCFLAGS =

2| EXTRA_CFLAGS = -DMR_USE_MINIMAL_MODEL_STACK_COPY_EXTRA_SLOT 8,928,724 48.53
GRADE = asm_fast.gc

EXTRA_MCFLAGS = --no-allow-hijacks

3| EXTRA_CFLAGS = 8,924,020 48.62
GRADE = asm_fast.gc
EXTRA_MCFLAGS = --disable-mm-pneg

4| EXTRA_CFLAGS = 8,940,648 48.69
GRADE = asm_fast.gc.mm
EXTRA_MCFLAGS = --disable-mm-cut

5| EXTRA_CFLAGS = 9,338,248 62.56
GRADE = asm_fast.gc.mm
EXTRA_MCFLAGS = --disable-mm-pneg --disable-mm-cut

6| EXTRA_CFLAGS = 8,936,552 48.83

GRADE = asm_fast.gc.mm
EXTRA_MCFLAGS =

7| EXTRA_CFLAGS = 9,342,344 61.95
GRADE = asm_fast.gc.mm

Version 2 differs from version 1 in making each frame on thedwat stack contain an extra slot,
which is filled in from the current value of the det stack pemfThis does not add any measurable
overhead (in fact it gets a speedup).

Version 3 differs from version 1 in not allowing the compiteremploy the optimization of using
theredoip slot of a nondet stack frame to record the current state @frabnested disjunctions; in
version 3, every disjunction, even nested ones, will hawargbrary nondet stack frame created for
it. Minimal model tabling needs this to happen because itle¢e see the state of every disjunction
in the redoip slot of some frame on the nondet stack to allow it clobber ttate when pruning
right branches of the SLD tree. In the presence of the opéitioig, this is not possible. Disabling the
optimization does not add any measurable overhead (intfgets a speedup).

Version 4 is in theasm_fast.gc.mm grade, but differs from version 7 in not generating code for
pushing entries on the nondet stack when entering posséggatad contexts and popping them off
and inspecting them when leaving such contexts. This getgya bavings compared to version 7,
and does not add any measurable overhead compared to vériotiact it is slightly faster than
version 1). This proves that pretty much all of the overhdadinimal model tabling for this program
(the Mercury compiler) is in the handling of pneg contexts.

Version 5 is also in thesm_fast.gc.mm grade, but differs from version 7 in not generating
code for pushing entries on the cut stack when entering coroniexts and popping them off and
inspecting them when leaving such contexts. This does rtaargesaving to version 7 (in fact it is
slightly slower).

Version 6 is also in thesm_fast.gc.mm grade, but differs from version 7 in missing both the
code dealing with pneg contexts and the code dealing withtibgontexts. The result is essentially
identical to version 4, which shows that commit contextsehaw measurable impact on performance.

The story is similar with respect to executable size. 3k _fast.gc.mmversion of the compiler
(version 7) is 414 Kb larger than th&m_fast . gc version (version 1). Of this increase, only about
12 Kb remains in version 4, which shows that all the rest is wuthe code surrounding possibly
negated contexts.
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