
Native code compilation of Erlang’s bit syntax

Per Gustafsson
Computing Science Dept.

Uppsala University, Sweden

pegu2945@csd.uu.se

Konstantinos Sagonas
Computing Science Dept.

Uppsala University, Sweden

kostis@csd.uu.se

ABSTRACT
Erlang’s bit syntax caters for flexible pattern matching
on bit streams (objects known as binaries). Binaries are
nowadays heavily used in typical Erlang applications such
as protocol programming, which in turn has created a need
for efficient support of the basic operations on binaries.

To this effect, we describe a scheme for efficient native
code compilation of Erlang’s bit syntax. The scheme re-
lies on partial translation for avoiding code explosion, and
improves the performance of programs manipulating bina-
ries by translating frequently occurring instances of BEAM
instructions into native code via an intermediate translation
to instructions of a register transfer language. Our perfor-
mance evaluation shows that in a HiPE-enabled Erlang/OTP
system, the obtained speedups are often significant.

1. INTRODUCTION
Functional programming languages traditionally manip-

ulate objects such as numbers (integers and floats), atoms
(sequences of alphanumeric constants), lists and structures.
Some of them also provide a notation for records that allows
abstraction and often (some form of) object oriented-style
program development. Erlang supports all these types of
objects, but also includes a datatype typically not found in
other functional languages: binaries.

It should be mentioned that the binary datatype was
added to Erlang to cater for application needs: Binaries
were first introduced into Erlang in 1992 to provide an ef-
ficient container for object code. Subsequently, it was recog-
nized that binaries can be used in applications that perform
extensive I/O, networking TCP/IP-style of I/O, in GUI sys-
tems, and most importantly in protocol programming typi-
cally developed by telecommunication applications or other
uses of Erlang. Recognizing the importance of binaries, in
1999, a proposal for a binary datatype was presented in [4].
This datatype was more powerful than the original binary,
since it was introduced together with a new bit syntax which
made it possible to easily build and match binaries. In 2000,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
Erlang Workshop’02 Pittsburgh, USA
Copyright 2002 ACM 1-58113-592-0/02/0001 ...$5.00.

a revised version of the datatype, presented in [2], was in-
troduced into the Erlang/OTP system.

Since then, binaries have been used extensively both in
various libraries of Erlang/OTP and in user applications.
Indeed, nowadays the performance of many Erlang pro-
grams crucially depends on the efficiency of the underly-
ing operations that support manipulation of binaries. The
BEAM, the virtual machine of Erlang/OTP, maps these
operations to virtual machine instructions implemented di-
rectly in C. As a result, their performance is quite good. Till
recently, the HiPE native code compiler [1, 3], did not handle
these binary instructions specially, but instead treated them
as built-in functions implemented through straightforward
calls to the corresponding BEAM C functions. As a result,
the performance of manipulating binaries in HiPE was more
or less on a par with the BEAM-based system and actually
slightly disadvantaged due to the mode-switch overhead that
is involved in calling a C function of the BEAM interpreter
from native code. Wanting to improve this situation, we
have embarked on a project to directly compile Erlang bi-
naries to native code. The approach we took and the compi-
lation scheme we follow are described in this paper. Besides
documenting our implementation, which will be included in
the upcoming Erlang/OTP Release 9, we shed more light on
the internals of Erlang binaries whose implementation is
not described anywhere, and we hope that such information
is potentially useful to other functional programming imple-
mentors that consider adding binaries to their language of
choice.

The rest of the paper is structured as follows. The next
section begins by reviewing Erlang’s binary data object
and the bit syntax that supports the flexible manipulation
of binaries. We then (Section 3) describe how the oper-
ations that Erlang’s bit syntax allows for are translated
to appropriate virtual machine instructions. We focus at-
tention on the instructions that efficiently support match-
ing. In Section 4, we present a translation of these virtual
machine instructions to a register transfer language (RTL).
This translation is made in two steps: First the virtual ma-
chine code is translated into an intermediate code repre-
sentation, and this intermediate code is translated to RTL
code. Section 5 discusses a scheme to a priori calculate the
heap space a binary matching operation requires. We end
the paper by evaluating the performance of our implemen-
tation both on Erlang protocol programming applications
and on synthetic benchmarks, and by quantifying how pa-
rameters such as byte alignment influence the efficiency of
the generated code.

2. BINARIES
The binary datatype represents a stream of bits of a size

that is evenly divisible by 8. Two basic operations can be
performed with the binary: creation of a new binary and
matching against an existing binary.

2.1 Bit syntax
A bit syntax expression (called a Bin in [2]) is what al-

lows Erlang users to construct binaries and match binary
patterns. A Bin is written with the following syntax:

<<Segment1, Segment2, . . ., Segmentn>>

The Bin represents a low level sequence of bytes. Each of
the Segmenti’s specifies a segment of the binary. A segment
represents an arbitrary number of contiguous bits in the Bin.
The segments are placed next to each other in the same order
as they appear in the bit syntax expression.

2.1.1 Segments
Each segment expression has the general syntax:

Value:Size/SpecifierList

where both the Size and the SpecifierList can be omit-
ted since there are default values for these specifications.
The Value field must however always be specified. In a
binary match, the Value can either be an Erlang term, a
bound variable, an unbound variable, or the wildcard vari-
able ’ ’. The Size field can either be an integer or a vari-
able that is bound to an integer. The SpecifierList is a
dash-separated list of up to four options that specify type,
signedness, endianism, and unit. The different forms of type
specifiers are described in Table 1. If all of these possibilities
are used, the syntax of each segment expression is:

Value:Size/Type-Signedness-Endianism-unit:Unit

The Size specifier gives the size of the segment measured in
units. Thus the size of the segment in bits (hereafter called
its effective size) will be Size ∗ Unit.
2.1.2 Binary Matching

This is the syntax for matching with a binary if Binary

is a variable bound to a binary:

<<Segment1, Segment2, . . ., Segmentn>> = Binary

The Valuei fields of the Segmenti expressions that describe
each segment will be matched to the corresponding segment
in Binary. For example, if the Value1 field in Segment1

contains an unbound variable and the effective size of this
segment is 16, this variable will be bound to the first 16 bits
of Binary. How these bits will be interpreted is governed by
the SpecifierList of Segment1 .

Example 2.1 As shown below, binaries are generally dis-
played as a sequence of comma-separated unsigned 8 bit
integers inside <<>>’s. The Erlang code:

Binary = <<10, 11, 12>>,

<<A:8, B/binary>> = Binary

results in the binding A = 10, B = <<11, 12>>.
Here A matches the first 8 bits of Binary. Because of

the default values, these eight bits are interpreted as an
unsigned, big-endian integer. B is matched to the rest of
the bits of Binary. These bits are interpreted as a binary
since that type specifier has been chosen. Because of that,

B matches to the rest of Binary, as this is the default size
for the binary type specifier.

Matching against a binary can be used in a function head
or in an Erlang case statement just like any other match-
ing operation.

Example 2.2 Consider the code shown below:

case Binary of

<<13:8/integer, X/binary>> -> X;

<< :8, X:16/integer, /binary>> -> X;

<<X/binary>> -> error

end.

Here Binary will match the pattern in the first branch of
the case statement if its first 8 bits represented as an un-
signed integer have the value of 13. In this case, X becomes
a binary consisting of the rest of the bits of Binary and is re-
turned by this statement. If this is not the case, then Binary

will match the second pattern if Binary is larger than three
bytes, since there are no demands on the values of what is
matched out from the binary in the pattern of the second
branch. X will be bound to an integer consisting of bit 9 to
bit 24 in Binary. These bits will be taken in big-endian order
and will be interpreted as an unsigned integer. If the binary
does not match either pattern of the two first branches, X
will be matched to Binary and the atom ’error’ will be
returned. Three examples of matchings using this code are
shown below.

Binary X matches to
<<13, 14, 15>> <<14, 15>>

<<12, 1, 2, 20>> 258

<<0, 255>> <<0, 255>>

Types.The bit syntax allows three different types to be
specified: integers, floats and binaries. The integer type is
the default type and can be of any size. For integers, the user
can also specify endianism and signedness; see below. The
default specifications for an integer are Size of 8, unsigned,
big-endian, and a unit of 1.

The float type only allows effective sizes of 32 or 64 bits.
The user can also specify endianism. The default specifica-
tions for a float are a size of 64, in big-endian format, and
with a unit of 1.

The binary type allows effective sizes that are evenly di-
visible by 8. Specifying endianism or signedness does not
modify how a binary is matched. The default specifications
for a binary is the size all which means the binary is being
matched out completely. If a size is given by the user the
default unit is 8.

Example 2.3 Below we show some binaries and their de-
fault expansions.

binary by default expands to
<<X>> <<X:8/integer-unsigned-big-unit:1>>
<<X/float>> <<X:64/float-big-unit:1>>
<<X/binary>> <<X:all/binary>>
<<X:Size/binary>> <<X:Size/binary-unit:8>>

Table 1: Binary type specifiers.
integer The bit stream will be interpreted as an integer. This is the default setting.
float The bit stream will be interpreted as a float. It can only have the sizes 32 and 64.
binary The bit stream will not be interpreted. The default unit size of a binary is 8.
signed The bit stream will be interpreted as an integer in 2’s complement sign extension (only applies to integers).
unsigned The bit stream will be interpreted as an unsigned integer. This is the default setting.
big The bytes will be picked in big-endian order. This applies to floats and integers and is the default setting.
little The bytes will be picked in little-endian order. Applies to floats and integers.
unit Typically followed by ‘:’ and an integer between 1 and 256.

The integer is multiplied with the size term to produce the effective size. This is typically used to ensure
either byte-alignment in a binary match or that a new binary has a size that is divisible by 8 regardless
of the values of the runtime-variables. The default setting is 1 for integers and floats and 8 for binaries.

Endianism.An endianism specifier is used to decide in
which order bytes should be picked when forming an in-
teger or a float. big means that the bytes are picked in
big-endian order, while little means the bytes are picked
in little-endian order.

Example 2.4 If X and Y are unbound variables, the match-
ing:

<<X:16/integer-big>> = <<0, 42>>

results in the binding X = 42 as the eight low bits of X are
42, while the matching:

<<Y:16/integer-little>> = <<0, 42>>

results in the binding Y = 10752 (i.e., 42 * 256) since 42
now appears in the eight high bits.

Signedness.A signedness specifier is introduced to allow
matching of either signed or unsigned integers. The default
value is unsigned. This means that the bit stream is inter-
preted as an unsigned integer. The signed specifier makes
sure that the bit stream is interpreted as an integer with a
two complement sign extension. We note that the signed

and unsigned specifiers are actually allowed in all expres-
sions, but they only have a meaning when matching integers.

Example 2.5 If X and Y are unbound variables, the code:

<<X:8/integer-unsigned>> = <<255>>,

<<Y:8/integer-signed>> = <<255>>

results in the binding X = 255, Y = -1.

Tail of a binary. In Example 2.2, the last segment of each
of the three binaries in the patterns of the case statement
shows an interesting use of the binary type specifier without
a size value in matchings. In a sense, this use is similar to
the familiar list-tail operator since it will let the size become
the size of the rest of the binary that is matched out. It is
however important to know that a binary can only have a
bit-size that is evenly divisible by eight. This also applies
when the wildcard variable is used as Value.

2.2 Internal representation
Although to the user binaries appear as only one type, the

current internal representation of binaries in Erlang/OTP
includes three different types of binaries: heap binaries, ref-
erence counted binaries (REFC binaries), and sub-binaries.

Heap binary is a variable-sized object containing a type
tag, a size field, and the data contained in the bi-
nary. As its name implies, this type of binary objects
are stored on the heap. This representation is used
for small-sized binaries (i.e., binaries smaller than a
particular constant max heap bin size). In the cur-
rent process-centric heap architecture of Erlang/OTP,
heap binaries can be costly to send as a message since
the whole binary is being copied to the heap of the
receiving process.

Reference counted binary is an object that points to an
off-heap reference counted data structure. This data
structure contains all the binaries. All REFC binaries
on a process’ heap are linked together in a list and after
garbage collection the list is traversed. When a process
holding a pointer to a REFC binary dies, the reference
counter is decreased. When the counter reaches zero,
the binary structure can be deallocated. On the other
hand, this counter is increased when a REFC binary is
sent as a message. This type is used for large binaries
and is effective since it becomes extremely cheap to
send as a message between processes. This is because
only the header that resides in the heap of the sender
needs to be copied to the heap of the receiver process.

Sub-binary is a heap object that is a pointer to another
binary object with an offset and a size field that de-
scribe how far into the other binary this binary starts
and how many bytes of data it consists of, respectively.
This representation is useful since it allows to cheaply
split a binary into several smaller binaries. The cost of
sending a sub-binary as part of a message depends on
the type of binary that the sub-binary points to. When
it points to a heap binary, then the whole heap binary
has to be copied to the other process as well as the
sub-binary. When the sub-binary points to a REFC
binary however only the sub-binary and the REFC bi-
nary header have to be copied.

3. VIRTUAL MACHINE TRANSLATION
An intermediate step towards efficient compilation of the

bit syntax is to make a translation to appropriate virtual
machine instructions. This can be done by translating the
different bit syntax expressions to corresponding operations
of the virtual machine. Indeed, the BEAM (the virtual ma-
chine of Erlang/OTP R8B) follows this approach. The type
specifiers other than the unit specifier are encoded by one
bit each in a Flags argument. The second bit is set if the

operation is little-endian and the third bit is set if the oper-
ation is signed. To simplify future steps in the compilation
process, a third flag shows whether the operation is guaran-
teed to start at a byte boundary. When this is the case the
first bit is set. The Flags argument will thus be an integer
between 0 and 7. The Size argument will be taken directly
from the size field in the bit syntax expression. It will either
contain an integer, a variable, or the atom all. As men-
tioned, the all atom is only possible when the binary type
specifier is involved.

3.1 Binary matching
The matching operation can be translated into eight dif-

ferent BEAM instructions. One instruction to initiate the
matching, another to test if a match has ended successfully,
two instructions to save and load the state of the matching,
one instruction to skip forward in the binary, and finally
three instructions to read bits from the binary. There are
also some BEAM instructions that are not specific to bi-
naries, but are nevertheless used within the matching code.
For example, the is equal exact or switch-type instructions.
In this paper we do not concern ourselves with non binary-
specific instructions.

Since this is a matching operation, the matching flow will
be in standard matching form. This means that the match-
ing operations have a SuccessLabel and a FailLabel. When
the operation succeeds the flow continues at the SuccessLa-
bel and when it fails it continues at the FailLabel. A match
is over either when a bs test tail instruction has succeeded,
or when the flow has reached the FailLabel associated with
bs start match. In the BEAM, the state of a binary match-
ing is maintained in 4 global variables shown in the table
below.

BinBase the address to the first byte in the binary
that is used in the matching

BinSize the size in bits of the binary that is matched
BinOffset number of bits that have been matched so far
BinOrig the Erlang term of the REFC or heap binary

that points to the binary being matched

The BEAM instructions used for binary matching are:

void bs start match(binary Bin)

This BEAM instruction is used when encountering the
<< operator in a <<Segment1, . . ., Segmentn>> = Bin

matching expression. It initializes the state variables
from the information contained in Bin.

Fail Conditions

• Wrong argument type

void bs skip bits(uint Size, unit Unit, uint Flags)

This BEAM instruction is used for the translation of a
:Size/type-unit:Unit expression. Recall that if the
type is binary, Size does not have to be an unsigned
integer but it can also be the atom all. This operation
will increase BinOffset by Size * Unit or if Size is the
atom all it will set BinOffset to BinSize.

Fail Conditions

• (BinOffset + Size ∗ Unit) > BinSize

• Size = all and BinOffset is not evenly divisible
by 8

• Wrong argument type

int bs get integer(uint Size, uint Flags, uint Unit)

This BEAM instruction is used for the translation of
a Int:Size/integer-specifier-unit:Unit expression.
It will load the first Size ∗ Unit bits from the position
BinBase + BinOffset and turn these bits into an in-
teger. The Flags argument specifies if the bits will be
interpreted as representing a signed or unsigned inte-
ger and if the bytes will be taken in big- or little-endian
order.

Fail Conditions

• (BinOffset + Size ∗ Unit) > BinSize

• Wrong argument type

float bs get float(uint Size, uint Flags, uint Unit)

This BEAM instruction is used for the translation of
a Float:Size/float-specifier-unit:Unit expression.
It will load the first Size ∗ Unit bits from the position
BinBase + BinOffset and turn these bits into a float.
The Flags argument specifies whether the bytes will be
taken in big- or little-endian order.

Fail Conditions

• (BinOffset + Size ∗ Unit) > BinSize

• Size ∗ Unit is not equal to 32 or 64

• Wrong argument type

binary bs get binary(uint Size, uint Flags, uint Unit)

This BEAM instruction is used for the translation of a
Bin:Size/binary-specifier-unit:Unit expression. It
will create a sub-binary of size Size ∗ Unit if BinOffset
is divisible by 8 (the creation of a sub-binary requires
BinOrig ; that is why that variable is a part of the
state). Otherwise, it will create a new heap or reference
counted binary and copy the first (Size ∗Unit)/8 bytes
into it. Size can also be the atom all in which case
Size ∗ Unit will be interpreted as BinSize − BinOffset .
Flags does not change the result of the operation but
it contains the byte boundary information.

Fail Conditions

• (BinOffset + Size ∗ Unit) > BinSize

• Size = all and BinOffset is not evenly divisible
by 8

• Size ∗ Unit is not evenly divisible by 8

• Wrong argument type

bs save(StateLabel)

Saves the current state giving it the label StateLabel.
This instruction cannot fail.

bs restore(StateLabel)

Reloads a former state that has the label StateLabel.
This instruction cannot fail.

bs test tail(NumberOfBits)

This instruction increases BinOffset by NumberOfBits
and then checks if the resulting BinOffset is equal to
BinSize. If the condition is met, the match is over.

Fail Conditions

• (BinOffset + NumberOfBits) 6= BinSize

Example 3.1 The simple matching expression

<<X:16/integer-signed,

Y:8/float-little-unit:8, Z/binary>> = Binary

gets compiled to the following pseudo-BEAM code where
the names of the variables have not been changed from their
Erlang names. Also, FL shows the label that the flow will
continue at if some instruction fails.

L0: bs start match(Binary) % FL = L1

X = bs get integer(16, 5, 1) % FL = L1

Y = bs get float(8, 3, 8) % FL = L1

Z = bs get binary(all, 1,) % FL = L1

bs test tail(0) % FL = L1

%% here the binary match has succeeded
. . .

L1: %% code to handle binary match failure

Let’s look at the instructions’ operands. Recall that in
bs get * instructions the first operand is the Size, the second
is the Flags, and the third denotes the Unit. For bs get integer
and bs get float only the Flags operand needs to be explained.
Both instructions are guaranteed to start at a byte bound-
ary. The first instruction starts at the beginning of the bi-
nary, and the other starts after 16 bits (e.g. 2 bytes) into
the binary. This means that the low bit will be set in
each of their Flags operands. Also, the signed type spec-
ifier sets the third Flags bit. Thus, the Flags operand is 5
for bs get integer. Similarly, the little type specifier sets
the second bit, which explains why the Flags operand of
bs get float is 3. It is also clear that bs get binary is byte-
aligned since it starts after 16+8∗8 = 80 bits (e.g. 10 bytes)
and since endianism and signedness do not apply to bina-
ries, the Flags operand is 1 in this case. Since a size is
not specified for the third segment of the binary, the Size
defaults to all. This also means that the Unit operand is
irrelevant for bs get binary in this case (we denote this with
an underscore).

Example 3.2 The translation of the Erlang code of Ex-
ample 2.2 is shown in Figure 1. The first branch of the case

statement is translated to the instructions between labels
L0 and L2. The first segment of the binary consists of the
bs get integer and is eq exact instructions, and the second
segment is translated to a bs get binary instruction. What
is interesting to note is that if the bs get integer instruction
fails, the execution will continue at the third branch (la-
bel L3), not at the second. This happens because the fail
conditions for a bs get integer instruction are exactly the
same as those for a bs skip bits instruction. Because of this,
the second branch can start with the state of the match after
the bs get integer instruction. This is shown by the bs save
and bs restore instructions.

4. TRANSLATION TO NATIVE CODE
The next step in the scheme is to translate the virtual ma-

chine instructions into native code. We do this by first trans-
lating the VM instructions to intermediate code (Icode).
Then we proceed to translate the Icode into RTL code.

Many of the instructions can be quite tedious to translate
for all possible argument value combinations. Therefore, a
design decision was to translate to native code only com-
monly occurring argument combinations of VM instructions
and to fall back to calling the interpreter functions in all

L0: bs start match(Binary) % FL = L5

bs save(1)
x1 = bs get integer(8, 1, 1) % FL = L3

bs save(0)
is eq exact(x1, 13) % FL = L2

bs restore(0)
X = bs get binary(all, 1,) % FL = L2

bs test tail(0) % FL = L2

x0 = X
jump L4

L2: bs restore(0)
X = bs get integer(16, 1, 1) % FL = L3

bs skip bits(all, 1) % FL = L3

bs test tail(0) % FL = L3

x0 = X
jump L4

L3: bs restore(1)
X = bs get binary(all, 1,) % FL = L5

x0 = ’error’
L4: %% here the binary match has succeeded

. . .
return

L5: %% code to handle binary match failure

Figure 1: Translation of binary pattern matching.

other cases. This translation scheme requires that the state
of the match is the same in the interpreter as in the native
code environment. This is ensured by saving the state every
time a call is made to the interpreter and to reload the state
after the call has returned.

4.1 Translation to Icode
Except for some differences between the representations

used at the Icode and at the virtual machine level, the
translation from BEAM to Icode is quite straightforward.
Two new instructions, bs get binary all and bs skip bits all,
are added. They are used when the size argument is the
atom all. The Unit argument is multiplied by the Size ar-
gument if Size is an integer. The result is then coded into
the name of the operation. There are also five new argu-
ment registers added. Four of these represent the state of
the matching and the fifth contains the address to the state
structure in the interpreter. So for an arbitrary BEAM in-
struction the translation to Icode is as shown in Figure 2.

Three of these instructions (bs skip bits, bs skip bits all,
and bs test tail) do not influence all state variables, but only
BinSize and BinOffset and thus the corresponding Icode in-
structions only get these two state variables as arguments.
To simplify the notation we will refer to the state as an ob-
ject called State and to its BinOffset variable as State.Offset.
Similarly for other state variables.

A new memory management operation is also introduced
in Icode. It is placed just before the bs start match instruc-
tion. This operation is discussed in Section 5.

4.2 Translation to RTL
We divide the Icode instructions into two groups: The first

group contains bs get * instructions. The other group thus
contains Icode instructions that do not read anything from
the binary but only manipulate the control flow and the
state. That is, it contains the bs start match, bs skip bits,
bs skip bits all, bs save, bs restore, and bs test tail instruc-

if Size is an integer ->

{bs operation, Size*Unit, Flags} (State Address, BinOffset, BinSize, BinBase, BinOrig)
if Size is the atom all ->

{bs operation all, Flags} (State Address, BinOffset, BinSize, BinBase, BinOrig)
if Size is a variable ->

{bs operation, Unit, Flags} (Size, State Address, BinOffset, BinSize, BinBase, BinOrig)

Figure 2: Translation of BEAM instruction bs instruction(Size, Unit, Flags) to Icode.

tions. We will call the members of this group non-reading
Icode instructions. Consequently we will call the members
of the first group reading Icode instructions.

4.2.1 Utilities
We have written some utility functions that produce code

for some common situations. They will be used in what we
call pseudo-RTL instead of the code that they are creating.

Gen make size(FinalSize, Unit, SizeVar, FailLabel)
produces RTL code to multiply Unit with SizeVar and
place the result in FinalSize. Since Unit is typically 1
or 8, multiplication is either trivial or can be strength
reduced to a shift. If there is any problem with the
content of SizeVar, execution will continue at FailLabel.

Gen bs call(Instruction)
produces RTL code to update the state of the inter-
preter, make a call to the function corresponding to In-
struction, and to finally update the state registers when
the call has returned.

Check size(BinSize, Offset, Size, NewOffset, FailLabel)
produces RTL code to add FinalSize to BinOffset and
put the result in NewOffset. If NewOffset is greater than
BinSize the execution continues at FailLabel.

Load bytes(Dst, Base, Offset, Signedness, Endianism, NoOfBytes)
produces RTL code that loads NoOfBits consecutive
bytes from Base+Offset and adds NoOfBytes-1 to Offset.
The bytes are put in little- or big-endian order into
the register Dst depending on the value of Endianism.
Signedness specifies whether the loaded number should
be interpreted as signed or unsigned. NoOfBytes is an
integer between 1 and 4.

Load state(Address, Base, Size, Offset, Orig)
produces RTL code to reload the values of the state
registers from the state in the interpreter.

Make sub binary(Dst, Size, Offset, Orig)
produces RTL code to make a sub-binary on the heap.
A tag is put in the first position, Size that is the size
in bytes of the sub-binary is put in the second posi-
tion, Offset which says how many bytes into the origi-
nal binary the sub-binary starts is placed in the third
position and Orig which is a pointer to the original bi-
nary is placed in the fourth and last position. Finally
a tagged pointer to the first position is placed in Dst.

Make float(Dst, HighBits, LowBits)
produces RTL code to make a float on the heap. A tag
is put in the first position, the HighBits is put in the
second position and the LowBits is placed in the third
and last position. Then a tagged pointer to the first
position is placed in Dst.

4.2.2 Translation of non-reading Icode instructions
In any binary matching operation, bs start match is the

first instruction. It is translated to RTL code that first
makes a call to the interpreter function to initialize the state.
If this call fails, execution continues at FailLabel. If the call
succeeds, code created by Load state is executed to load the
state from the interpreter into RTL registers r0, . . ., r4 as
will be shown in the example below.

The {bs skip bits, Bits}(Bitvar, State) instruction is al-
ways translated to RTL code that does not contain calls.
The translation depends on if there is a Bitvar or not. If
there is a Bitvar, the utility Gen make size is invoked to pro-
duce code that multiplies Bits with Bitvar and places the re-
sult in a temporary. If there is no Bitvar variable, then Bits
is placed directly in the temporary. The utility Check size
generates code to test if the value of the temporary is smaller
than or equal to the difference between State.Size and
State.Offset. If that is the case, the temporary is added
to State.Offset and the execution continues at SuccessLabel
belonging to the operation. If that is not the case, execution
will continue at the FailLabel belonging to the operation.

The {bs skip bits all, Flags}(State) instruction is even sim-
pler to translate since there is never any variable. If the
first bit of Flags is set then the operation can not fail and
State.Offset is just set to State.Size. If this is not the case a
runtime check is performed to see if State.Offset’s three low
bits are equal to zero if this is the case again State.Offset is
set to State.Size and execution continues at SuccessLabel.
Otherwise execution continues at FailLabel.

The bs save(StateLabel, State) instruction stores the cur-
rent value of State.Offset at the address where BinOffset is
stored in the interpreter. Then there is call to the corre-
sponding function of the interpreter and finally the state is
reloaded by code created by the Load state utility.

The bs restore(StateLabel, State) instruction makes a call
to the function of the interpreter and reloads the state with
code created by the Load state utility.

Finally, the {bs test tail, Bits}(State) instruction adds Bits
to State.Offset and puts the result into State.Offset. If
State.Size = State.Offset execution continues at Success-
Label; otherwise it continues at FailLabel.

Examples.In Table 2 we show the resulting pseudo-RTL
code for some of the above Icode instructions. The repre-
sentation is called pseudo-RTL since the code produced by
the utility functions is only represented by the name of that
function. The state variables are put into five RTL registers
(r0, . . ., r4) as follows:

r0 ← State.Address r3 ← State.Offset
r1 ← State.Base r4 ← State.Orig
r2 ← State.Size

Table 2: Translation of non-reading instructions to RTL.
(State) = bs start match(v0) {bs skip bits all, 0}(State) bs save(1, State)
r5 ← bs start match(v0) [c] then L1

L1: if (r5 eq 0) then L2 else FL
L2: Load state(r0, r1, r2, r3, r4) then SL

r5 ← r3 ’and’ 7 then L1

L1: if (r5 eq 0) then L2 else FL
L2: r3 ← r2 then SL

[r0 + OFFSET] ← r3 then L1

L1: bs save(1) [c] then L2

L2: Load state(r0, r1, r2, r3, r4) then SL

{bs skip bits, 8}(v0, State) {bs test tail, 8}(State) bs restore(1, State)
Gen make size(r5, 8, v0) then L1 else FL

L1: Check size(r2, r3, r5, r6) then L2 else FL
L2: r3 ← r6 then SL

r5 ← r3 add 8 then L1
L1: if (r5 eq r2) then SL else FL

L1: bs restore(1) [c] then L2

L2: Load state(r0, r1, r2, r3, r4) then SL

The SuccessLabels and FailLabels associated with the dif-
ferent Icode operations will not be assigned proper label
numbers but they will simply be called SL and FL.

4.2.3 Translation of reading Icode instructions
The bs get binary all is the only instruction that is trans-

lated to native code for all argument combinations. On the
other hand, for example the bs get binary instruction is only
executed in native code if the result ends up being a sub-
binary. The bs get float instruction is only executed in na-
tive code if it has an effective size of 64 and the bs get integer
instruction is only executed in native code if it has an effec-
tive size that is less than 28 and it is big-endian. For several
of the cases, this decision has to be made at runtime.

The translation of the {bs get binary all, Flags}(State) in-
struction depends on the low bit of the Flags argument.
When it is not set, a runtime test will check if the three
low bits of State.Offset are equal to zero. If not, execution
will continue at the FailLabel. Otherwise, both cases will
continue in the same way by subtracting State.Offset from
State.Size and place that result in an RTL temporary (Tmp1)
which is then right-shifted by 3 to get the size of the new
binary in bytes. The offset in bytes of the new sub-binary is
obtained in a similar way from State.Offset and is placed in
another temporary (Tmp2). After this, State.Size is moved
to State.Offset. Finally, the Make binary utility is used with
the return variable, Tmp1, Tmp2, and State.Orig as argu-
ments; see also Table 3.

The {bs get binary, Size, Flags}(Sizevar, State) instruction
is translated to native code when the result is a sub-binary.
Depending on whether there is a Sizevar or not, the trans-
lations are slightly different. If there is a Sizevar, the utility
Gen make size is invoked to produce code that multiplies Size
with Sizevar and place the result in a temporary (Tmp1).
If there is no Sizevar, Size is placed directly in Tmp1. A
check is made to see if the value in Tmp1 is evenly divisi-
ble by eight. If this is not the case, execution continues at
FailLabel. In case the low bit of Flags is not set, a runtime
check is performed to see if State.Offset is evenly divisible
by eight. If this is not the case, Gen bs call is invoked to call
the interpreter, but if it is evenly divisible by eight the result
of the match will be a sub-binary. However, we first have
to check if there are enough bits left to perform the match.
This is done by he Check size utility, State.Size is used as the
binsize argument, State.Offset as the offset argument, Tmp1

as the size argument and a new temporary (Tmp2) as the
NewOffset argument. After this, Tmp1 and State.Offset are
right-shifted to get the size and offset of the sub-binary in
bytes. Then the Make binary utility is used with the return
variable, Tmp1, State.Offset and State.Orig as arguments.
Finally Tmp2 is moved into State.Offset.

The {bs get float, Size, Flags}(Sizevar, State) instruction
is translated to native code only if the effective size is 64
and the binary is byte-aligned; otherwise a call to the in-
terpreter function is made using Gen bs call. The effective
size is constructed as in the bs get binary case and the re-
sult is placed in a temporary Tmp1. (In case there is no
Sizevar , the check that Size is 64 is done at compile time.)
If the low bit in Flags is not set, a check is made to ensure
that State.Offset is evenly divisible by eight. If these condi-
tions are met, the Check size utility is used with State.Size,
State.Offset, and Tmp1 as the first three arguments and a
new temporary (Tmp2) as the NewOffset argument. After
this, State.Offset is right-shifted by 3 and Load bytes is called
with Tmp1 as Dst, State.Base as Base, State.Offset as Offset,
Signedness set to ‘unsigned’ and Endianism set to little or big as
dictated by the second bit in Flags. NoOfBytes is set to four.
Then State.Offset is increased by one and the Load bytes util-
ity is invoked again with the same arguments except that a
new temporary (Tmp3) is used instead of Tmp1. Finally,
the utility Make float is called with the return variable, Tmp1

and Tmp3 as arguments, or in case it is little-endian with
the reverse order of Tmp1 and Tmp3.

The {bs get int, Size, Flags}(Sizevar, State) instruction
is the most complicated one to translate. To simplify the
presentation, four different cases will be considered. When
we write right*-shift below it means that it is an arithmetic
right-shift if the signed flag is set and a logic right-shift if
it is not set. The requirement that Size has to be smaller
than 28 might seem extremely arbitrary, but it guarantees
that the result can be stored as a tagged integer in one 32-bit
machine word.

1. This case occurs when

• Size < 28

• No Sizevar argument exists.

• Low bit set in Flags. (Byte alignment)

Its translation is to use the Check size utility with Size,
State.Size, State.Offset, and a new temporary (Tmp1)
as arguments to see if there are enough bits left in
the binary. State.Offset is right-shifted three posi-
tions. Then Load bytes is used with a new tempo-
rary (Tmp2) as Dst, State.Base as Base, State.Offset
as Offset, Signedness set as dictated by the third bit
in Flags, Endianism as dictated by the second bit in
Flags, and NoOfBits as dSize/8e. Tmp1 is then moved
to State.Offset. To remove extra bits, Tmp2 is right*-
shifted (8 − Size) mod 8 positions. Finally, Tmp2 is
tagged1 and the result is moved into the return regis-
ter.

1The current tagging is left-shift four positions and an or with 15.

2. This case occurs when

• Size < 28

• No Sizevar argument exists.

• Low bit not set in Flags. (No byte alignment)

• Third bit not set in Flags. (big-endian)

First we calculate the minimal number of bits that
need to be loaded (found by masking the last three
bits of State.Offset and putting the result into Tmp1).
Then Size is added and the result is placed in Tmp2. If
this result is larger than 32, a call is made to the in-
terpreter using Gen bs call. After this, Check size checks
whether the instruction is OK. The same arguments
are used as in case 1 except that the NewOffset argu-
ment is a new temporary (Tmp3). A runtime check is
performed to decide how many bytes should be loaded.
The choice is restricted by Size to two different possi-
bilities. The result is that dTmp2/8e bytes are loaded.
State.Offset is then right-shifted by 3 and Load bytes is
used to load the number of bytes that has been decided
earlier. These bytes are loaded into Tmp2. After that,
Tmp3 is moved into State.Offset. Then Tmp2 is left-
shifted 8∗(4−the number of bytes loaded). Then Tmp2

is left-shifted again this time Tmp1 positions. Finally
Tmp2 is right*-shifted (28−Size) positions and the re-
sult of (Tmp2 or 15) is placed in the return variable.

3. This case occurs when

• A Sizevar argument is present.

• Low bit set in Flags. (Byte alignment)

• Third bit not set in Flags. (big-endian)

The effective size is produced by Gen make size and put
into Tmp1. Tmp1 is then checked to see if it is larger
than 27. If that is the case a call is made to the emula-
tor. Otherwise a number of bytes that is equal to the
value of Tmp1 right shifted 3 positions are loaded into
Tmp2. State.Offset is than increased by Tmp1. After
that Tmp2 is right shifted (8 - Tmp1 & 7) positions.
Finally the value in Tmp2 is tagged and moved into
the return variable

4. This is the default case and is translated simply by
a call to the corresponding interpreter function using
Gen bs call.

Examples.Eight different examples of translation of read-
ing instructions to pseudo-RTL code are shown in Table 3.
One corresponding to the case when a bs get binary all in-
struction is not guaranteed to be byte-aligned. Two different
examples for the bs get binary instruction with and with-
out a variable size argument. There are also two examples
of the bs get float instruction. One that is big-endian and
has a variable size argument and one with static size that
is little-endian. There are three different examples of the
bs get integer instruction; one for each of cases 1, 2, and 3.

The structure of the pseudo-RTL code is the same as be-
fore except that there is also a mapping of the different tem-
poraries, the argument variables, and the return value to
specific RTL registers as shown below:

r5 ← Tmp1 v0 ← Return value
r6 ← Tmp2 v1 ← Argument variable
r7 ← Tmp3

5. MEMORY MANAGEMENT
Several of the translated instructions might need space on

the heap and can therefore trigger garbage collection. How-
ever, performing garbage collection in the middle of a bi-
nary matching operation is problematic because the match-
ing state can contain pointers to the heap and these pointers
are currently not considered as roots by the BEAM garbage
collector. Modifying the code of the collector is of course
an option, but since we want to minimize the changes to
parts of the runtime system that are outside the control of
HiPE, the only real option we have is to ensure that there
is enough room on the heap when a matching begins.

Consider the beginning and the end of a binary matching
operation as discussed in Section 3.1. With this definition we
can find the graphs that describe the binary matches from
a control flow graph of an entire function. These graphs
have some special properties. They are acyclic, they have
one start node and only the last instruction in each basic
block can write to the heap. The last property follows
from the fact that all reading instructions have Success-
and Fail-Labels. Three of the instructions that can write
to the heap have well-defined maximum space needs. For
example, the maximum need for bs get float is 3 words.
It is 4 for bs get binary all and (max heap bin size/4)+2
words for bs get binary. One can further decrease these max-
imal limits by looking at the Size and Flags arguments and
whether or not there is a runtime argument. The situa-
tion is slightly more complicated for bs get int, because this
instruction may need an arbitrary amount of heap space
since an Erlang bignum can contain an arbitrary number
of words. It seems inevitable that the maximum heap need
calculation needs to be done at runtime in this case.

It is however undesirable to have to do complicated cal-
culations every time a binary matching starts. Hence, to
avoid this we separate the heap need for instructions with
well defined maximal heap needs (heapneed1) from the heap
need of other instructions (heapneed2). The calculation of
heapneed1 is simple and inductively defined: By assigning
a heap need in words to each node in the match graph, the
maximum heap need of a leaf node is equal to the heap need
of that node and then the maximum heap need of a non-leaf
node can be calculated as the heap need of a node plus the
maximum heap need of the nodes’ successors. The maximal
heap need of a match is thus given by the maximum heap
need of the node containing the bs start match instruction.

To get a conservative estimate of heapneed2 (i.e., an es-
timate guaranteed to be larger than or equal to the actual
value of heapneed2) we just sum the individual heap needs of
each of the instructions that contribute to heapneed2. That
this is a conservative estimate follows from the fact that the
match graph is acyclic and therefore each instruction can
only be executed once. To perform this addition at runtime
is a simple feat and when this has been done heapneed1 and
heapneed2 are added and a check is performed to see whether
there is enough room on the heap to perform the match or
whether a call to the garbage collector has to precede the
match. (Before the matching begins, a garbage collection is
possible.)

6. PERFORMANCE
The performance evaluation of our implementation is di-

vided into three parts: The first part tests the speed of exe-

Table 3: Translation of reading instructions to RTL.
v0 ={bs get binary all, 0}(State) v0 ={bs get binary, 40, 1}(State)
r5 ← (r3 ’and’ 7)
if (r5 eq 0) then L1 else FL

L1: r5 ← (r2 sub r3)
r5 ← (r5 srl 3)
r6 ← (r3 srl 3)
r3 ← r2
Make sub binary(v0, r5, r6, r4) then SL

r5 ← 40
r6 ← (r5 ’and’ 7)
if (r6 eq 0) then L1 else FL

L1: Check size(r2, r3, r5, r6) then L2 else FL
L2: r5 ← (r5 srl 3)

r3 ← (r3 srl 3)
Make sub binary(v0, r5, r3, r4)
r3 ← r6 then SL

v0 ={bs get binary, 8, 0}(v1, State) v0 ={bs get float, 8, 0}(v1, State)
Gen make size(r5, 8, v1) then L1 else FL

L1: r6 ← (r5 ’and’ 7)
if (r6 eq 0) then L2 else FL

L2: r6 ← (r3 ’and’ 7)
if (r6 eq 0) then L3 else L5

L3: Check size(r2, r3, r5, r6) then L4 else FL
L4: r5 ← (r5 srl 3)

r3 ← (r3 srl 3)
Make sub binary(v0, r5, r3, r4)
r3 ← r6 then SL

L5: Gen bs call({bs get binary,8,0}) then SL else FL

Gen make size(r5, 8, v1) then L1 else FL
L1: if (r5 eq 64) then L2 else L5

L2: r6 ← (r3 ’and’ 7)
if (r6 eq 0) then L3 else L5

L3: Check size(r2, r3, r5, r6) then L4 else FL
L4: r3 ← (r3 srl 3)

Load bytes(r5, r1, r3, unsigned, big, 4)
r3 ← (r3 add 1)
Load bytes(r7, r1, r3, unsigned, big, 4)
Make float(v0, r5, r7) then SL

L5: Gen bs call({bs get float,8,0}) then SL else FL

v0 ={bs get float, 64, 3}(State) v0 ={bs get integer, 10, 5}(State)
r5 ← 64
Check size(r2, r3, r5, r6) then L1 else FL

L1: r3 ← (r3 srl 3)
Load bytes(r5, r1, r3, unsigned, little, 4)
r3 ← (r3 add 1)
Load bytes(r7, r1, r3, unsigned, little, 4)
Make float(v0, r7, r5) then SL

Check size(r2, r3, 10, r5) then L1 else FL
L1: r3 ← (r3 srl 3)

Load bytes(r6, r1, r3, signed, big, 2)
r3 ← r5
r6 ← (r6 sra 6)
r6 ← (r6 sll 4)
v0 ← (r6 ’or’ 15) then SL

v0 ={bs get integer, 20, 0}(State) v0 ={bs get integer, 1, 1}(v1, State)
r5 ← (r3 ’and’ 7)
r6 ← (r5 add 20)
if (r6 le 32) then L1 else L6

L1: Check size(r2, r3, 17, r7) then L2 else FL
L2: r3 ← (r3 srl 3)

if (r6 le 24) then L3 else L4

L3: Load bytes(r6, r1, r3, unsigned, big, 3)
r6 ← (r6 sll 8) then L5

L4: Load bytes(r6, r1, r3, unsigned, big, 4) then L5

L5: r3 ← r7
r6 ← (r6 sll r5)
r6 ← (r6 srl 8)
v0 ← (r6 ’or’ 15) then SL

L6: Gen bs call({bs get int,20,0}) then SL else FL

Gen make size(r7, 1, v1) then L1 else FL
L1: if (r7 lt 28) then L2 else L11

L2: Check size(r2, r3, r7, r5) then L3 else FL
L3: r3 ← (r3 srl 3)

if (r7 le 8) then L4 else L5

L4: Load bytes(r6, r1, r3, unsigned, big, 1) then L10

L5: if (r7 le 16) then L6 else L7

L6: Load bytes(r6, r1, r3, unsigned, big, 2) then L10

L7: if (r7 le 24) then L8 else L9

L8: Load bytes(r6, r1, r3, unsigned, big, 3) then L10

L9: Load bytes(r6, r1, r3, unsigned, big, 4) then L10

L10: r3 ← r5
r7 ← (r7 and 7)
r7 ← (8 sub r7)
r6 ← (r6 srl r7)
r6 ← (r6 sll 4)
v0 ← (r6 ’or’ 15) then SL

L11: Gen bs call({bs get int,1,1}) then SL else FL

cution of two telecom applications supplied to us by Ericsson
depending on the compilation scheme that is used. The sec-
ond part quantifies how alignment influences the speed of
execution for different translation schemes. The program
used is a small synthetic benchmark that parses a binary
into integers, floats and binaries; to do so, it uses all the dif-
ferent BEAM instructions that handle binaries. The third
part examines how the speed of execution of an Erlang
program that does not use the bit syntax compares to one
that does. All performance tests have been conducted on a
machine with a 266 MHz Pentium processor running Linux.

6.1 Application performance
We evaluated the performance of code compiled with the

scheme presented in this paper (HiPE v 1.2), comparing it
to that of the BEAM and of HiPE v 1.1 (the version of
HiPE included in Erlang/OTP R8B) that does not compile
bit syntax operations to native code but instead treats them
as built-in functions.

The benchmarks used are functions from the core of two
protocol handling Erlang applications supplied to us by Er-
icsson. The extract gtp c message (extract) function takes

Table 4: Time performance for the extract and de-
code benchmarks (in seconds).

BEAM HiPE v 1.1 HiPE v 1.2
extract 10.3 9.63 4.87
decode 142.2 191.3 141.2

Table 5: Time performance for the synthetic bench-
mark (in seconds).

BEAM HiPE v 1.2
aligned, static size 37.3 16.7
unaligned, static size 58.3 38.8
aligned, variable size 58.4 30.2
unaligned, variable size 58.0 52.1

a binary containing a GTP C message as input, extracts the
information from the message header, and returns it. The
decode gtp c message (decode) function also takes a binary
containing a GTP C message as input, but this function
translates the entire message into a record.

Execution times for the functions with the different com-
pilation schemes are shown in Table 4. It is clear that the
new compilation scheme outperforms the old one for both
functions. For the extract, native code compilation is sig-
nificantly faster than calling C functions (BEAM) as well.
This is probably because most of the instructions in the ex-
tract program are quite simple, so a lot of calculations can
be inlined to native code which favors this approach.

In decode, the difference between HiPE v 1.2 and BEAM
is less than 1%. The reason for this small difference is prob-
ably because this program contains quite complex binary in-
structions. Some of these are not translated to native code
at all, and the remaining ones are translated to complicated
native code that quite possibly is not significantly more ef-
ficient than the corresponding machine code generated by
the GNU C compiler.

6.2 Impact of byte alignment
We have devised a small synthetic benchmark to display

the properties of the new compilation scheme with respect
to byte alignment. The program takes a binary and parses
it into three integers, two binaries and a float. One of the
integers is used to decide the flow of execution. The bench-
mark also uses bs skip bits instructions. The program exists
in four different versions. One where all operations are byte-
aligned, one where only the last operation is byte-aligned,
one where the sizes are given as arguments but the unit

specifier is used to guarantee byte-alignment, and finally
one where the sizes are given as arguments but the unit

specifiers do not guarantee alignment.
We have run this benchmark compiled with HiPE v 1.2

and with the BEAM . The results, presented in Table 5,
show that the scheme presented in this paper is quite sen-
sitive to the alignment of the operations. In contrast, the
BEAM has about the same execution speed for three of
the versions of the program and is only slightly faster for
the first version. In HiPE v 1.2 the performance of the
unaligned versions are significantly lower than that of the
aligned versions. The conclusion is that the new scheme fa-
vors code that respects byte alignment, but it is faster than
the BEAM even if the code is not structured in this way.

Table 6: Time performance for the broadband
benchmark (in seconds).

BEAM HiPE v 1.2
broadband-Bif 24.5 16.5
broadband-bs 16.2 6.77

6.3 Bit syntax versus Bifs
The last part of the evaluation compares the performance

of an Erlang program that uses the bit syntax with that of
an equivalent program using built-in functions (Bifs) such as
split binary and binary to list to manipulate binaries.
The program (originally using Bifs) was supplied to us by
Ericsson and we have translated it to a program that uses
the bit syntax. This program, just like the decode program
in Section 6.1, takes a binary and parses it into a record.
The program implements a broadband protocol. We refer
to the two different versions of the program as broadband-bs
and broadband-Bif.

The different versions were run with HiPE v 1.2 and
BEAM . Timings are shown in Table 6. The results show a
speedup of about a factor four when changing to using the
bit syntax and compiling with HiPE v 1.2 . A reason for
this is that the translation from the Bifs that manipulated
binaries to the bit syntax has been quite straightforward.
This automatically conserves byte boundary alignment since
one could only operate on bytes with the old Bifs that ma-
nipulate binaries.

Acknowledgments
This research has been supported in part by the ASTEC
(Advanced Software Technology) competence center with
matching funds by Ericsson Development.

7. REFERENCES
[1] E. Johansson, M. Pettersson, and K. Sagonas. HiPE: A

High Performance Erlang system. In Proceedings of the
ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, pages 32–43. ACM Press,
Sept. 2000.

[2] P. Nyblom. The bit syntax - the released version. In
Proceedings of the Sixth International Erlang/OTP
User Conference, Oct. 2000. Available at
http://www.erlang.se/euc/00/.

[3] M. Pettersson, K. Sagonas, and E. Johansson. The
HiPE/x86 Erlang compiler: System description and
performance evaluation. In Proceedings of the Sixth
International Symposium on Functional and Logic
Programming, LNCS. Springer, Sept. 2002.

[4] C. Wikström and T. Rogvall. Protocol programming in
Erlang using binaries. In Proceedings of the Fifth
International Erlang/OTP User Conference, Oct. 1999.
Available at http://www.erlang.se/euc/99/.

