Demand-Driven Indexing of Prolog Clauses

Vitor Santos Costa Konstantinos Sagongsand Ricardo Lopes

1 LIACC- DCC/FCUP, University of Porto, Portugal
2 National Technical University of Athens, Greece

Abstract. As logic programming applications grow in size, Prolog sys$ need
to efficiently access larger and larger data sets and the foeeahy- and multi-
argument indexing becomes more and more profound. Stat&rggon of multi-
argument indexing is one alternative, but applicationsrofely on features that
are inherently dynamic which makes static techniques ilnzgdge or inaccurate.
Another alternative is to employ dynamic schemes for flexidémand-driven
indexing of Prolog clauses. We propose such schemes andsdisgsues that
need to be addressed for their efficient implementation éncintext of WAM-
based Prolog systems. We have implemented demand-drigeniiny in two dif-
ferent Prolog systems and have been able to obtain nongit#gliperformance
speedups: from a few percent up to orders of magnitude. Ghese results, we
see very little reason for Prolog systems not to incorpaatee form of dynamic
indexing based on actual demand. In fact, we see demanehdridexing as only
the first step towards effective runtime optimization of|[Bggprograms.

1 Introduction

The WAM [1] has mostly been a blessing but occasionally alsorae for Prolog sys-
tems. Its ingenious design has allowed implementors to get tbde compilers with
decent performance — it is not a fluke that most Prolog systemstill based on the
WAM. On the other handhecausehe WAM gives good performance in many cases,
implementors have not incorporated in their systems maatyfes that drastically de-
part from WAM'’s basic characteristics. For example, firguanent indexing is suffi-
cient for many Prolog applications. However, it is cleanyp=optimal for applications
accessing large data sets; for a long time now, the dataloasegnity has recognized
that good indexing is the basis for fast query processing.

As logic programming applications grow in size, Prolog syss need to efficiently
access larger and larger data sets and the need for any- dtichrgument indexing
becomes more and more profound. Static generation of mrgtiment indexing is one
alternative. The problem is that this alternative is oftemttractive because it may
drastically increase the size of the generated byte codelaisd unnecessarily. Static
analysis can partly address this concern, but in applicatibat rely on features which
are inherently dynamic (e.g., generating hypotheses fludtive logic programming
data sets during runtime) static analysis is inapplicablgrossly inaccurate. Another
alternative, which has not been investigated so far, is tibedkible indexing on demand
during program execution.

* Dedicated to the memory of our friend, colleague and coaURicardo Lopes. We miss you!

This is precisely what we advocate with this paper. More iigadly, we present a
small extension to the WAM that allows for flexible indexinfgRrolog clauses during
runtime based on actual demand. For static predicatesclteerse we propose is partly
guided by the compiler; for dynamic code, besides being aeirthiven by queries, the
method needs to cater for code updates during runtime. Wharechemes radically
depart from current practice is that they generate new lmde during runtime, in effect
doing a form of just-in-time compilation. In our experiertbese schemes pay off. We
have implemented demand-driven indexing in two differenaidyy systems (YAP and
XXX) and have obtained non-trivial speedups, ranging frofevapercent to orders of
magnitude, across a wide range of applications. Given tressdts, we see very little
reason for Prolog systems not to incorporate some form aximg) based on actual
demand from queries. In fact, we see demand-driven indexingnly the first step
towards effective runtime optimization of Prolog programs

Organization. After commenting on the state of the art and related work eamng in-
dexing in Prolog systems (Sect. 2) we briefly review indeximtpe WAM (Sect. 3). We
then present demand-driven indexing schemes for statat.($eand dynamic (Sect. 5)
predicates, their implementation in two Prolog systemst(S8) and the performance
benefits they bring (Sect. 7). The paper ends with some cdimguemarks.

2 State of the Art and Related Work

Many Prolog systems still only support indexing on the mainctor symbol of the
first argument. Some others, such as YAP version 4, can Ic#éérsome compound
terms [2]. SICStus Prolog supposdhallow backtracking3]; choice points are fully
populated only when it is certain that execution will entiee ttlause body. While
shallow backtracking avoids some of the performance proslef unnecessary choice
point creation, it does not offer the full benefits that inidexcan provide. Other sys-
tems such as BIM-Prolog [4], SWI-Prolog [5] and XSB [6] alldar user-controlled
multi-argument indexing. Notably, ilProlog [7] uses cofegime heuristics and gener-
ates code for multi-argument indexing automatically. Irtteése systems, this support
comes with various implementation restrictions. For exi@mnip SWI-Prolog at most
four arguments can be indexed; in XSB the compiler does ret afiulti-argument
indexing and the predicates need to be asserted insteachavedf no system where
multi-argument indexing looks inside compound terms. Mionportantly, requiring
users to specify arguments to index on is neither userdhjemor guarantees good per-
formance results.

Recognizing the need for better indexing, researchers msed more flexible
indexing mechanisms for Prolog. For example, Hickey and &aloli proposedwitch-
ing trees[8], which rely on the presence of mode information. Simpaoposals were
put forward by Van Roy, Demoen and Willems who investigateteking on several
arguments in the form of aelection tred9] and by Zhou et al. who implemented a
matching treeoriented abstract machine for Prolog [10]. For static pratis, the XSB
compiler offers support founification factoring[11]; for asserted code, XSB can rep-
resent databases of facts usimigs [12] which provide left-to-right multi-argument

indexing. However, in XSB none of these mechanisms is usezhatically; instead
the user has to specify appropriate directives.

Long ago, Kliger and Shapiro argued that such tree-basesking schemes are
not cost effective for the compilation of Prolog program3][ISome of their arguments
make sense for certain applications, but, as we shall shayerieral they underestimate
the benefits of indexing on EDB predicates. Neverthelesstriie that unless the modes
of predicates are known we run the risk of doing indexing otpotarguments, whose
only effect is an unnecessary increase in compilation tiamel more importantly, in
code size. In a programming language such as Mercury [14jevm@des are known
the compiler can of course avoid this risk; indeed in Mereaundes (and types) are used
to guide the compiler generate good indexing tables. Howéwe situation is different
for a language like Prolog. Getting accurate informationwtihe set of all possible
modes of predicates requires a global static analyzer iodh®iler — and most Prolog
systems do not come with one. More importantly, it requirks af discipline from the
programmer (e.g., that applications use the module systégiausly and never bypass
it). As a result, most Prolog systems currently do not prevfe type of indexing that
applications require. Even in systems such as Ciao [15]¢lwto come with a built-
in static analyzer and more or less force such a disciplinherprogrammer, mode
information is not used for multi-argument indexing.

The situation is actually worse for certain types of Prolpplecations. For example,
consider applications in the area of inductive logic progmreng. These applications on
the one hand have high demands for effective indexing sheeneed to efficiently ac-
cess big datasets and on the other they are unfit for statigsisisince queries are often
ad hoc and generated only during runtime as new hypothesésrared or refined. Our
thesis is that the abstract machine should be able to adaphatically to the runtime
requirements of such or, even better, of all applicationeioploying increasingly ag-
gressive forms of dynamic compilation. As a concrete examphlhat this means in
practice, in this paper we will attack the problem of safisfpthe indexing needs of ap-
plications during runtime. Naturally, we will base our te@ue on the existing support
for indexing that the WAM provides, but we will extend thigogort with the technique
of demand-driven indexing that we describe in the next sasti

3 Indexing in the WAM

To make the paper relatively self-contained we review tlikeexing instructions of the
WAM and their use. In the WAM, the first level of dispatchingaives a test on the
type of the argument. Thewitch_on_term instruction checks the tag of the derefer-
enced value in the first argument register and implementsrafay branch where one
branchis for the dereferenced register being an unbourablayone for being atomic,
one for (non-empty) list, and one for structure. In any casatrol goes to a bucket
of clauses. In the buckets for constants and structureseitend level of dispatching
involves the value of the register. Thwitch_on_constant andswitch_on_structure in-
structions implement this dispatching: typically wittiadl instruction when the bucket
is empty, with gilump instruction for only one clause, with a sequential scan wthen
number of clauses is small, and with a hash table lookup whemamber of clauses

has_property(di,salmonella,p).
has_property(di,salmonellan,p).
has_property(d2,salmonella,p).
has_property(d2,cytogen_ca,n).
has_property(d3,cytogen_ca,p) .

L: get_constant r; d1
get_constant 2 salmonella
get_constant r3 p
proceed

(@) Some Prolog clauses L2: get_constant r; d1

get_constant 72 salmonella_n S‘f‘"tCh—O"—COnStant r1 5T
get_constant r3 p dindex_on_constant 72 5 3

switch_on_constant ry 5 T proceed dindex_on_constant r3 5 3
try Ly L3: get_constant 71 d2 try Ly

retry Lo get_constant r> salmonella retry Lo
retry L get_constant r3 p retry L3
retry Ly proceed retry Ly
trust Ls Ly: get_constant 71 d2 trust Ls

get_constant o cytogen_ca

T :[Hash Table Info get_constant 75 n T :[Hash Table Info
dl[try L, proceed diftry L,
trust Lo Ls: get_constant 71 d3 trust Lo
d2ftry L get_constant ro cytogen_ca d2try L3
trust Ly get_constant r3 p trust Ly
d3[jump Ls proceed d3[jump L5
(b) WAM indexing (c) Code for the clauses (d) Any arg indexing

Fig. 1. Part of the Carcinogenesis dataset and WAM code that a bgteaampiler generates

exceeds a threshold. For this reason ¢léch_on_constant andswitch_on_structure
instructions take as arguments the hash tdbknd the number of clausés the ta-
ble contains. In each bucket of this hash table and also ittleket for the variable
case ofswitch_on_term the code sequentially backtracks through the clauses asing
try-retry-trust chain of instructions. Thay instruction sets up a choice point, treery
instructions (if any) update certain fields of this choicénpcand thetrust instruction
removes it.

The WAM has additional indexing instructionsy_-me_else and friends) that allow
indexing to be interspersed with the code of clauses. Wenatliconsider them here.
This is not a problem since the above scheme handles allgragrAlso, we will feel
free to do some minor modifications and optimizations whéngimplifies things.

Let's see an example. Consider the Prolog code shown in (@&y.d fragment of the
machine learning dataséarcinogenesisThese clauses get compiled to the WAM code
shown in Fig. 1(c). The first argument indexing code that ddgroompiler generates is
shown in Fig. 1(b). This code is typically placed before thdefor the clauses and the
switch_on_constant is the entry point of the predicate. Note that compared wathila
WAM this instruction has an extra argument: the registehen/glue of which we index
(r1). This extra argument will allow us to go beyond first argutrindexing. Another
departure from the WAM is that if this argument register eamt an unbound variable
instead of a constant then execution will continue with teetimstruction; in effect we
have merged part of the functionality e&itch_on_term into theswitch_on_constant
instruction. This small change in the behaviorsafitch_on_constant will allow us to
get demand-driven indexing. Let’s see how.

4 Demand-Driven Indexing of Static Predicates

For static predicates the compiler has complete informatimut all clauses and shapes
of their head arguments. It is both desirable and possitikkeadvantage of this infor-
mation at compile time and so we treat the case of static paezs separately. We will
do so with schemes of increasing effectiveness and impl&tien complexity.

4.1 A simple WAM extension for any argument indexing

Let us initially consider the case where the predicatesdexrtonsist only of Datalog
facts. This is commonly the case for all extensional datpasdicates where indexing
is most effective and called for.

Refer to the example in Fig. 1. The indexing code of Fig. Ifbuis a small cost for
a call where the first argument is a variable (namely, exegulieswitch_on_constant
instruction) but the instruction pays off for calls where first argument is bound. On
the other hand, for calls where the first argument is a frebtr and some other ar-
gument is bound, a choice point will be created, tttyeretry-trust chain will be used,
and execution will go through the code of all clauses. Thidesrly inefficient, more
so for larger data sets. We can do much better with the relgtsimple scheme shown
in Fig. 1(d). Immediately after thewitch_on_constant instruction, we can statically
generatalindex_on_constant (demand indexing) instructions, one for each remaining
argument. Recall that the entry point of the predicate iswhg-h_on_constant instruc-
tion. Thedindex_on_constant r; N A instruction works as follows:

— if the argument; is a free variable, execution continues with the next ircstoum;

— otherwise, demand-driven indexing kicks in as follows. @betract machine scans
the WAM code of the clauses and creates an index table forahees of the cor-
responding argument. It can do so because the instructi@s &s arguments the
number of clause8l to index and the arityA of the predicate. (In our example,
the numbers 5 and 3.) For Datalog facts, this informationfcent. Because the
WAM byte code for the clauses has a very regular structueejrttiex table can
be created very quickly. Upon its creation, thiedex_on_constant instruction gets
transformed to awitch_on_constant. Again this is straightforward because of the
two instructions have similar layouts in memory. Executibthe abstract machine
then continues with thewitch_on_constant instruction.

Figure 2 shows the index tabl® which is created for our example and how the in-
dexing code looks after the execution of a call with mddet,in,?). Note that the
dindex_on_constant instruction for argument registes has been appropriately patched.
The call that triggered demand-driven indexing and subsetgalls of the same mode
will use tableTs. The index for the second argument has been created.

The main advantage of this scheme is its simplicity. The dedgode (Fig. 1(d))
is not significantly bigger than the code which a WAM-basechpider would generate
(Fig. 1(b)) and, if demand-driven indexing turns out unrssegy during runtime (e.g.
execution encounters only open calls or with only the firguarent bound), the extra
overhead is minimal: the execution of somrfi@dex_on_constant instructions for the
open call only. In short, this is a simple scheme that allawvsrfdexing onany single
argument. At least for big sets of Datalog facts, we see lithson not to use it.

switch_on_constant r; 5 T

switch_on_constant r2 5 T T :[Hash Table Info Ts: Hash Table Info
dindex_on_constant r3 5 3 diftry L1 salmonella |[try Lj
try Ly trust Lo trust L3
retry Lo d2|try L3 salmonella n [jump Lo
retry L3 trust Ly cytrogen_ca [try Ly
retry Ly d3 [jump L5 trust L5
trust L5

Fig. 2. WAM code after demand-driven indexing for argumenf2;is generated dynamically

Optimizations. Because we are dealing with static code, there are opptesifior
some easy optimizations. Suppose we statically deterritehere will never be any
calls with in mode for some arguments or that these arguments are noindisat-
ing enougl® Then we can avoid generatidindex_on_constant instructions for them.
Also, suppose we know that some arguments are most liketydttzers to be used in
the in mode. Then we can simply place thadex_on_constant instructions for them
before the instructions for other arguments. This is pdssimce all indexing instruc-
tions take the argument register number as an argumentpttosir does not matter.

4.2 From any argument indexing to multi-argument indexing

The scheme of the previous section gives us only single aegtimdexing. However,
all the infrastructure we need is already in place. We carittis®btain any fixed-order
multi-argument demand-driven indexing in a straightfamvaay.

Note that the compiler knows exactly the set of clauses thedho be tried for each
query with a specific symbol in the first argument. For multitament demand-driven
indexing, instead of generating for each hash bucket omlyetry-trust instructions,
the compiler can prepend appropriate demand indexinguictibns. We illustrate this
on our running example. The tallé contains fourdindex_on_constant instructions:
two for each of the remaining two arguments of hash bucketts more than one al-
ternative. For hash buckets with none or only one alteradivg., ford3’s bucket)
there is obviously no need to resort to demand-driven indgfor the remaining ar-
guments. Figure 3 shows the state of the hash tables aftesxéhmution of queries
has property(C,salmonella,T), which created,, andhas_property(d2,P,n)
which creates th@3; table and transforms thdindex_on_constant instruction ford2
and register to the appropriatewitch_on_constant instruction.

Implementation issuedn thedindex_on_constant instructions of Fig. 3 notice the in-
teger 2 which denotes the number of clauses that the instnueill index. Using this
number an index table of appropriate size will be createdh @s73. To fill this ta-
ble we need information about the clauses to index and thédslgtio hash on. The
clauses can be obtained by scanning the labels ofrthestry-trust instructions fol-

lowing dindex_on_constant; the symbols by looking at appropriate byte code offsets

(based on the argument register number) from these lalvetsud running example,
the symbols can be obtained by looking at the second arguofiéime get_constant in-

struction whose argument register-s In the loaded bytecode, assuming the argument

% In our example, suppose the third argumeritas_property/3 was the atonp throughout.

Ts: Hash Table Info
T Hash Table Info salmonella [dindex_on_constant r3 2 3
switch_on_constant ry 5 T} d1]dindex_on_constant 72 2 3 try L1
switch_on_constant ro 5 Th dindex_on_constant r3 2 3 trust L3
dindex_on_constant r3 5 3 try L1 salmonella n |jump Lo
try L1 trust Lo cytrogen_ca [dindex_on_constant r3 2 3
retry Lo d2 [dindex_on_constant r2 2 3 try Ly
retry L3 switch_on_constant r3 2 T3 trust L5
retry Ly try L3
trust L5 trust Ly T3:|Hash Table Info
d3[jump L5 p[jump L3
nljump Ly

Fig. 3. demand-driven indexing for all arguments; is static;7» andT5 are created dynamically

register is represented in one byte, these symbols are foinadf(get_constant) +
sizeof(opcode) + 1 bytes away from the clause label; see Fig. 1(c). Thus, multi-
argument demand-driven indexing is easy to get and theieneat index tables can
be extremely fast when indexing Datalog facts.

4.3 Beyond Datalog and other implementation issues

Indexing on demand clauses with function symbols is notiiggmtly more difficult.
The scheme we have described is applicable but requiresitbeiing extensions:

1. Besideslindex_on_constant we also needindex_on_term anddindex_on_structure
instructions. These are the demand-driven indexing copates of the WAM’s
switch_on_term andswitch_on_structure.

2. Because the byte code for the clause heads does not négdsaee a regular
structure, the abstract machine needs to be able to “wadkdiyte code instructions
and recover the symbols on which indexing will be based. Wgisuch a code
walking procedure is not hard.

3. Indexing on a position that contains unconstrained égafor some clauses is
tricky. The WAM needs to group clauses in this case and witkpacial treatment
creates two choice points for this argument (one for thealdes and one per each
group of clauses). However, this issue and how to deal wishwell-known by now.
Possible solutions to it are described in a paper by Carld€jrand can be readily
adapted to demand-driven indexing. Alternatively, in aparimplementation, we
can skip demand-driven indexing for positions with varésih some clauses.

Before describing demand-driven indexing more formallg,r@mark on the following
design decisions whose rationale may not be immediateliooby

— By default, only tableT; is generated at compile time (as in the WAM) and the
additional index tableg5, T3, ... are generated dynamically. This is because we
do not want to increase compiled code size unnecessagly (¥hen there is no
demand for these indices).

— On the other hand, we generati@dex_on_* instructions at compile time for the
head argumentsThis does not noticeably increase the generated byte cdde bu

4 Thedindex_on_* instructions forT; can be generated either by the compiler or the loader.

greatly simplifies code loading. Notice that a nice propeftthe scheme we have
described is that the loaded byte code can be patefibdutthe need to move any
instructions.

— Finally, one may wonder why théindex_on_* instructions create the dynamic in-
dex tables with an additional code walking pass instead gfybacking on the
pass which examines all clauses via the ntayaretry-trust chain. Main reasons
are: 1) in many cases the code walking can be selective adedbly offsets and
2) by first creating the index table and then using it we spgethe execution of
the queries and often avoid unnecessary choice point onsati

Note that all these decisions are orthogonal to the main éiebare under compiler
control. For example, if analysis determines that someraggu sequences will never
demand indexing we can simply avoid generatiodioeflex_on_* instructions for them.
Similarly, if some argument sequences will definitely dethemalexing we can speed up
execution by generating the appropriate tables at conipikeinstead of dynamically.

4.4 Demand-driven index construction and its properties

The idea behind demand-driven indexing can be capturedimgéessentencewe can
generate every index we need during program execution wheimtdex is demanded
Subsequent uses of these indices can speed up executioderably more than the
time it takes to construct them (more on this below) so thiginbe action makes sense.
Letp/k be a predicate with clauses. At a high level, its indices form a tree whose
root is the entry point of the predicate. For simplicity, @s® that the root node of
the tree and the interior nodes corresponding to the inddr far the first argument
have been constructed at compile time. Leaves of this teetharnodes containing the
code for the clauses of the predicate and each clause idfidériy a unique label
L;,1 <1 < n. Execution always starts at the first instruction of the made and fol-
lows Algorithm 1. The algorithm might look complicated batdctually quite simple.
Each non-leaf node contains a sequence of byte code instraavith groups of the
form(L,..., I, Th,...,T1),0 <m < k,1 <! < nwhere each of thé instructions,
if any, is either aswitch_on_* or adindex_on_* instruction and each of th€ instruc-
tions either forms a sequence ©f-retry-trust instructions (ifl > 1) or is ajump
instruction (ifl = 1). Step 2.2 dynamically constructs an index tableshose buckets
are the newly created interior nodes in the tree. Each buadsziciated with a single
clause contains amp to the label of that clause. Each bucket associated with many
clauses starts with the instructions which are yet to be visited and continues with a
try-retry-trust chain pointing to the clauses. When the index construciatone, the
instruction mutates to switch_on_* WAM instruction.

Complexity properties.Index construction during runtime does not change the com-
plexity of query execution. First, note that each demande@x table will be con-
structed at most once. Alsodiandex_on_* instruction will be encountered only in cases
where execution would examine all clauses intiyeretry-trust chain® The construc-
tion visits these clausesiceand then creates the index table in time linear in the num-
ber of clauses as one pass over the liicof.) pairs suffices. After index construction,

® This statement is possibly not valid in the presence of Rrolds.

Algorithm 1 Actions of the abstract machine with demand-driven indgxin

1. if the current instructiod is aswitch_on_*, try, retry, trust or jump, act as in the WAM,;

2. if the current instructiod is adindex_on_* with arguments-, [, andk (r is a register) then
2.1 if register contains a variable, the action igato the next instruction in the node;
2.2 if registerr contains a value, the action is to dynamically construct the index:

2.2.1 collect the subsequent instructions in aZisintil the next instruction is ary;

2.2.2 for each labeL in the try-retry-trust chain inspect the code of the clause with
label L to find the symbole associated with register in the clause; (This step
creates a list ofc, L) pairs.)

2.2.3 create an index tabfE out of these pairs as follows:

e if I is adindex_on_constant or adindex_on_structure then create an index
table for the symbols in the list of pairs; each entry of th#das identified by
a symbolc and contains:
x the instructionjump L. if L. is the only label associated with
x the sequence of instructions obtained by appending &ctry-retry-trust
chain for the sequence of labdls, . . ., L; that are associated with
e if I is adindex_on_term then
x partition the sequence of labelsn the list of pairs into sequences of labels
L., L; andL; for constants, lists and structures, respectively;
x for each of the four sequencés L., £;, L of labels create code:
- the instructiorfail if the sequence is empty;
- the instructionump L if L is the only label in the sequence;
- the sequence of instructions obtained by appendiaggtory-retry-trust
chain for the current sequence of labels;
2.2.4 transform thdindex_on_* r, [, k instruction to awitch_on_* r, [, 7 instruction;
2.2.5 continue execution with this instruction.

execution will visit a subset of these clauses as the ind&r taill be consulted. Thus,
in cases where demand-driven indexing is not effectivecatken of a query will at
most double due to dynamic index construction. In fact, Wisst case is pessimistic
and unlikely in practice. On the other hand, demand-drivelexing can change the
complexity of query evaluation fror®@(n) to O(1) wheren is the number of clauses.

4.5 More implementation choices

The observant reader has no doubt noticed that Algorithnotiges multi-argument
indexing but only for the main functor symbol. For clausethvwgiompound terms that
require indexing in their sub-terms we can either employogam transformation such
asunification factoring11] at compile time or modify the algorithm to consider inde
positions inside compound terms. This is relatively eagjatbut requires support from
the register allocator (passing the sub-terms of compaemaktin appropriate registers)
and/or a new set of instructions. Due to space limitation®mé further details.
Algorithm 1 relies on a procedure that inspects the code tdwse and collects the
symbols associated with some particular index positiogp(2t2.2). If we are satisfied
with looking only at clause heads, this procedure needsderstand only the structure
of get andunify instructions. Thus, it is easy to write. At the cost of in@edimple-
mentation complexity, this step can of course take into actother information that

may exist in the body of the clause (e.g., type tests sustaaéX), atom(X), aliasing
constraints such & = Y, numeric constraints such as> 0, etc.).

A reasonable concern for demand-driven indexing is ine@asemory consump-
tion. In our experience, this does not seem to be a problemaictipe since most ap-
plications do not have demand for indexing on many argumemthénations. In ap-
plications where it does become a problem or when runningnier&vironment with
limited memory, we can easily put a bound on the size of indbies, either globally
or for each predicate separately. For example dihdex_on_* instructions can either
become inactive when this limit is reached, or better yet ewe recover the space of
some tables. To do so, we can employ any standard recyclgugiddm (e.g., LRU)
and reclaim the memory of index tables that are no longerén Tkis is easy to do by
reverting the correspondirsgvitch_on_* instructions back taindex_on_* instructions.
If the indices are demanded again at a time when memory itablaithey can simply
be regenerated.

5 Demand-Driven Indexing of Dynamic Predicates

We have so far lived in the comfortable world of static pratks, where the set of
clauses to index is fixed and the compiler can take advantatigsdknowledge. Dy-
namic code introduces several complications:

— We need mechanisms to update multiple indices when newedare asserted or
retracted. In particular, we need the ability to expand awsbibly shrink multiple
code chunks after code updates.

— We do not know a priori which are the best index positions aarthot determine
whether indexing on some arguments is avoidable.

— Supporting the logical update (LU) semantics of ISO Prolegdmes harder.

We briefly discuss possible ways of addressing these issloegever, note that Prolog
systems typically provide indexing for dynamic predicaéesl thus already deal in
some way or another with these issues; demand-driven ingerakes the problems
more involved but not fundamentally different than withyfitst argument indexing.

The first complication suggests that we should allocate nmgrfos dynamic in-
dices in separate chunks, so that these can be expandedadiotated independently.
Indeed, this is what we do. Regarding the second complitaitiothe absence of any
other information, the only alternative is to generate éedifor all arguments. As op-
timizations, we can avoid indexing predicates with only ofeaise and exclude argu-
ments where some clause has a variable.

Under LU semantics, calls to dynamic predicates execute“snapshot” of the
corresponding predicate. Each call sees the clauses tlsatdat the time when the
call was made, even if some of the clauses were later rettacteew clauses were
asserted. If several calls are alive in the stack, seveegsdots will be alive at the
same time. The standard solution to this problem is to use stamps to tell which
clauses aréive for which calls. This solution complicates freeing indelslés because:
(1) an index table holds references to clauses, and (2) e rtzay be in use (i.e., may
be accessible from the execution stacks). An index tableithkilled in several steps:

Detach the index table from the indexing tree.

Recursivelxill every child of the current table; if a table is killed so assdhildren.
Wait until the table is not in use, that is, it is not pointedrom anywhere.

Walk the table and release any references it may hold.

Physically recover space.

akrwnE

6 Implementation in XXX and in YAP

The implementation of demand-driven indexing in XXX follew variant of the scheme
presented in Sect. 4. The compiler uses heuristics to diterthe best argument to
index on (i.e., this argument is not necessarily the first) employsswitch_on_* in-
structions for this task. It also statically generai@siex_on_constant instructions for
other arguments that are good candidates for demand-dridexing. Currently, an
argument is considered a good candidate if it has only cotssta only structure sym-
bols in all clauses. Thus, XXX uses onlindex_on_constant anddindex_on_structure
instructions, never dindex_on_term. Also, XXX does not perform demand-driven in-
dexing inside structure symbols. For dynamic predicatemahd-driven indexing is
employed only if they consist of Datalog facts; if a clauseahitis not a Datalog fact is
asserted, all dynamically created index tables for theipagelare simply removed and
thedindex_on_constant instruction becomes@op. All this is done automatically, but
the user can disable demand-driven indexing in compile@ csihg an option.

YAP implements demand-driven indexing since version 5. dimeent implemen-
tation supports static code, dynamic code, and the intetatabase. It differs from
the algorithm presented in Sect. 4 in tladitindexing code is generated on demand
Thus, YAP cannot assume thadiadex_on_* instruction is followed by ary-retry-trust
chain. Instead, by default YAP has to search the whole paselfor clauses that match
the current position in the indexing code. Doing so for evedex expansion was found
to be very inefficient for larger relations: in such cases Y#ilPmaintain a list of match-
ing clauses at eaalindex_on_* node. Indexing dynamic predicates in YAP follows very
much the same algorithm as static indexing: the key ideatstiost nodes in the index
tree must be allocated separately so that they can grow mkshdependently. YAP
can index arguments where some clauses have unconstranables, but only for
static predicates, as in dynamic code this would complisapport for LU semantics.

YAP uses the term JITI (Just-In-Time Indexing) to refer tondemd-driven indexing.
In the next section we will take the liberty to use this terna@envenient abbreviation.

7 Performance Evaluation

We evaluate JITI on a set of benchmarks and applicationsufirout, we compare per-
formance of JITI with first argument indexing. For the benelnks of Sect. 7.1 and 7.2
which involve both systems, we used a 2.4 GHz P4-based laytbhfb12 MB of mem-
ory. For the benchmarks of Sect. 7.3 which involve YAP 5..n®0nve used a 8-node
cluster, where each node is a dual-core AMD 2600+ machirte 2@B of memory.

Table 1.Performance of some benchmarks with 1st vs. demand-dnmigexing (times in msecs)

(@) When JITl is ineffective (b) When JITl is effective
YAP XXX YAP XXX
Benchmark 1st JITI|| 1st JITI 1st JITI| ratio 1st JITI| ratio

tc_l_io (8000) 13 14 4] 4 |sg-cyl 2,864 24 119x|| 2,390 28 85x
tc_r_io (2000) |14451469| 614 615 |muta 30,057 16,783 1.79x||26,31421,5741.22
tc_d_io (400) |{3208326(|23382300 |pta 5,131 188 27x| 4,443 279 16x
tc_l_oo (2000)|{39353987|20262105 |tea ||1,478,81854,616 27x — — —
tc_r_oo (2000)|28412952(1502 1512
tc_d_oo (400)||37353805|49764978
compress 36143595|28752848

7.1 Performance of demand-driven indexing when ineffectie

In some programs, demand-driven indexing does not trfiggremight trigger but have
no effect other than an overhead due to runtime index cortitru We therefore wanted
to measure this overhead. As both systems support tablieglesided to use tabling
benchmarks because they are small and easy to understarmk@ause they are a bad
case for JITl in the following sense: tabling avoids geriatatepetitive queries and the
benchmarks operate over extensional database (EDB) ptediof size approximately
equal to the size of the program. We ussimpress, a tabled program that solves a
puzzle from an ICLP Prolog programming competition. Thesotienchmarks are dif-
ferent variants of tabled left, right and doubly recursiansitive closure over an EDB
predicate forming a chain of size shown in Table 1(a) in preses. For each variant of
transitive closure, we issue two queries: one with méiie, out) and one with mode
(out,out). For YAP, indices on the first argument atrg-retry-trust chains are built
on all benchmarks under demand-driven indexing. For XXXmded-driven indexing
triggers on no benchmark but tdindex_on_constant instructions are executed for the
threetc_?_oo benchmarks. As can be seen in Table 1(a), demand-drivexinmgeven
when ineffective, incurs a runtime overhead that is at tiaellef noise and goes mostly
unnoticed. We also note that our aim heren@t to compare the two systems, so the
YAP andXXX columns should be read separately.

7.2 Performance of demand-driven indexing when effective

On the other hand, when demand-driven indexing is effectivean significantly im-
prove runtime performance. We use the following prograntsapplications:

sg_cyl The same generation DB benchmark dhtax 24 x 2 cylinder. We issue the open query.
muta A computationally intensive application where most pratiés are defined intentionally.
pta A tabled logic program implementing Andersen’s pointstalgisis. A medium-sized im-
perative program is encoded as a set of facts (about 16,0@0pmperties of interest are
encoded using rules. Program properties are then detegrhinthe closure of these rules.
tea Another implementation of Andersen’s points-to analyBie analyzed program, thevac
benchmark, is encoded in a file of 411,696 facts (62,759, %8dsbn total). Its compilation
exceeds the limits of the XXX compiler (w/o JITI). So we ruistbenchmark only in YAP.

8 1n XXX only; even 1st argument indexing is generated on dainahnen JITI is used in YAP.

As can be seen in Table 1(b), demand-driven indexing sigmifig improves the
performance of these applications nuta, which spends most of its time in recursive
predicates, the speed up is offl§% in YAP and22% in XXX. The remaining bench-
marks execute several times (fraré up to 119) faster. It is important to realize that
these speedups are obtained automaticalg, without any programmer intervention
or by using any compiler directives, in all these applicasgio

7.3 Performance of demand-driven indexing on ILP applicatbns

The need for demand-driven indexing was originally notigedhductive logic pro-
gramming applications. These applications tend to issugoadjueries during execu-
tion and thus their indexing requirements cannot be detexchat compile time. On
the other hand, they operate on lots of data, so memory cqutfamis a reasonable
concern. We evaluate JITI's time and space performance ore $earning tasks us-
ing the Aleph system [17] and the datasets of Fig. 4 whicheissmple queries in an
extensional database. Several of these datasets arerstamttee ILP literature.

Time performanceWe compare times for 10 runs of the saturation/refinemenéayfc
the ILP system; see Table 2(a). TMesh and Pyrimidines applications are the only
ones that do not benefit much from indexing in the databasg;db benefit through
from indexing in the dynamic representation of the seareltspas their running times
improve somewhat with demand-driven indexing.

The BreastCancer and GeneExpression applications use unstructured data. The
speedup here is mostly from multiple argument indexBwgastCancer is particularly
interesting. It consists of 40 binary relations with 65kneémnts each, where the first
argument is the key. We know that most calls have the firstraggt bound, hence
indexing was not expected to matter much. Instead, thetseshbw demand-driven
indexing to improve running time by more than an order of nitagie. This suggests
that even a small percentage of badly indexed calls can eddminating runtime.

IE-Protein_Extraction and Thermolysin are example applications that manip-
ulate structured datdE-Protein_Extraction is the largest dataset we consider, and
indexing is absolutely critical. The speedup is not justriegsive; it is simply not pos-
sible to run the application in reasonable time with onlyt frgument indexingT her-
molysin is smaller and performs some computation per query, but ssedemand-
driven indexing improves its performance by an order of nitagie. The remaining
benchmarks improve from one to more than two orders of magdeit

Space performancé&able 2(b) shows memory usage when using demand-driverinde
ing. The table presents data obtained at a point near thefenaoution; memory us-
age should be at the maximum. These applications use a miatstatic and dynamic
predicates and we show their memory usage separately. @n@tadicates, memory
usage varies widely, from only 10% to the worst c&Saxcinogenesis, where the in-
dex tables take more space than the original program. Haséstdominate usage in
IE-Protein_Extraction andSusi, whereasry-retry-trust chains dominate iBreast-
Cancer. In most other cases no single component dominates memaggusemory
usage for dynamic predicates is shown in the last two coluthissdata is mostly used
to store the search space. Observe that there is a much leesdread in this case. A

Table 2. Time and space performance of JITI on Inductive Logic Pnogning datasets

(a) Time (in seconds) (b) Memory usage (in KB)

Time Static code | Dynamic code
Benchmark 1st JITI| ratio || | Clauseg Index | Clauseg Index
BreastCancer 1,450 88| 16x 60,940 46,887 630 14
Carcinogenesis 17,705 192| 92x 1,801 2,678 13,5120 942
Choline 14,7661 1,397 11x 666 174 3,172 174
GeneExpression 193,283 7,483 26x 46,726 22,629 116,463 9,015
IE-Protein_Extraction || 1,677,146 2,909/577x || || 146,033 129,333 53,423 1,531
Mesh 4 3| 1.3x 802 161| 2,149 109
Pyrimidines 487,545 253,235 1.9x 774 218| 25,84012,291
Susi 105,091 307|342 x 5,007, 2,509, 4,497 759
Thermolysin 50,279 5,213 10x 2,317 929(116,129 7,064

GeneExpression learns rules for yeast gene activity given a database ofsyéheir interac-
tions, and micro-array gene expression data;

BreastCancer processes real-life patient reports towards predictingttdr an abnormality
may be malignant;

IE-Protein_Extraction processes information extraction from paper abstracteaoch pro-
teins;

Susi learns from shopping patterns;

Mesh learns rules for finite-methods mesh design;

Carcinogenesis, Choline, Pyrimidines try to predict chemical properties of compounds and
store them as tables, given their chemical composition aajdnmproperties;

Thermolysin also manipulates chemical compounds but learns from thestBizture of a
molecule’s conformations.

Fig. 4. Description of the ILP datasets used in the performance aoisgn of Table 2

more detailed analysis shows that most space is occupielebliash tables and by
internal nodes of the tree, and that relatively little spaocgccupied bytry-retry-trust
chains, suggesting that demand-driven indexing is begavéil in practice.

8 Concluding Remarks

Motivated by the needs of applications in the areas of indeidbgic programming,
program analysis, deductive databases, etc. to accesdatasets efficiently, we have
described a novel but also simple idealexing Prolog clauses on demand during pro-
gram executionGiven the impressive speedups this idea can provide foymBrap-
plications, we are a bit surprised similar techniques haiteren explored before. In
general, Prolog systems have been reluctant to performatitaizations during run-
time and our feeling is that LP implementation has been ldittdehind. We hold
that this should change. Indeed, we see demand-drivenimgles only a first, very
successful, step towards effective runtime optimizatiblogic programs.

As presented, demand-driven indexing is a hybrid techniopgex generation oc-
curs during runtime but is partly guided by the compiler,dexe we want to combine
it with compile-time WAM-style indexing. More flexible schees are of course possi-
ble. For example, index generation can be fully dynamic ifagAP), combined with
user declarations, or driven by static analysis to be evere rselective or go beyond
fixed-order indexing. Last, observe that demand-driveeirty fully respects Prolog
semantics. Better performance can be achieved in the daftere solution computa-
tions, or in the context of tabling where order of clauses soldtions does not matter
and repeated solutions are discarded.

Acknowledgmentd his work is dedicated to the memory of our friend and colieag
Ricardo Lopes. We miss you!{\tor Santos Costa was partially supported by CNPq and
would like to acknowledge support received while visitinidJ&V-Madison and the sup-
port of the YAP user community. This work has been partialigorted by MYDDAS
(POSC/EIA/59154/2004) and by funds granted to LIACC thiotite Programa de Fi-
nanciamento Plurianual, Fundac¢ao para a Ciéncia e Tagiaand Programa POSC.

AcknowledgmentsVitor Santos Costa was partially supported by CNPq and avoul
like to acknowledge support received while visiting at UVadlilson and the support
of the YAP user community. This work has been partially supgmbby MYDDAS
(POSC/EIA/59154/2004) and by funds granted to LIACC thtotlge Programa de
Financiamento Plurianual, Fundacao para a Ciéncia eolegia and Programa POSC.

References

[EnY

. Warren, D.H.D.: An abstract Prolog instruction set. Tédtte 309, SRI International (1983)
. Santos Costa, V., Damas, L., Reis, R., Azevedo, R.: YAR'€/sanual. (2002)
3. Carlsson, M.: On the efficiency of optimising shallow baakking in compiled Prolog. In
Levi, G., Martelli, M., eds.: Proceedings of the Sixth ICIMRT Press (June 1989) 3—-15
4. Demoen, B., Marién, A., Callebaut, A.: Indexing in Pialdn Lusk, E.L., Overbeek, R.A.,
eds.: Proceedings of NACLP, MIT Press (1989) 1001-1012
5. Wielemaker, J.: SWI-Prolog 5.1: Reference Manual. SWHiversity of Amsterdam,
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands7{29®3)
6. Sagonas, K.F., Swift, T., Warren, D.S., Freire, J., RaoTRe XSB Programmer’s Manual.
State University of New York at Stony Brook. (1997)
7. Trongon, R., Janssens, G., Demoen, B., Vandecasteel&adt frequent quering with lazy
control flow compilation. Theory and Practice of Logic Pragming (2007) To appear.
8. Hickey, T., Mudambi, S.: Global compilation of Prolog.RIZ(3) (November 1989) 193-230
9. Van Roy, P., Demoen, B., Willems, Y.D.: Improving the extian speed of compiled Prolog
with modes, clause selection and determinism. In: TAPS®FTSpringer (1987) 111-125
10. Zhou, N.F., Takagi, T., Kazuo, U.: A matching tree orgehabstract machine for Prolog. In
Warren, D.H.D., Szeredi, P., eds.: ICLP90, MIT Press (19%8-173
11. Dawson, S., Ramakrishnan, C.R., Ramakrishnan, 1.\goisss, K., Skiena, S., Swift, T.,
Warren, D.S.: Unification factoring for the efficient exdoutof logic programs. In: Con-
ference Record of POPL'95, ACM Press (January 1995) 247-258
12. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T.,ré&farD.S.: Efficient access mecha-
nisms for tabled logic programs. Journal of Logic Programm®8(1) (January 1999) 31-54

N

13.

14.

15.

16.

17.

Kliger, S., Shapiro, E.: A decision tree compilationaaithm for FCP(;:,?). In: Proceedings
of the Fifth ICSLP, MIT Press (August 1988) 1315-1336

Somogyi, Z., Henderson, F., Conway, T.: The executigorghm of Mercury, an efficient
purely declarative logic programming language. J6P1-3) (December 1996) 17-64
Hermenegildo, M.V., Puebla, G., Bueno, F., Lopez-@aif.: Integrated program debugging,
verification, and optimization using abstract interpiieta{and the Ciao system preproces-
sor). Science of Computer Programmi§(1-2) (2005) 115-140

Carlsson, M.: Freeze, indexing, and other implemenridtisues in the WAM. In Lassez,
J.L., ed.: Proceedings of the Fourth ICLP, MIT Press (May7)9®-58

Srinivasan, A.: The Aleph Manual. (2001)

