
Demand-Driven Indexing of Prolog Clauses⋆

Vı́tor Santos Costa1, Konstantinos Sagonas2, and Ricardo Lopes

1 LIACC- DCC/FCUP, University of Porto, Portugal
2 National Technical University of Athens, Greece

Abstract. As logic programming applications grow in size, Prolog systems need
to efficiently access larger and larger data sets and the needfor any- and multi-
argument indexing becomes more and more profound. Static generation of multi-
argument indexing is one alternative, but applications often rely on features that
are inherently dynamic which makes static techniques inapplicable or inaccurate.
Another alternative is to employ dynamic schemes for flexible demand-driven
indexing of Prolog clauses. We propose such schemes and discuss issues that
need to be addressed for their efficient implementation in the context of WAM-
based Prolog systems. We have implemented demand-driven indexing in two dif-
ferent Prolog systems and have been able to obtain non-negligible performance
speedups: from a few percent up to orders of magnitude. Giventhese results, we
see very little reason for Prolog systems not to incorporatesome form of dynamic
indexing based on actual demand. In fact, we see demand-driven indexing as only
the first step towards effective runtime optimization of Prolog programs.

1 Introduction

The WAM [1] has mostly been a blessing but occasionally also acurse for Prolog sys-
tems. Its ingenious design has allowed implementors to get byte code compilers with
decent performance — it is not a fluke that most Prolog systemsare still based on the
WAM. On the other hand,becausethe WAM gives good performance in many cases,
implementors have not incorporated in their systems many features that drastically de-
part from WAM’s basic characteristics. For example, first argument indexing is suffi-
cient for many Prolog applications. However, it is clearly sub-optimal for applications
accessing large data sets; for a long time now, the database community has recognized
that good indexing is the basis for fast query processing.

As logic programming applications grow in size, Prolog systems need to efficiently
access larger and larger data sets and the need for any- and multi-argument indexing
becomes more and more profound. Static generation of multi-argument indexing is one
alternative. The problem is that this alternative is often unattractive because it may
drastically increase the size of the generated byte code anddo so unnecessarily. Static
analysis can partly address this concern, but in applications that rely on features which
are inherently dynamic (e.g., generating hypotheses for inductive logic programming
data sets during runtime) static analysis is inapplicable or grossly inaccurate. Another
alternative, which has not been investigated so far, is to doflexible indexing on demand
during program execution.

⋆ Dedicated to the memory of our friend, colleague and co-author Ricardo Lopes. We miss you!

This is precisely what we advocate with this paper. More specifically, we present a
small extension to the WAM that allows for flexible indexing of Prolog clauses during
runtime based on actual demand. For static predicates, the scheme we propose is partly
guided by the compiler; for dynamic code, besides being demand-driven by queries, the
method needs to cater for code updates during runtime. Whereour schemes radically
depart from current practice is that they generate new byte code during runtime, in effect
doing a form of just-in-time compilation. In our experiencethese schemes pay off. We
have implemented demand-driven indexing in two different Prolog systems (YAP and
XXX) and have obtained non-trivial speedups, ranging from afew percent to orders of
magnitude, across a wide range of applications. Given theseresults, we see very little
reason for Prolog systems not to incorporate some form of indexing based on actual
demand from queries. In fact, we see demand-driven indexingas only the first step
towards effective runtime optimization of Prolog programs.

Organization.After commenting on the state of the art and related work concerning in-
dexing in Prolog systems (Sect. 2) we briefly review indexingin the WAM (Sect. 3). We
then present demand-driven indexing schemes for static (Sect. 4) and dynamic (Sect. 5)
predicates, their implementation in two Prolog systems (Sect. 6) and the performance
benefits they bring (Sect. 7). The paper ends with some concluding remarks.

2 State of the Art and Related Work

Many Prolog systems still only support indexing on the main functor symbol of the
first argument. Some others, such as YAP version 4, can look inside some compound
terms [2]. SICStus Prolog supportsshallow backtracking[3]; choice points are fully
populated only when it is certain that execution will enter the clause body. While
shallow backtracking avoids some of the performance problems of unnecessary choice
point creation, it does not offer the full benefits that indexing can provide. Other sys-
tems such as BIM-Prolog [4], SWI-Prolog [5] and XSB [6] allowfor user-controlled
multi-argument indexing. Notably, ilProlog [7] uses compile-time heuristics and gener-
ates code for multi-argument indexing automatically. In all these systems, this support
comes with various implementation restrictions. For example, in SWI-Prolog at most
four arguments can be indexed; in XSB the compiler does not offer multi-argument
indexing and the predicates need to be asserted instead; we know of no system where
multi-argument indexing looks inside compound terms. Moreimportantly, requiring
users to specify arguments to index on is neither user-friendly nor guarantees good per-
formance results.

Recognizing the need for better indexing, researchers haveproposed more flexible
indexing mechanisms for Prolog. For example, Hickey and Mudambi proposedswitch-
ing trees[8], which rely on the presence of mode information. Similarproposals were
put forward by Van Roy, Demoen and Willems who investigated indexing on several
arguments in the form of aselection tree[9] and by Zhou et al. who implemented a
matching treeoriented abstract machine for Prolog [10]. For static predicates, the XSB
compiler offers support forunification factoring[11]; for asserted code, XSB can rep-
resent databases of facts usingtries [12] which provide left-to-right multi-argument

indexing. However, in XSB none of these mechanisms is used automatically; instead
the user has to specify appropriate directives.

Long ago, Kliger and Shapiro argued that such tree-based indexing schemes are
not cost effective for the compilation of Prolog programs [13]. Some of their arguments
make sense for certain applications, but, as we shall show, in general they underestimate
the benefits of indexing on EDB predicates. Nevertheless, itis true that unless the modes
of predicates are known we run the risk of doing indexing on output arguments, whose
only effect is an unnecessary increase in compilation timesand, more importantly, in
code size. In a programming language such as Mercury [14] where modes are known
the compiler can of course avoid this risk; indeed in Mercurymodes (and types) are used
to guide the compiler generate good indexing tables. However, the situation is different
for a language like Prolog. Getting accurate information about the set of all possible
modes of predicates requires a global static analyzer in thecompiler — and most Prolog
systems do not come with one. More importantly, it requires alot of discipline from the
programmer (e.g., that applications use the module system religiously and never bypass
it). As a result, most Prolog systems currently do not provide the type of indexing that
applications require. Even in systems such as Ciao [15], which do come with a built-
in static analyzer and more or less force such a discipline onthe programmer, mode
information is not used for multi-argument indexing.

The situation is actually worse for certain types of Prolog applications. For example,
consider applications in the area of inductive logic programming. These applications on
the one hand have high demands for effective indexing since they need to efficiently ac-
cess big datasets and on the other they are unfit for static analysis since queries are often
ad hoc and generated only during runtime as new hypotheses are formed or refined. Our
thesis is that the abstract machine should be able to adapt automatically to the runtime
requirements of such or, even better, of all applications byemploying increasingly ag-
gressive forms of dynamic compilation. As a concrete example of what this means in
practice, in this paper we will attack the problem of satisfying the indexing needs of ap-
plications during runtime. Naturally, we will base our technique on the existing support
for indexing that the WAM provides, but we will extend this support with the technique
of demand-driven indexing that we describe in the next sections.

3 Indexing in the WAM

To make the paper relatively self-contained we review the indexing instructions of the
WAM and their use. In the WAM, the first level of dispatching involves a test on the
type of the argument. Theswitch on term instruction checks the tag of the derefer-
enced value in the first argument register and implements a four-way branch where one
branch is for the dereferenced register being an unbound variable, one for being atomic,
one for (non-empty) list, and one for structure. In any case,control goes to a bucket
of clauses. In the buckets for constants and structures the second level of dispatching
involves the value of the register. Theswitch on constant andswitch on structure in-
structions implement this dispatching: typically with afail instruction when the bucket
is empty, with ajump instruction for only one clause, with a sequential scan whenthe
number of clauses is small, and with a hash table lookup when the number of clauses

has property(d1,salmonella,p).

has property(d1,salmonella n,p).
has property(d2,salmonella,p).

has property(d2,cytogen ca,n).
has property(d3,cytogen ca,p).

(a) Some Prolog clauses

switch on constant r1 5 T1

try L1

retry L2

retry L3

retry L4

trust L5

T1: Hash Table Info
d1 try L1

trust L2

d2 try L3

trust L4

d3 jump L5

(b) WAM indexing

L1: get constant r1 d1
get constant r2 salmonella

get constant r3 p
proceed

L2: get constant r1 d1
get constant r2 salmonella n
get constant r3 p

proceed
L3: get constant r1 d2

get constant r2 salmonella
get constant r3 p

proceed
L4: get constant r1 d2

get constant r2 cytogen ca

get constant r3 n
proceed

L5: get constant r1 d3
get constant r2 cytogen ca
get constant r3 p

proceed

(c) Code for the clauses

switch on constant r1 5 T1

dindex on constant r2 5 3
dindex on constant r3 5 3
try L1

retry L2

retry L3

retry L4

trust L5

T1: Hash Table Info
d1 try L1

trust L2

d2 try L3

trust L4

d3 jump L5

(d) Any arg indexing

Fig. 1. Part of the Carcinogenesis dataset and WAM code that a byte code compiler generates

exceeds a threshold. For this reason theswitch on constant andswitch on structure

instructions take as arguments the hash tableT and the number of clausesN the ta-
ble contains. In each bucket of this hash table and also in thebucket for the variable
case ofswitch on term the code sequentially backtracks through the clauses usinga
try-retry-trust chain of instructions. Thetry instruction sets up a choice point, theretry
instructions (if any) update certain fields of this choice point, and thetrust instruction
removes it.

The WAM has additional indexing instructions (try me else and friends) that allow
indexing to be interspersed with the code of clauses. We willnot consider them here.
This is not a problem since the above scheme handles all programs. Also, we will feel
free to do some minor modifications and optimizations when this simplifies things.

Let’s see an example. Consider the Prolog code shown in Fig. 1(a), a fragment of the
machine learning datasetCarcinogenesis. These clauses get compiled to the WAM code
shown in Fig. 1(c). The first argument indexing code that a Prolog compiler generates is
shown in Fig. 1(b). This code is typically placed before the code for the clauses and the
switch on constant is the entry point of the predicate. Note that compared with vanilla
WAM this instruction has an extra argument: the register on the value of which we index
(r1). This extra argument will allow us to go beyond first argument indexing. Another
departure from the WAM is that if this argument register contains an unbound variable
instead of a constant then execution will continue with the next instruction; in effect we
have merged part of the functionality ofswitch on term into theswitch on constant

instruction. This small change in the behavior ofswitch on constant will allow us to
get demand-driven indexing. Let’s see how.

4 Demand-Driven Indexing of Static Predicates

For static predicates the compiler has complete information about all clauses and shapes
of their head arguments. It is both desirable and possible totake advantage of this infor-
mation at compile time and so we treat the case of static predicates separately. We will
do so with schemes of increasing effectiveness and implementation complexity.

4.1 A simple WAM extension for any argument indexing

Let us initially consider the case where the predicates to index consist only of Datalog
facts. This is commonly the case for all extensional database predicates where indexing
is most effective and called for.

Refer to the example in Fig. 1. The indexing code of Fig. 1(b) incurs a small cost for
a call where the first argument is a variable (namely, executing theswitch on constant

instruction) but the instruction pays off for calls where the first argument is bound. On
the other hand, for calls where the first argument is a free variable and some other ar-
gument is bound, a choice point will be created, thetry-retry-trust chain will be used,
and execution will go through the code of all clauses. This isclearly inefficient, more
so for larger data sets. We can do much better with the relatively simple scheme shown
in Fig. 1(d). Immediately after theswitch on constant instruction, we can statically
generatedindex on constant (demand indexing) instructions, one for each remaining
argument. Recall that the entry point of the predicate is theswitch on constant instruc-
tion. Thedindex on constant ri N A instruction works as follows:

– if the argumentri is a free variable, execution continues with the next instruction;
– otherwise, demand-driven indexing kicks in as follows. Theabstract machine scans

the WAM code of the clauses and creates an index table for the values of the cor-
responding argument. It can do so because the instruction takes as arguments the
number of clausesN to index and the arityA of the predicate. (In our example,
the numbers 5 and 3.) For Datalog facts, this information is sufficient. Because the
WAM byte code for the clauses has a very regular structure, the index table can
be created very quickly. Upon its creation, thedindex on constant instruction gets
transformed to aswitch on constant. Again this is straightforward because of the
two instructions have similar layouts in memory. Executionof the abstract machine
then continues with theswitch on constant instruction.

Figure 2 shows the index tableT2 which is created for our example and how the in-
dexing code looks after the execution of a call with mode(out,in,?). Note that the
dindex on constant instruction for argument registerr2 has been appropriately patched.
The call that triggered demand-driven indexing and subsequent calls of the same mode
will use tableT2. The index for the second argument has been created.

The main advantage of this scheme is its simplicity. The compiled code (Fig. 1(d))
is not significantly bigger than the code which a WAM-based compiler would generate
(Fig. 1(b)) and, if demand-driven indexing turns out unnecessary during runtime (e.g.
execution encounters only open calls or with only the first argument bound), the extra
overhead is minimal: the execution of somedindex on constant instructions for the
open call only. In short, this is a simple scheme that allows for indexing onany single
argument. At least for big sets of Datalog facts, we see little reason not to use it.

switch on constant r1 5 T1

switch on constant r2 5 T2

dindex on constant r3 5 3
try L1

retry L2

retry L3

retry L4

trust L5

T1: Hash Table Info

d1 try L1

trust L2

d2 try L3

trust L4

d3 jump L5

T2: Hash Table Info

salmonella try L1

trust L3

salmonella n jump L2

cytrogen ca try L4

trust L5

Fig. 2. WAM code after demand-driven indexing for argument 2;T2 is generated dynamically

Optimizations. Because we are dealing with static code, there are opportunities for
some easy optimizations. Suppose we statically determine that there will never be any
calls with in mode for some arguments or that these arguments are not discriminat-
ing enough.3 Then we can avoid generatingdindex on constant instructions for them.
Also, suppose we know that some arguments are most likely than others to be used in
thein mode. Then we can simply place thedindex on constant instructions for them
before the instructions for other arguments. This is possible since all indexing instruc-
tions take the argument register number as an argument; their order does not matter.

4.2 From any argument indexing to multi-argument indexing

The scheme of the previous section gives us only single argument indexing. However,
all the infrastructure we need is already in place. We can useit to obtain any fixed-order
multi-argument demand-driven indexing in a straightforward way.

Note that the compiler knows exactly the set of clauses that need to be tried for each
query with a specific symbol in the first argument. For multi-argument demand-driven
indexing, instead of generating for each hash bucket onlytry-retry-trust instructions,
the compiler can prepend appropriate demand indexing instructions. We illustrate this
on our running example. The tableT1 contains fourdindex on constant instructions:
two for each of the remaining two arguments of hash buckets with more than one al-
ternative. For hash buckets with none or only one alternative (e.g., ford3’s bucket)
there is obviously no need to resort to demand-driven indexing for the remaining ar-
guments. Figure 3 shows the state of the hash tables after theexecution of queries
has property(C,salmonella,T), which createsT2, andhas property(d2,P,n)

which creates theT3 table and transforms thedindex on constant instruction ford2
and registerr3 to the appropriateswitch on constant instruction.

Implementation issues.In thedindex on constant instructions of Fig. 3 notice the in-
teger 2 which denotes the number of clauses that the instruction will index. Using this
number an index table of appropriate size will be created, such asT3. To fill this ta-
ble we need information about the clauses to index and the symbols to hash on. The
clauses can be obtained by scanning the labels of thetry-retry-trust instructions fol-
lowing dindex on constant; the symbols by looking at appropriate byte code offsets
(based on the argument register number) from these labels. In our running example,
the symbols can be obtained by looking at the second argumentof theget constant in-
struction whose argument register isr2. In the loaded bytecode, assuming the argument

3 In our example, suppose the third argument ofhas property/3 was the atomp throughout.

switch on constant r1 5 T1

switch on constant r2 5 T2

dindex on constant r3 5 3

try L1

retry L2

retry L3

retry L4

trust L5

T1: Hash Table Info

d1 dindex on constant r2 2 3
dindex on constant r3 2 3
try L1

trust L2

d2 dindex on constant r2 2 3

switch on constant r3 2 T3

try L3

trust L4

d3 jump L5

T2: Hash Table Info
salmonella dindex on constant r3 2 3

try L1

trust L3

salmonella n jump L2

cytrogen ca dindex on constant r3 2 3
try L4

trust L5

T3: Hash Table Info
p jump L3

n jump L4

Fig. 3.demand-driven indexing for all arguments;T1 is static;T2 andT3 are created dynamically

register is represented in one byte, these symbols are foundsizeof(get constant) +
sizeof(opcode) + 1 bytes away from the clause label; see Fig. 1(c). Thus, multi-
argument demand-driven indexing is easy to get and the creation of index tables can
be extremely fast when indexing Datalog facts.

4.3 Beyond Datalog and other implementation issues

Indexing on demand clauses with function symbols is not significantly more difficult.
The scheme we have described is applicable but requires the following extensions:

1. Besidesdindex on constant we also needdindex on term anddindex on structure

instructions. These are the demand-driven indexing counterparts of the WAM’s
switch on term andswitch on structure.

2. Because the byte code for the clause heads does not necessarily have a regular
structure, the abstract machine needs to be able to “walk” the byte code instructions
and recover the symbols on which indexing will be based. Writing such a code
walking procedure is not hard.

3. Indexing on a position that contains unconstrained variables for some clauses is
tricky. The WAM needs to group clauses in this case and without special treatment
creates two choice points for this argument (one for the variables and one per each
group of clauses). However, this issue and how to deal with itis well-known by now.
Possible solutions to it are described in a paper by Carlsson[16] and can be readily
adapted to demand-driven indexing. Alternatively, in a simple implementation, we
can skip demand-driven indexing for positions with variables in some clauses.

Before describing demand-driven indexing more formally, we remark on the following
design decisions whose rationale may not be immediately obvious:

– By default, only tableT1 is generated at compile time (as in the WAM) and the
additional index tablesT2, T3, . . . are generated dynamically. This is because we
do not want to increase compiled code size unnecessarily (i.e., when there is no
demand for these indices).

– On the other hand, we generatedindex on * instructions at compile time for the
head arguments.4 This does not noticeably increase the generated byte code but it

4 Thedindex on * instructions forT1 can be generated either by the compiler or the loader.

greatly simplifies code loading. Notice that a nice propertyof the scheme we have
described is that the loaded byte code can be patchedwithoutthe need to move any
instructions.

– Finally, one may wonder why thedindex on * instructions create the dynamic in-
dex tables with an additional code walking pass instead of piggy-backing on the
pass which examines all clauses via the maintry-retry-trust chain. Main reasons
are: 1) in many cases the code walking can be selective and guided by offsets and
2) by first creating the index table and then using it we speed up the execution of
the queries and often avoid unnecessary choice point creations.

Note that all these decisions are orthogonal to the main ideaand are under compiler
control. For example, if analysis determines that some argument sequences will never
demand indexing we can simply avoid generation ofdindex on * instructions for them.
Similarly, if some argument sequences will definitely demand indexing we can speed up
execution by generating the appropriate tables at compile time instead of dynamically.

4.4 Demand-driven index construction and its properties

The idea behind demand-driven indexing can be captured in a single sentence:we can
generate every index we need during program execution when this index is demanded.
Subsequent uses of these indices can speed up execution considerably more than the
time it takes to construct them (more on this below) so this runtime action makes sense.

Let p/k be a predicate withn clauses. At a high level, its indices form a tree whose
root is the entry point of the predicate. For simplicity, assume that the root node of
the tree and the interior nodes corresponding to the index table for the first argument
have been constructed at compile time. Leaves of this tree are the nodes containing the
code for the clauses of the predicate and each clause is identified by a unique label
Li, 1 ≤ i ≤ n. Execution always starts at the first instruction of the rootnode and fol-
lows Algorithm 1. The algorithm might look complicated but is actually quite simple.
Each non-leaf node contains a sequence of byte code instructions with groups of the
form 〈I1, . . . , Im, T1, . . . , Tl〉, 0 ≤ m ≤ k, 1 ≤ l ≤ n where each of theI instructions,
if any, is either aswitch on * or adindex on * instruction and each of theT instruc-
tions either forms a sequence oftry-retry-trust instructions (ifl > 1) or is a jump

instruction (if l = 1). Step 2.2 dynamically constructs an index tableT whose buckets
are the newly created interior nodes in the tree. Each bucketassociated with a single
clause contains ajump to the label of that clause. Each bucket associated with many
clauses starts with theI instructions which are yet to be visited and continues with a
try-retry-trust chain pointing to the clauses. When the index construction is done, the
instruction mutates to aswitch on * WAM instruction.

Complexity properties.Index construction during runtime does not change the com-
plexity of query execution. First, note that each demanded index table will be con-
structed at most once. Also, adindex on * instruction will be encountered only in cases
where execution would examine all clauses in thetry-retry-trust chain.5 The construc-
tion visits these clausesonceand then creates the index table in time linear in the num-
ber of clauses as one pass over the list of〈c, L〉 pairs suffices. After index construction,

5 This statement is possibly not valid in the presence of Prolog cuts.

Algorithm 1 Actions of the abstract machine with demand-driven indexing
1. if the current instructionI is aswitch on *, try, retry, trust or jump, act as in the WAM;
2. if the current instructionI is adindex on * with argumentsr, l, andk (r is a register) then

2.1 if registerr contains a variable, the action is agoto the next instruction in the node;
2.2 if registerr contains a valuev, the action is to dynamically construct the index:

2.2.1 collect the subsequent instructions in a listI until the next instruction is atry;
2.2.2 for each labelL in the try-retry-trust chain inspect the code of the clause with

label L to find the symbolc associated with registerr in the clause; (This step
creates a list of〈c, L〉 pairs.)

2.2.3 create an index tableT out of these pairs as follows:
• if I is a dindex on constant or a dindex on structure then create an index

table for the symbols in the list of pairs; each entry of the table is identified by
a symbolc and contains:
∗ the instructionjump Lc if Lc is the only label associated withc;
∗ the sequence of instructions obtained by appending toI a try-retry-trust

chain for the sequence of labelsL′

1, . . . , L
′

l that are associated withc
• if I is adindex on term then

∗ partition the sequence of labelsL in the list of pairs into sequences of labels
Lc,Ll andLs for constants, lists and structures, respectively;

∗ for each of the four sequencesL,Lc,Ll,Ls of labels create code:
· the instructionfail if the sequence is empty;
· the instructionjump L if L is the only label in the sequence;
· the sequence of instructions obtained by appending toI atry-retry-trust

chain for the current sequence of labels;
2.2.4 transform thedindex on * r, l, k instruction to aswitch on * r, l, T instruction;
2.2.5 continue execution with this instruction.

execution will visit a subset of these clauses as the index table will be consulted. Thus,
in cases where demand-driven indexing is not effective, execution of a query will at
most double due to dynamic index construction. In fact, thisworst case is pessimistic
and unlikely in practice. On the other hand, demand-driven indexing can change the
complexity of query evaluation fromO(n) to O(1) wheren is the number of clauses.

4.5 More implementation choices

The observant reader has no doubt noticed that Algorithm 1 provides multi-argument
indexing but only for the main functor symbol. For clauses with compound terms that
require indexing in their sub-terms we can either employ a program transformation such
asunification factoring[11] at compile time or modify the algorithm to consider index
positions inside compound terms. This is relatively easy todo but requires support from
the register allocator (passing the sub-terms of compound terms in appropriate registers)
and/or a new set of instructions. Due to space limitations weomit further details.

Algorithm 1 relies on a procedure that inspects the code of a clause and collects the
symbols associated with some particular index position (step 2.2.2). If we are satisfied
with looking only at clause heads, this procedure needs to understand only the structure
of get andunify instructions. Thus, it is easy to write. At the cost of increased imple-
mentation complexity, this step can of course take into account other information that

may exist in the body of the clause (e.g., type tests such asvar(X), atom(X), aliasing
constraints such asX = Y, numeric constraints such asX > 0, etc.).

A reasonable concern for demand-driven indexing is increased memory consump-
tion. In our experience, this does not seem to be a problem in practice since most ap-
plications do not have demand for indexing on many argument combinations. In ap-
plications where it does become a problem or when running in an environment with
limited memory, we can easily put a bound on the size of index tables, either globally
or for each predicate separately. For example, thedindex on * instructions can either
become inactive when this limit is reached, or better yet we can recover the space of
some tables. To do so, we can employ any standard recycling algorithm (e.g., LRU)
and reclaim the memory of index tables that are no longer in use. This is easy to do by
reverting the correspondingswitch on * instructions back todindex on * instructions.
If the indices are demanded again at a time when memory is available, they can simply
be regenerated.

5 Demand-Driven Indexing of Dynamic Predicates

We have so far lived in the comfortable world of static predicates, where the set of
clauses to index is fixed and the compiler can take advantage of this knowledge. Dy-
namic code introduces several complications:

– We need mechanisms to update multiple indices when new clauses are asserted or
retracted. In particular, we need the ability to expand and possibly shrink multiple
code chunks after code updates.

– We do not know a priori which are the best index positions and cannot determine
whether indexing on some arguments is avoidable.

– Supporting the logical update (LU) semantics of ISO Prolog becomes harder.

We briefly discuss possible ways of addressing these issues.However, note that Prolog
systems typically provide indexing for dynamic predicatesand thus already deal in
some way or another with these issues; demand-driven indexing makes the problems
more involved but not fundamentally different than with only first argument indexing.

The first complication suggests that we should allocate memory for dynamic in-
dices in separate chunks, so that these can be expanded and deallocated independently.
Indeed, this is what we do. Regarding the second complication, in the absence of any
other information, the only alternative is to generate indices for all arguments. As op-
timizations, we can avoid indexing predicates with only oneclause and exclude argu-
ments where some clause has a variable.

Under LU semantics, calls to dynamic predicates execute in a“snapshot” of the
corresponding predicate. Each call sees the clauses that existed at the time when the
call was made, even if some of the clauses were later retracted or new clauses were
asserted. If several calls are alive in the stack, several snapshots will be alive at the
same time. The standard solution to this problem is to use time stamps to tell which
clauses arelive for which calls. This solution complicates freeing index tables because:
(1) an index table holds references to clauses, and (2) the table may be in use (i.e., may
be accessible from the execution stacks). An index table thus is killed in several steps:

1. Detach the index table from the indexing tree.
2. Recursivelykill every child of the current table; if a table is killed so are its children.
3. Wait until the table is not in use, that is, it is not pointedto from anywhere.
4. Walk the table and release any references it may hold.
5. Physically recover space.

6 Implementation in XXX and in YAP

The implementation of demand-driven indexing in XXX follows a variant of the scheme
presented in Sect. 4. The compiler uses heuristics to determine the best argument to
index on (i.e., this argument is not necessarily the first) and employsswitch on * in-
structions for this task. It also statically generatesdindex on constant instructions for
other arguments that are good candidates for demand-drivenindexing. Currently, an
argument is considered a good candidate if it has only constants or only structure sym-
bols in all clauses. Thus, XXX uses onlydindex on constant anddindex on structure

instructions, never adindex on term. Also, XXX does not perform demand-driven in-
dexing inside structure symbols. For dynamic predicates, demand-driven indexing is
employed only if they consist of Datalog facts; if a clause which is not a Datalog fact is
asserted, all dynamically created index tables for the predicate are simply removed and
thedindex on constant instruction becomes anoop. All this is done automatically, but
the user can disable demand-driven indexing in compiled code using an option.

YAP implements demand-driven indexing since version 5. Thecurrent implemen-
tation supports static code, dynamic code, and the internaldatabase. It differs from
the algorithm presented in Sect. 4 in thatall indexing code is generated on demand.
Thus, YAP cannot assume that adindex on * instruction is followed by atry-retry-trust

chain. Instead, by default YAP has to search the whole predicate for clauses that match
the current position in the indexing code. Doing so for everyindex expansion was found
to be very inefficient for larger relations: in such cases YAPwill maintain a list of match-
ing clauses at eachdindex on * node. Indexing dynamic predicates in YAP follows very
much the same algorithm as static indexing: the key idea is that most nodes in the index
tree must be allocated separately so that they can grow or shrink independently. YAP
can index arguments where some clauses have unconstrained variables, but only for
static predicates, as in dynamic code this would complicatesupport for LU semantics.

YAP uses the term JITI (Just-In-Time Indexing) to refer to demand-driven indexing.
In the next section we will take the liberty to use this term asa convenient abbreviation.

7 Performance Evaluation

We evaluate JITI on a set of benchmarks and applications. Throughout, we compare per-
formance of JITI with first argument indexing. For the benchmarks of Sect. 7.1 and 7.2
which involve both systems, we used a 2.4 GHz P4-based laptopwith 512 MB of mem-
ory. For the benchmarks of Sect. 7.3 which involve YAP 5.1.2 only, we used a 8-node
cluster, where each node is a dual-core AMD 2600+ machine with 2GB of memory.

Table 1.Performance of some benchmarks with 1st vs. demand-driven indexing (times in msecs)

(a) When JITI is ineffective

YAP XXX
Benchmark 1st JITI 1st JITI
tc l io (8000) 13 14 4 4
tc r io (2000) 14451469 614 615
tc d io (400) 32083260 23382300
tc l oo (2000) 39353987 20262105
tc r oo (2000) 28412952 15021512
tc d oo (400) 37353805 49764978
compress 36143595 28752848

(b) When JITI is effective

YAP XXX
1st JITI ratio 1st JITI ratio

sg cyl 2,864 24 119× 2,390 28 85×
muta 30,05716,7821.79× 26,31421,5741.22×
pta 5,131 188 27× 4,442 279 16×
tea 1,478,81354,616 27× — — —

7.1 Performance of demand-driven indexing when ineffective

In some programs, demand-driven indexing does not trigger6 or might trigger but have
no effect other than an overhead due to runtime index construction. We therefore wanted
to measure this overhead. As both systems support tabling, we decided to use tabling
benchmarks because they are small and easy to understand, and because they are a bad
case for JITI in the following sense: tabling avoids generating repetitive queries and the
benchmarks operate over extensional database (EDB) predicates of size approximately
equal to the size of the program. We usedcompress, a tabled program that solves a
puzzle from an ICLP Prolog programming competition. The other benchmarks are dif-
ferent variants of tabled left, right and doubly recursive transitive closure over an EDB
predicate forming a chain of size shown in Table 1(a) in parentheses. For each variant of
transitive closure, we issue two queries: one with mode(in,out) and one with mode
(out,out). For YAP, indices on the first argument andtry-retry-trust chains are built
on all benchmarks under demand-driven indexing. For XXX, demand-driven indexing
triggers on no benchmark but thedindex on constant instructions are executed for the
threetc ? oo benchmarks. As can be seen in Table 1(a), demand-driven indexing, even
when ineffective, incurs a runtime overhead that is at the level of noise and goes mostly
unnoticed. We also note that our aim here isnot to compare the two systems, so the
YAP andXXX columns should be read separately.

7.2 Performance of demand-driven indexing when effective

On the other hand, when demand-driven indexing is effective, it can significantly im-
prove runtime performance. We use the following programs and applications:

sg cyl The same generation DB benchmark on a24×24×2 cylinder. We issue the open query.
muta A computationally intensive application where most predicates are defined intentionally.
pta A tabled logic program implementing Andersen’s points-to analysis. A medium-sized im-

perative program is encoded as a set of facts (about 16,000) and properties of interest are
encoded using rules. Program properties are then determined by the closure of these rules.

tea Another implementation of Andersen’s points-to analysis.The analyzed program, thejavac
benchmark, is encoded in a file of 411,696 facts (62,759,581 bytes in total). Its compilation
exceeds the limits of the XXX compiler (w/o JITI). So we run this benchmark only in YAP.

6 In XXX only; even 1st argument indexing is generated on demand when JITI is used in YAP.

As can be seen in Table 1(b), demand-driven indexing significantly improves the
performance of these applications. Inmuta, which spends most of its time in recursive
predicates, the speed up is only79% in YAP and22% in XXX. The remaining bench-
marks execute several times (from16 up to 119) faster. It is important to realize that
these speedups are obtained automatically, i.e., without any programmer intervention
or by using any compiler directives, in all these applications.

7.3 Performance of demand-driven indexing on ILP applications

The need for demand-driven indexing was originally noticedin inductive logic pro-
gramming applications. These applications tend to issue adhoc queries during execu-
tion and thus their indexing requirements cannot be determined at compile time. On
the other hand, they operate on lots of data, so memory consumption is a reasonable
concern. We evaluate JITI’s time and space performance on some learning tasks us-
ing the Aleph system [17] and the datasets of Fig. 4 which issue simple queries in an
extensional database. Several of these datasets are standard in the ILP literature.

Time performance.We compare times for 10 runs of the saturation/refinement cycle of
the ILP system; see Table 2(a). TheMesh andPyrimidines applications are the only
ones that do not benefit much from indexing in the database; they do benefit through
from indexing in the dynamic representation of the search space, as their running times
improve somewhat with demand-driven indexing.

TheBreastCancer andGeneExpression applications use unstructured data. The
speedup here is mostly from multiple argument indexing.BreastCancer is particularly
interesting. It consists of 40 binary relations with 65k elements each, where the first
argument is the key. We know that most calls have the first argument bound, hence
indexing was not expected to matter much. Instead, the results show demand-driven
indexing to improve running time by more than an order of magnitude. This suggests
that even a small percentage of badly indexed calls can end updominating runtime.

IE-Protein Extraction andThermolysin are example applications that manip-
ulate structured data.IE-Protein Extraction is the largest dataset we consider, and
indexing is absolutely critical. The speedup is not just impressive; it is simply not pos-
sible to run the application in reasonable time with only first argument indexing.Ther-

molysin is smaller and performs some computation per query, but evenso, demand-
driven indexing improves its performance by an order of magnitude. The remaining
benchmarks improve from one to more than two orders of magnitude.

Space performance.Table 2(b) shows memory usage when using demand-driven index-
ing. The table presents data obtained at a point near the end of execution; memory us-
age should be at the maximum. These applications use a mixture of static and dynamic
predicates and we show their memory usage separately. On static predicates, memory
usage varies widely, from only 10% to the worst case,Carcinogenesis, where the in-
dex tables take more space than the original program. Hash tables dominate usage in
IE-Protein Extraction andSusi, whereastry-retry-trust chains dominate inBreast-

Cancer. In most other cases no single component dominates memory usage. Memory
usage for dynamic predicates is shown in the last two columns; this data is mostly used
to store the search space. Observe that there is a much lower overhead in this case. A

Table 2.Time and space performance of JITI on Inductive Logic Programming datasets

(a) Time (in seconds)

Time
Benchmark 1st JITI ratio
BreastCancer 1,450 88 16×
Carcinogenesis 17,705 192 92×
Choline 14,766 1,397 11×
GeneExpression 193,283 7,483 26×
IE-Protein Extraction 1,677,146 2,909 577×
Mesh 4 3 1.3×
Pyrimidines 487,545 253,235 1.9×
Susi 105,091 307 342×
Thermolysin 50,279 5,213 10×

(b) Memory usage (in KB)

Static code Dynamic code
Clauses Index Clauses Index
60,940 46,887 630 14
1,801 2,678 13,512 942

666 174 3,172 174
46,726 22,629 116,463 9,015

146,033 129,333 53,423 1,531
802 161 2,149 109
774 218 25,840 12,291

5,007 2,509 4,497 759
2,317 929 116,129 7,064

GeneExpression learns rules for yeast gene activity given a database of genes, their interac-
tions, and micro-array gene expression data;

BreastCancer processes real-life patient reports towards predicting whether an abnormality
may be malignant;

IE-Protein Extraction processes information extraction from paper abstracts to search pro-
teins;

Susi learns from shopping patterns;
Mesh learns rules for finite-methods mesh design;
Carcinogenesis, Choline, Pyrimidines try to predict chemical properties of compounds and

store them as tables, given their chemical composition and major properties;
Thermolysin also manipulates chemical compounds but learns from the 3D-structure of a

molecule’s conformations.

Fig. 4. Description of the ILP datasets used in the performance comparison of Table 2

more detailed analysis shows that most space is occupied by the hash tables and by
internal nodes of the tree, and that relatively little spaceis occupied bytry-retry-trust
chains, suggesting that demand-driven indexing is behaving well in practice.

8 Concluding Remarks

Motivated by the needs of applications in the areas of inductive logic programming,
program analysis, deductive databases, etc. to access large datasets efficiently, we have
described a novel but also simple idea:indexing Prolog clauses on demand during pro-
gram execution. Given the impressive speedups this idea can provide for many LP ap-
plications, we are a bit surprised similar techniques have not been explored before. In
general, Prolog systems have been reluctant to perform codeoptimizations during run-
time and our feeling is that LP implementation has been left abit behind. We hold
that this should change. Indeed, we see demand-driven indexing as only a first, very
successful, step towards effective runtime optimization of logic programs.

As presented, demand-driven indexing is a hybrid technique: index generation oc-
curs during runtime but is partly guided by the compiler, because we want to combine
it with compile-time WAM-style indexing. More flexible schemes are of course possi-
ble. For example, index generation can be fully dynamic (as in YAP), combined with
user declarations, or driven by static analysis to be even more selective or go beyond
fixed-order indexing. Last, observe that demand-driven indexing fully respects Prolog
semantics. Better performance can be achieved in the context of one solution computa-
tions, or in the context of tabling where order of clauses andsolutions does not matter
and repeated solutions are discarded.

AcknowledgmentsThis work is dedicated to the memory of our friend and colleague
Ricardo Lopes. We miss you! V{ıtor Santos Costa was partially supported by CNPq and
would like to acknowledge support received while visiting at UW-Madison and the sup-
port of the YAP user community. This work has been partially supported by MYDDAS
(POSC/EIA/59154/2004) and by funds granted to LIACC through the Programa de Fi-
nanciamento Plurianual, Fundação para a Ciência e Tecnologia and Programa POSC.

AcknowledgmentsVı́tor Santos Costa was partially supported by CNPq and would
like to acknowledge support received while visiting at UW-Madison and the support
of the YAP user community. This work has been partially supported by MYDDAS
(POSC/EIA/59154/2004) and by funds granted to LIACC through the Programa de
Financiamento Plurianual, Fundação para a Ciência e Tecnologia and Programa POSC.

References

1. Warren, D.H.D.: An abstract Prolog instruction set. Tech. Note 309, SRI International (1983)
2. Santos Costa, V., Damas, L., Reis, R., Azevedo, R.: YAP User’s Manual. (2002)
3. Carlsson, M.: On the efficiency of optimising shallow backtracking in compiled Prolog. In

Levi, G., Martelli, M., eds.: Proceedings of the Sixth ICLP,MIT Press (June 1989) 3–15
4. Demoen, B., Mariën, A., Callebaut, A.: Indexing in Prolog. In Lusk, E.L., Overbeek, R.A.,

eds.: Proceedings of NACLP, MIT Press (1989) 1001–1012
5. Wielemaker, J.: SWI-Prolog 5.1: Reference Manual. SWI, University of Amsterdam,

Roetersstraat 15, 1018 WB Amsterdam, The Netherlands. (1997–2003)
6. Sagonas, K.F., Swift, T., Warren, D.S., Freire, J., Rao, P.: The XSB Programmer’s Manual.

State University of New York at Stony Brook. (1997)
7. Tronçon, R., Janssens, G., Demoen, B., Vandecasteele, H.: Fast frequent quering with lazy

control flow compilation. Theory and Practice of Logic Programming (2007) To appear.
8. Hickey, T., Mudambi, S.: Global compilation of Prolog. JLP7(3) (November 1989) 193–230
9. Van Roy, P., Demoen, B., Willems, Y.D.: Improving the execution speed of compiled Prolog

with modes, clause selection and determinism. In: TAPSOFT’87, Springer (1987) 111–125
10. Zhou, N.F., Takagi, T., Kazuo, U.: A matching tree oriented abstract machine for Prolog. In

Warren, D.H.D., Szeredi, P., eds.: ICLP90, MIT Press (1990)158–173
11. Dawson, S., Ramakrishnan, C.R., Ramakrishnan, I.V., Sagonas, K., Skiena, S., Swift, T.,

Warren, D.S.: Unification factoring for the efficient execution of logic programs. In: Con-
ference Record of POPL’95, ACM Press (January 1995) 247–258

12. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient access mecha-
nisms for tabled logic programs. Journal of Logic Programming38(1) (January 1999) 31–54

13. Kliger, S., Shapiro, E.: A decision tree compilation algorithm for FCP(|,:,?). In: Proceedings
of the Fifth ICSLP, MIT Press (August 1988) 1315–1336

14. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury, an efficient
purely declarative logic programming language. JLP26(1–3) (December 1996) 17–64

15. Hermenegildo, M.V., Puebla, G., Bueno, F., López-Garcı́a, P.: Integrated program debugging,
verification, and optimization using abstract interpretation (and the Ciao system preproces-
sor). Science of Computer Programming58(1–2) (2005) 115–140

16. Carlsson, M.: Freeze, indexing, and other implementation issues in the WAM. In Lassez,
J.L., ed.: Proceedings of the Fourth ICLP, MIT Press (May 1987) 40–58

17. Srinivasan, A.: The Aleph Manual. (2001)

