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ABSTRACT
We discuss alternative heap architectures for languages that
rely on automatic memory management and implement con-
currency through asynchronous message passing. We de-
scribe how interprocess communication and garbage collec-
tion happens in each architecture, and extensively discuss
the tradeoffs that are involved. In an implementation set-
ting (the Erlang/OTP system) where the rest of the runtime
system is unchanged, we present a detailed experimental
comparison between these architectures using both synthetic
programs and large commercial products as benchmarks.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—concurrent programming structures, dynamic
storage management ; D.3.4 [Programming Languages]:
Processors—memory management (garbage collection), run-
time environments; D.1.3 [Programming Techniques]:
Concurrent Programming

General Terms
Languages, Performance, Measurement

Keywords
Runtime systems, concurrent languages, message passing,
Erlang, garbage collection

1. INTRODUCTION
In recent years, concurrency as a form of abstraction has

become increasingly popular, and many modern program-
ming languages (such as Occam, CML, Caml, Erlang, Oz,
Java, and C#) come with some form of built-in support
for concurrent processes (or threads). Depending on the
concurrency model of the language, interprocess communi-
cation takes place either using asynchronous message pass-
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ing or through (synchronized) shared structures. These lan-
guages typically also require support for automatic memory
management, usually implemented using a garbage collec-
tor. By now, many different garbage collection techniques
have been proposed and their characteristics are well-known;
see [17, 24] for comprehensive treatments on the subject. A
less treated, albeit key issue in the design of a concurrent
language implementation is that of the runtime system’s
memory architecture. It is clear that there exist many differ-
ent ways of structuring the architecture of the runtime sys-
tem, each having its pros and cons. Despite its importance,
this issue has received remarkably little attention in the lit-
erature. Although many of its aspects are folklore, to our
knowledge there has never been an in-depth investigation of
the performance tradeoffs that are involved based on a non-
toy implementation where the rest of the system remains
unchanged. The main aim of this paper is to fill this gap.
In particular, we systematically examine and experimentally
evaluate the tradeoffs of different heap architectures for con-
current languages focusing on those languages where process
communication happens through message passing.

More specifically, in this paper we focus on three different
runtime system architectures for concurrent language imple-
mentations: One where each process allocates and manages
its private memory area and all messages have to be copied
between processes, one where all processes share the same
heap, and a hybrid architecture where each process has a pri-
vate heap for local data but where a shared heap is used for
data sent as messages. For each architecture, we discuss the
architectural impact on the speed of interprocess communi-
cation and garbage collection. To evaluate the performance
of these architectures, we have implemented them in an oth-
erwise unchanged, industrial-strength, Erlang/OTP system.
This system was chosen in part due to our involvement in its
development (cf. the HiPE native code compiler [16]), but
more importantly due to the existence of real-world highly
concurrent programs which can be used as benchmarks. By
instrumenting this system, we have been able to measure the
impact of the architecture both on large commercial applica-
tions, and on concurrent synthetic benchmarks constructed
to examine the tradeoffs that are involved.

The rest of the paper is structured as follows: We begin
by presenting aspects of Erlang which are relevant for our
work, and by a brief overview of previous work on mem-
ory management of concurrent language implementations.
Then, in Section 3, we describe a memory architecture where
each process allocates and manages its own memory area.
In Section 4 we present the architecture of a system with



only one heap which is shared among all processes. Then
in Section 5 we develop a hybrid memory architecture with
a shared memory area for all messages and private heaps
for data which is private to each process. An extensive per-
formance evaluation of these architectures is presented in
Section 6. The paper ends with some concluding remarks
which include directions for future work.

2. PRELIMINARIES & RELATED WORK

2.1 Erlang and Erlang/OTP
Erlang is a strict, dynamically typed functional program-

ming language with support for concurrency, communica-
tion, distribution, fault-tolerance, on-the-fly code reloading,
automatic memory management, and support for multiple
platforms [2]. Erlang was designed to ease the programming
of large soft real-time control systems commonly developed
by the telecommunications industry. It has so far been used
quite successfully both by Ericsson and by other companies
around the world to develop large commercial applications.

Erlang’s basic data types are atoms, numbers (floats and
arbitrary precision integers), and process identifiers; com-
pound data types are lists and tuples. A notation for objects
(records in the Erlang lingo) is supported but the underly-
ing implementation of records is as tuples. To allow efficient
implementation of telecommunication protocols, Erlang also
includes a binary data type (a vector of byte-sized data).
There is no destructive assignment of variables or data, and
the first occurrence of a variable is its binding instance.
Function rule selection is done with pattern matching com-
bined with the use of flat guards in the head of the rule.
Since recursion is the only means to express iteration in
Erlang, tail call optimization is a required feature of Erlang
implementations.

Processes in Erlang are extremely light-weight (lighter
than OS threads), their number in typical applications is
quite large, and their memory requirements vary dynami-
cally. Erlang’s concurrency primitives—spawn, “!” (send),
and receive—allow a process to spawn new processes and
communicate with other processes through asynchronous
message passing. Any data value can be sent as a message
and processes may be located on any machine. Each pro-
cess has a mailbox, essentially a message queue, where each
message sent to the process will arrive. Message selection
from the mailbox occurs through pattern matching. There
is no shared memory between processes and distribution is
almost invisible in Erlang. To support robust systems, a
process can register to receive a message if another one ter-
minates. Erlang provides mechanisms for allowing a process
to timeout while waiting for messages and a catch/throw-
style exception mechanism for error handling.

Erlang is often used in “five nines” high-availability (i.e.,
99.999% of the time available) systems, where down-time is
required to be less than five minutes per year. Such systems
cannot be taken down, upgraded, and restarted when soft-
ware patches and upgrades arrive, since that would not re-
spect the availability requirement. Consequently, an Erlang
system comes with support for upgrading code while the
system is running, a mechanism known as hot-code loading.

The Erlang language is small, but an Erlang system comes
with libraries containing a large set of built-in functions
for various tasks. With the Open Telecom Platform (OTP)
middleware [22], Erlang is further extended with a library

of standard components for telecommunication applications
(real-time databases, servers, state machines, process mon-
itors, tools for load balancing), standard interfaces such as
CORBA, and a variety of communication protocols (e.g.,
HTTP, FTP, etc.).

2.2 Memory management in Erlang and other
concurrent languages

As in other functional languages, memory management in
Erlang is a responsibility of the runtime system and happens
through garbage collection. The soft real-time concerns of
the language call for bounded-time garbage collection tech-
niques. One such technique, based on a mark-and-sweep
algorithm taking advantage of the fact that the heap in
an Erlang system is unidirectional (i.e., is arranged so that
the pointers point in only one direction), has been proposed
by Armstrong and Virding in [1], but imposes a significant
overhead and was never fully implemented. In practice, in
a tuned Erlang system with a generational copying garbage
collector, garbage collection latency is usually low (less than
10 milliseconds) as most processes are short-lived or small
in size. Longer pauses are quite infrequent. However, a
blocking collector provides no guarantees for the real-time
responsiveness that some applications may desire.

In the context of strict, concurrent functional language
implementations, there has been work that aims at achiev-
ing low garbage collection latency without paying the full
price in performance that a guaranteed real-time garbage
collector usually requires. Notable among them is the work
of Doligez and Leroy [10] who combine a fast, asynchronous
copying collector for the thread-specific young generations
with a non-disruptive concurrent mark-and-sweep collector
for the old generation (which is shared among all threads).
The result is a quasi-real-time collector for Concurrent Caml
Light. Also, Larose and Feeley in [12] describe the design
of a near-real-time compacting collector in the context of
the Gambit-C Scheme compiler. This garbage collector was
intended to be used in the Etos (Erlang to Scheme) system,
but to the best of our knowledge, it has not yet made it to an
Etos distribution. In order to achieve low garbage collection
pause times, concurrent or real-time multiprocessor collec-
tors have also been proposed; both for (concurrent) variants
of ML [14, 18, 7], and recently for Java; see e.g. [4, 13].

An issue which is to a large extent orthogonal to that of
the garbage collection technique used is that of the mem-
ory organization of a concurrent system: Should one use an
architecure which facilitates sharing, or one that requires
copying of data? The issue often attracts heated debates
both in the programming language implementation commu-
nity and elsewhere.1 Traditionally, operating systems allo-
cate memory on a per-process basis. The architecture of
KaffeOS [3] uses process-specific heaps for Java processes
and shared heaps for data shared among processes. Objects
in the shared heaps are not allowed to reference objects in
process-specific heaps and this restriction is enforced with
page protection mechanisms. In the context of a multi-
threaded Java implementation, the same architecture is also

1For example, in the networking community an issue which is re-
lated to those discussed in this paper is whether packets will be
passed up and down the stack by reference or by copying. Also,
during the mid-80’s the issue of whether files can be passed in
shared memory was investigated by the operating systems com-
munity in the context of user-level kernel extensions.



proposed by Steensgaard [21] who argues for thread-specific
heaps for thread-specific data and a shared heap for shared
data. The paper reports statistics showing that, in a small
set of multi-threaded Java programs, there are very few con-
flicts between threads, but provides no experimental com-
parison of this memory architecture with another.

Till the fall of 2001, the Ericsson Erlang implementation
had exclusively a memory architecture where each process
allocates and manages its own memory area. We describe
this architecture in Section 3. The main reason why this
architecture was chosen is that it is believed it results in
lower garbage collection latency. Wanting to investigate the
validity of this belief, we have been working on a shared
heap memory architecture for Erlang processes. We de-
scribe this architecture in Section 4; it is already included in
the Erlang/OTP release. Concurrently with our work, Fee-
ley [11] argued the case for a unified memory architecture for
Erlang, an architecture where all processes get to share the
same stack and heap. This is the architecture used in the
Etos system that implements concurrency through a call/cc
(call-with-current-continuation) mechanism. The case for
the architecture used in Etos is argued convincingly in [11],
but on the other hand it is very difficult to draw conclusions
from the small experimental comparison between Etos and
the Ericsson Erlang/OTP implementation due to the dif-
ferences in performance between the two systems, the lack
of experimental evaluation using large programs, and, more
importantly, due to the big differences in the parameters
(e.g., initial sizes of memories, garbage collector settings)
that are involved. As mentioned, one of our aims is to com-
pare memory architectures for concurrent languages in a set-
ting where the rest of the system is unchanged.

Assumptions. Throughout the paper, for simplicity of pre-
sentation, we make the following assumptions: 1) the system
is running on a uniprocessor, 2) the heap garbage collector
is similar to the collector currently used in Erlang/OTP:
a Cheney-style semi-space stop and copy collector [6] with
two generations, and 3) message passing and garbage col-
lection cannot be interrupted by the scheduler. For a more
detailed description of the garbage collector in Erlang/OTP
refer to [23].

3. AN ARCHITECTURE WITH PRIVATE
HEAPS

The first memory architecture we examine is process-centric.
In this architecture, each process allocates and manages its
own memory area which typically includes a process control
block (PCB), private stack, and private heap. Other mem-
ory areas, e.g. a space for large objects, might also exist
either on a per-process basis or as a global area.

This is the default architecture of the Erlang/OTP R8
system, the version of Erlang released by Ericsson in the
fall of 2001. The stack is used for function arguments, re-
turn addresses, and local variables. Compound terms such
as lists, tuples, and objects which are larger than a machine
word such as floating point numbers and arbitrary precision
integers (bignums) are stored on the heap. One way of or-
ganizing the memory areas is with the heap co-located with
the stack (i.e., the stack and the heap growing towards each
other). The advantage of doing so, is that stack and heap
overflow tests become cheap, just a comparison between the
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Figure 1: Memory architecture with private heaps.
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Figure 2: Message passing in a private heap system.

stack and heap pointers which can usually be kept in ma-
chine registers. A disadvantage is that expansion or reloca-
tion of the heap or stack involves both areas. As mentioned,
Erlang also supports large vectors of byte-sized data (bina-
ries). These are not stored on the heap; instead they are
reference-counted and stored in a separate global memory
area. Henceforth, we ignore the possible existence of a large
object space as the issue is completely orthogonal to our
discussion.

Figure 1 shows an instance of this architecture when three
processes (P1, P2, and P3) are present; shaded areas repre-
sent unused memory.

Process communication. Message passing is performed by
copying the term to be sent from the heap of the sender to
the heap of the receiver, and then inserting a pointer to the
message in the mailbox of the receiver which is contained in
its PCB; see Figure 2. As shown in the figure, a local data
structure might share the same copy of a subterm, but when
that data structure is sent to another process each subterm
will be copied separately. As a result, the copied message
occupies more space than the original. However, message
expansion due to loss of sharing is quite rare in practice.2

This phenomenon could be avoided by using some marking

2In particular it does not occur in our benchmarks.



technique and forwarding pointers, but note that doing so
would make the message passing operation even slower.

Garbage collection. When a process runs out of heap (or
stack) space, the process’s private heap is garbage collected.
In this memory architecture, the root set of the garbage col-
lection is the process’ stack and mailbox. Recall that a two-
generational (young and old) Cheney-style stop-and-copy
collector is being used. A new heap, local to a process,
where live data will be placed, is allocated at the beginning
of the collection. The old heap contains a high water mark
(the top of the heap after the last garbage collection) and
during a minor collection data below this mark is forwarded
to the old generation while data above the mark is put on
the new heap. During a major collection the old generation
is also collected to the new heap. At the end of the garbage
collection the stack is moved to the area containing the new
heap and the old heap is freed.

In a system which is not multi-threaded, like the current
Erlang/OTP system, the mutator will be stopped and all
other processes will also be blocked during garbage collec-
tion.

Pros and cons. According to its advocates, this design has
a number of advantages:

+ No cost memory reclamation – When a process termi-
nates, its memory can be freed directly without the
need for garbage collection. Thus, one can use pro-
cesses for some simple form of memory management:
a separate process can be spawned for computations
that will produce a lot of garbage.

+ Small root sets – Since each process has its own heap,
the root set for a garbage collection is the stack and
mailbox of the current process only. This is expected
to help in keeping the GC stop times short. However,
as noted, without a real-time garbage collector there
is no guarantee for this.

+ Improved cache locality – Since each process has all its
data in one contiguous (and often small) stack/heap
memory area, the cache locality for each process is
expected to be good.

+ Cheaper tests for stack/heap overflow – With a per-
process heap, the heap and stack overflow tests can be
combined and fewer frequently accessed pointers need
to be kept in machine registers.

Unfortunately this design also has some disadvantages:

– Costly message passing – Messages between processes
must be copied between the heaps. The cost of in-
terprocess communication is proportional to the size
of the message. In some implementations, the mes-
sage might need to be traversed more than once: one
pass to calculate its size (so as to avoid overflow of the
receiver’s heap and trigger its garbage collection or ex-
pansion if needed) and another to perform the actual
copy.

– More space needs – Since messages are copied, they
require space on each heap they are copied to. As
shown, if the message contains the same subterm sev-
eral times, there can even be non-linear growth when
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Figure 3: Memory architecture with shared heap.

sending messages. Also, if a (sub-)term is sent back
and forth between two processes a new copy of the
term is created for each send—even though the term
already resides on the appropriate heap before the
send.

– High memory fragmentation – A process cannot utilize
the memory (e.g., the heap) of another process even if
there are large amounts of unused space in that mem-
ory area. This typically implies that processes can
allocate only a small amount of memory by default.
This in turn usually results in a larger number of calls
to the garbage collector.

From a software development perspective, a process-centric
memory architecture can have an impact on how programs
are written. For example, due to the underlying implemen-
tation which until recently was exclusively based on the
memory architecture described in this section, the recom-
mendation in the Erlang programming guidelines has been
to keep messages small. This might make programming of
certain applications awkward.

4. AN ARCHITECTURE WITH A SHARED
HEAP

The problems associated with costly message passing in a
private heap system can be avoided by a memory architec-
ture where the heap is shared. In such a system each pro-
cess can still have its own stack, but there is only one global
heap, shared by all processes. The shared heap contains
both messages and all compound terms. Figure 3 depicts
such an architecture.

Process communication. Message passing is done by just
placing a pointer to the message in the receiver’s mailbox
(located in its PCB); see Figure 4. The shared heap remains
unchanged, and neither copying nor traversal of the message
is needed. In this architecture, message passing is a constant
time operation.
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Figure 4: Message passing in a shared heap system.

Garbage collection. Conceptually, the garbage collector
for this system is the same as in the private heap one, the
only difference being that the root set includes the stacks
and mailboxes of all processes; not just those of the process
forcing the garbage collection. This implies that, even in a
multi-threaded system, all processes get blocked by GC.

Pros and cons. This design avoids the disadvantages of the
private heap system, which are now turned into advantages:

+ Fast message passing – As mentioned, message passing
only involves updating a pointer; an operation which
is independent of the message size.

+ Less space needs – Since data passed as messages is
shared on the global heap, the total memory require-
ments are lower than in a private heap system. Also,
note that since nothing is changed on the heap, shared
subterms of messages remain of course shared within
a message.

+ Low fragmentation – The whole memory in the shared
heap is available to any process that needs it.

Unfortunately, even this system has disadvantages:

– Larger root set – Since all processes share the heap, the
root set for each GC conceptually includes the stacks
of all processes. Unless a concurrent garbage collector
is used, all processes remain blocked during GC.

– Larger to-space – With a copying collector a to-space
as large as the heap which is being collected needs to
be allocated. One would expect that in general this
area is larger when there is a shared heap than when
collecting the heap of each process separately.

– Higher GC times – When a copying collector is used,
all live data will be moved during garbage collection.
As an extreme case, a sleeping process that is about to
die with lots of reachable data will affect the garbage
collection times for the whole system. With private
heaps, the live data of only the process that forces the
garbage collection needs to be moved during GC.

– Separate and probably more expensive tests for heap
and stack overflows.

The following difference between the two memory architec-
tures also deserves to be mentioned: In a process-centric
system, it is easy to impose limits on the space resources
that a particular (type of) process can use. Doing this in
a shared heap system is significantly more complicated and
probably quite costly. Currently, this ability is not required
by Erlang.

Optimizations. The problems due to the large root set can
be to a large extent remedied by some simple optimizations.
For the frequent minor collections, the root set need only
consist of those processes that have touched the shared heap
since the last garbage collection. Since each process has its
own stack, a safe approximation, which is cheap to maintain
and is the one we currently use in our implementation, is
to consider as root set the set of processes that have been
active (have executed some code or received a message in
their mailbox) since the last garbage collection.3

A natural refinement is to further reduce the size of the
root set by using generational stack collection techniques [8]
so that, for processes which have been active since the last
GC, their entire stack is not rescanned multiple times. No-
tice however that this is an optimization which is applicable
to all memory architectures. We are currently investigating
the effect of generational stack scanning.

Finally, the problem of having to move the live data of
sleeping processes could be remedied by employing a non-
moving garbage collector for the old generation.

5. AN ARCHITECTURE WITH PRIVATE
HEAPS & A SHARED MESSAGE AREA

Each of the memory architectures described so far has its
advantages. Chief among them are that the private heap
system allows for cheap reclamation of memory upon pro-
cess termination and for garbage collection to occur inde-
pendently of other processes, while the shared heap system
optimizes interprocess communication and does not require
unnecessary traversals of messages. Ideally, we want an ar-
chitecture that combines the advantages of both systems
without inheriting (m)any of its disadvantages.

Such an architecture can be obtained by a hybrid system
in which there is one shared memory area where messages
(i.e., data which is exchanged between processes) are placed,
but each process has its private heap for the rest of its data
(which is local to the process). In order to make it possi-
ble to collect the private heap of a process without touching
data in the global area, and thus without having to block
other processes during GC, there should not be any pointers
from the shared message area to a process’ heap. Pointers
from private heaps (or stacks) to the shared area are al-
lowed. Figure 5 shows this memory architecture: The three
processes P1, P2, and P3 each have their own PCB, stack,
and private heap. There is also a shared area for messages.
The picture shows pointers of all allowed types. Notice that
there are no pointers out of the shared area, and no pointers
between private heaps.

3In our setting, this optimization turns out to be quite effec-
tive independently of application characteristics. This is because
in an Erlang/OTP system there is always a number of system
processes (spawned at system start-up and used for monitoring,
code upgrading, or exception handling) that typically stay inac-
tive throughout program execution.
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Figure 5: A hybrid memory architecture.

Allocation strategy. This hybrid architecture requires in-
formation whether data is local to a process or will be sent
as a message (and thus is shared). It is desirable that
such information is available at compile time and can be
obtained either by programmer annotations, or automati-
cally through the use of an escape analysis. Such analy-
ses have been previously developed for allowing stack allo-
cation of data structures in functional languages [19] and
more recently for synchronization removal from Java pro-
grams [5, 9, 20]. It is likely that separate compilation, dy-
namically linked libraries, or other language constructs (e.g.,
in Erlang the ability to dynamically update the code of a
particular module) might in practice render such analyses
imprecise. Hence such a hybrid system which depends on
analysis has to be designed with the ability to handle im-
precise escape information.

More specifically, the information returned by such an es-
cape analysis is that at a particular program point either an
allocation is of type local to a process, or escapes from the
process (i.e., is part of a message), or is of unknown type
(i.e., might be sent as a message). The system should then
decide where data of unknown type is to be placed. If al-
location of unknown data happens on the local heap, then
each send operation has to test whether its message argu-
ment resides on the local heap or the message area. If the
data is already global, all is fine and a pointer can be passed
to the receiver. Otherwise the data has to be copied from
the local heap to the message area. This design minimizes
the amount of data on the shared message area. Still, some
messages will need to be copied with all the disadvantages of
copying data. If, on the other hand, allocation of unknown
data happens on the shared memory area, then no test is
needed and no data ever needs to be copied. The downside
is that some data that is really local to a process might end
up on the shared area where they can only be reclaimed by
garbage collection.

Process communication. Provided that the message re-
sides in the shared message area, message passing in this
architecture happens exactly as in the shared heap system
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Figure 6: Message passing in a hybrid architecture.

and is a constant time operation. For uniformity, Figure 6
depicts the operation. As mentioned, if a piece of data which
is actually used as a message is somehow not recognized as
such by the escape analysis, it first has to be copied from
the private heap of the sender to the shared message area.

Garbage collection. Since there exist no external pointers
into a process’ private area, neither from another process nor
from the shared message area, local minor and major collec-
tions (i.e., those caused by overflow of a private heap) can
happen independently from other processes (no synchroniza-
tion is needed) and need not block the system. This is con-
trary to Steensgaard’s scheme [21] where GCs always collect
the shared area and thus require locking.

In our scheme, garbage collection of the shared message
area requires synchronization. To avoid the problems of re-
peated traversals of long-lived messages and of having to up-
date pointers in the private heaps of processes, the shared
message area (or just its old generation) can be collected
with a non-moving mark-and-sweep collector. This type of
collector has the added advantage that it is typically easier
to be made incremental (and hence also concurrent) than
a copying collector. Another alternative could be to collect
messages using reference counting. As an aside, we note that
usual drawbacks of reference counting are not a problem in
our setting since there are no cycles between pointers in the
message area.

Pros and cons. As mentioned, with this hybrid architec-
ture we get most of the advantages of both other systems:

+ Fast message passing.

+ Less space needs – The memory for data passed as
messages between processes is shared.

+ No cost memory reclamation – When a process dies,
its stack and heap can be freed directly without the
need for garbage collection.

+ Small root sets for the frequent local collections – Since
each process has its own heap, the root set for a lo-



cal garbage collection is only the stack of the process
which is forcing the collection.

+ Cheap stack/heap overflows.

Still, this hybrid system has some disadvantages:

– Memory fragmentation.

– Large root set for the shared message area – A garbage
collection of the shared area needs to examine all pro-
cesses’ stacks and local heaps rendering the collection
costly. In the worst case, the cost of GC will be as
big as in the shared heap system. However, since in
many applications messages typically occupy only a
small fraction of the data structures created during a
program’s evaluation and since this shared area can be
quite large, it is expected that these global GCs will
be infrequent. Moreover, the root set can be further
reduced with the optimizations described in Section 4.

– Requires escape analysis – The system’s performance
is to a large extent dependent on the precision of the
analysis which is employed.

6. PERFORMANCE EVALUATION
The first two memory architectures, the one based on pri-

vate heaps and that based on a shared heap, have been fully
implemented and released since the fall of 2001 as part of
Erlang/OTP R8.4 The user chooses between them through
a configure option. The development of the hybrid architec-
ture has taken place after the release of R8. It is currently in
a prototype stage: the runtime system support is rock-solid
but the compiler does not yet feature an escape analysis
component. Our plan is to complete this work and also
include this memory architecture in a future Erlang/OTP
release.

An extensive performance comparison of all architectures
under various initial memory configurations has been per-
formed, and the complete set of time and space measure-
ments can be found in [23]. Due to space limitations, we
only present a small subset of these measurements here; the
interested reader should also look at [23]. In particular, in
this paper we refrain from discussing issues related to the
expansion/resizing policy used or the impact of the initial
memory size of each architecture. We instead use the same
expansion policy in all architectures and fix a priori what
we believe are reasonable, albeit very conservative, initial
sizes for all memory areas.

More specifically, in all experiments the private heap ar-
chitecture is started with an initial combined stack/heap size
of 233 words per process. We note that this is the default
setting in Erlang/OTP and thus the setting most frequently
used in the Erlang community. In the comparison between
the private and the shared heap architecture (Section 6.2),
the shared heap system is started with a stack of 233 words
and an initial shared heap size of 10,946 words. At first
glance it might seem unfair to use a bigger heap for the
shared heap system, but since all processes in this system
get to share a single heap, there is no real reason to start
with a small heap size as in the private heap system. In con-
trast, there is a need to keep heaps small in a private heap
system in order to avoid running out of memory and reduce

4Erlang/OTP can be downloaded from http://www.erlang.org.

fragmentation as in such an architecture a process that al-
locates a large heap hogs memory from other processes. In
any case, note that these heap sizes are extremely small by
today’s standards (even for embedded systems). In all sys-
tems, the expansion policy expands the heap to the closest
Fibonacci number which is bigger than the size of the live
data5 plus the additional memory need.

6.1 The benchmarks and the setting
The performance evaluation was based on the following

benchmarks:

ring A concurrent benchmark which creates a ring of 100
processes and sends 100,000 messages.

life Conway’s game of life on a 10 by 10 board where each
square is implemented as a process.

procs(number of processes, message size) A synthetic con-
current benchmark which sends messages in a ring of
processes. Each process creates a new message when it
is spawned and sends it to the next process in the ring
(its child). Each message has a counter that ensures it
will be sent exactly 10 times to other processes.

sendsame, garbage, and keeplive are variations of the procs
benchmark designed to test the behavior of the mem-
ory architectures under different program characteris-
tics. The arguments to the programs are those of procs
together with an extra parameter: the counter which
denotes the number of times a message is to be sent
(which is fixed to 10 for procs). The sendsame bench-
mark creates a single message and distributes it among
other processes. garbage creates a new message each
time and makes the old one inaccessible, while keeplive
creates a new message each time but keeps the old ones
live by storing them in a list.

In addition, we used the following “real-life” Erlang pro-
grams:

eddie A medium-sized (≈2,000 lines of code) application im-
plementing a HTTP parser which handles http-get re-
quests.

BEAM compiler A large program (≈30,000 lines of code
excluding code for libraries) which is mostly sequen-
tial; processes are used only for I/O. The benchmark
compiles the file lib/gs/src/gstk generic.erl of the
Erlang/OTP R8 distribution to bytecode.

NETSim (Network Element Test Simulator) A large com-
mercial application (≈630,000 lines of Erlang code)
mainly used to simulate the operation and mainte-
nance behavior of a network. In the actual bench-
mark, a network with 20 nodes is started and then
each node sends 100 alarm bursts through the network.
The NETSim application consists of several different
Erlang nodes. Only three of these nodes are used as
benchmarks, namely a network TMOS server, a net-
work coordinator, and the alarm server.

Some additional information about the benchmarks is con-
tained in Table 1. Detailed statistics about message sizes
can be found in [23].

Due to licensing reasons, the platform we had to use for
the NETSim program was a SUN Ultra 10 with a 300 MHz

5The size of live data is the size of the heap after GC.



Table 1: Number of processes and messages.
Benchmark Processes Messages

ring 100 100,000
life 100 800,396

eddie 2 2,121
BEAM compiler 6 2,481
NETSim TMOS 4,066 58,853

NETSim coordinator 591 202,730
NETSim alarm server 12,353 288,675

procs 100x100 100 6,262
procs 1000x100 1,000 512,512
procs 100x1000 100 6,262

procs 1000x1000 1,000 512,512

Sun UltraSPARC-IIi processor and 384 MB of RAM run-
ning Solaris 2.7. The machine was otherwise idle during
the benchmark runs: no other users, no window system.
Because of this, and so as to get a consistent picture, we de-
cided to also use this machine for all other benchmarks too.
Performance of all heap architectures on a dual-processor
SUN machine are reported in [23].

In the rest of this section, all figures containing execution
times present the data in the same form. Measurements are
grouped by benchmark, and times have been normalized so
that the execution time for the private heap system (leftmost
bar in each group and identified by P) is 1. Bars to its right
show the relative execution time for the shared heap (S)
and, wherever applicable, the hybrid (H) system. For each
system, the execution time is subdivided into time spent in
the mutator, time spent in the send operation, time spent
copying messages, and time taken by the garbage collector
further subdivided into time for minor and major collections.
For the private heap system, in Figures 8 and 7 we also
explicitly show the time to traverse the message in order
to calculate its size (this is part of the send operation). In
Figures 10–12 this time is folded into the send time.

6.2 Comparison of private vs. shared heap ar-
chitecture

Time performance. As can be seen in Figure 7(a), in the
synthetic procs benchmark, the shared heap system is much
faster when it comes to sending small-sized messages among
100 Erlang processes. This is partly due to the send opera-
tion being faster and partly because the shared heap system
starts with a bigger heap and hence does not need to do
as much garbage collection. When messages are small, in-
creasing the number of processes to 1000 does not change
the picture much as can be seen in Figure 7(b). On the
other hand, if the size of the message is increased so that
the shared heap system also requires garbage collection of-
ten, then the effect of the bigger root set which increases
garbage collection times becomes visible; see Figures 7(c)
and 7(d). This is expected, since the number of processes
which have been active between garbage collections (i.e., the
root set) is quite high.

The performance of the two architectures on real pro-
grams shows a more mixed picture; see Figure 8. The shared
heap architecture outperforms the private heap architecture
on many real-world programs. For eddie, the gain is unre-
lated to the initial heap sizes; cf. [23]. Instead, it is due to the
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Figure 7: Normalized times for the procs benchmark.

shared heap system having better cache behavior by sharing
messages and by avoiding garbage collections. In the truly
concurrent programs, ring and life, the private heap system
spends 18% and 25% of the execution time in interprocess
communication. In contrast, the shared heap system only
spends less than 12% of its time in message passing. The
speedup for the BEAM compiler can be explained by the
larger initial heap size for the shared heap system which re-
duces the total time spent in garbage collection to one third.
The performance of the shared heap architecture is worse
than that of the private heap system in two of the NETSim
programs and there is a speedup only in the case where the
number of processes is moderate. This is to some extent
expected, since NETSim is a commercial product developed
over many years using a private heap-based Erlang/OTP
system and tuned in order to avoid garbage collection and
reduce send times. For example, from the number of pro-
cesses in Table 1 and the maximum total heap sizes which
these programs allocate (data shown in Table 2), it is clear
that in the NETSim programs either the majority of the
processes do not trigger garbage collection in the private
heap system as their heaps are small, or processes are used
as a means to get no-cost heap reclamation. As a result, the
possible gain from a different memory architecture cannot
be big. Indeed, as observed in the case of NETSim alarm
server, the large root set (cf. Table 1) can seriously increase
the time spent in garbage collection and slow down execu-
tion of a program which has been tuned for a private heap
architecture.

We suspect that the general speedup for the mutator in
the shared heap system is due to better cache locality: partly
due to requiring fewer garbage collections by sharing data
between processes and partly due to having heap data in
cache when switching between processes. Note that this is
contrary to the general belief in the Erlang community—
and perhaps elsewhere—that a process-centric memory ar-
chitecture results in better cache behavior. To verify our
hunch, we measured the number of data cache misses of
some of these benchmarks using the UltraSPARC hardware
performance counters. In programs that required garbage
collection, the number of data cache misses of the shared
heap system is indeed smaller than that of the private heap
system; however only by about 3%. Although this confirms
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Figure 9: Max garbage collection stop times (ms).

that a shared heap system can have a better cache behav-
ior, we are not sure whether the difference in cache misses
accounts for all the mutator speedup we observe or not.

Stop times. Figure 9 shows the longest garbage collection
stop time in milliseconds for each benchmark. As can be
seen, the concern that many processes can lead to a larger
root set and hence longer garbage collection latency is justi-
fied. When the root set consists of many processes, the stop
times for the shared heap system are slightly longer than
those of the private heap system.

As the memory requirements of a program increase (data
shown in Table 2), the garbage collection stop times also in-
crease. Also, the bigger the size of the live data, the more are
garbage collection times likely to be negatively influenced by
caching effects. Bigger heap needs also mean that collection
is required more often, which increases the likelihood that
GC will be triggered at a moment when the root set is large
or there is a lot of live data. We mention, that although the
general picture is similar, the GC latency decreases when
starting the systems with bigger initial heap sizes; cf. [23].

Notice that the difference in maximum stop times between

Table 2: Heap sizes allocated and used (in K words).
Private Shared

Benchmark Allocated Used Allocated Used

ring 41.6 11.7 10.9 2.3
life 52.8 33.1 28.6 28.6

eddie 78.1 67.3 46.3 46.3
BEAM compiler 1375.0 1363.0 1346.0 1346.0
NETSim TMOS 2670.5 1120.6 317.8 317.8

NETSim coordinator 233.0 162.0 121.4 121.4
NETSim alarm server 2822.9 2065.7 317.8 317.8

the two systems is not very big and that a private heap
system is no guarantee for short GC stop times. True real-
time GC latency can only be obtained using an on-the-fly
or real-time garbage collector.

Space performance. Table 2 contains a space comparison
of the private vs. the shared heap architecture on all non-
synthetic benchmarks. For each program, maximum sizes
of heap allocated and used is shown in thousands of words.
Recall that in both systems garbage collection is triggered
whenever the heap is full; after GC, the heap is not expanded
if the heap space which is recovered satisfies the need. This
explains why maxima of allocated and used heap sizes are
often identical for the shared heap system. From these fig-
ures, it is clear that space-wise the shared heap system is a
winner. By sharing messages, it usually allocates less heap
space; the space performance on the NETSim programs is
especially striking. Moreover, by avoiding fragmentation,
the shared heap system has better memory utilization.

6.3 Comparison of all 3 architectures
As mentioned, the runtime system of the hybrid memory

architecture is implemented, but no escape analysis is cur-
rently integrated in the compiler. For this reason, the large
benchmarks cannot yet be run in this configuration. How-
ever, for the small synthetic benchmarks keeplive, garbage,
and sendsame, we generated allocation code by hand and
fed it into the system. In all benchmarks of this section, the
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Figure 10: Performance of the keeplive benchmark.
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Figure 11: Performance of the garbage benchmark.
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Figure 12: Performance of the sendsame benchmark.



shared memory area of the hybrid system is large enough
so that none of them triggers its garbage collection. On the
other hand, each of the per-process heaps for the non-shared
data has an initial size of 233 words, as in the private heap
system, and does require GC.

Figures 10, 11, and 12 present normalized execution times
for these benchmarks. The 8 groups in each figure corre-
spond to different arguments (NxSxT) passed to the bench-
marks where N is the number of processes, S is the size of
each message, and T denotes how many times each message
is sent. The 3 bars in each group show normalized execution
times for each system. Recall that the execution time for the
shared heap (S) and the hybrid (H) system is normalized to
the execution time of the private heap (P) system for each
group. This means that one cannot compare bars from two
different groups directly.

The keeplive benchmark is an extreme case for a copying
garbage collector: each process keeps all its incoming mes-
sages live. From Figure 10, we can see that the shared heap
system spends less time in send (and copy) than the private
heap system. However, when the number of processes or the
size of the message increases, the time that the shared heap
system spends in garbage collection becomes a bottleneck,
making overall execution slower than the private heap sys-
tem. The hybrid system on the other hand has very low send
times (no copying is required) and also very low garbage col-
lection times due to the fact that the shared memory area
is big enough to not need any garbage collection.

In the garbage benchmark each process throws away the
incoming messages and instead creates a new message that
it sends to the next process. As we can see in Figure 11,
the shared heap system behaves better when the heap is
not constantly overflowing with more and more live data.
The hybrid system is slightly faster overall, despite the fact
that its mutator is often slightly slower (perhaps due to the
runtime system requiring more machinery).

Finally, the sendsame benchmark is an extreme case for
sharing messages: a single message is created which is dis-
tributed to all the processes in the ring and then passed
around to another 10 or 20 processes, depending on the
benchmark’s last parameter. In the private heap system
the message is copied from heap to heap requiring a consid-
erable amount of garbage collection even for modest-sized
messages. In this benchmark, all that the mutator does,
after creating one message once and for all, is to receive a
message, decrement a counter, and pass the message on to
another process. (Note once again that the bars in all groups
are normalized to the the total time for the private heap sys-
tem for that group; the absolute times for this benchmark
are about half of those of the other benchmarks.) Both
the shared heap system and the hybrid system behave ex-
tremely well on this benchmark, since message passing is
much faster (no need to copy or calculate the size of the
message), and since the message is not copied no new data
is created and hence no garbage collection is needed. In
the best case (250x1000x20) the shared heap system is over
nine times faster than the private heap system. In general,
the shared heap system and the hybrid system are behaving
similarly on this benchmark.

7. CONCLUDING REMARKS
In this paper we have presented three alternative mem-

ory architectures for high-level programming languages that

implement concurrency through message passing. We have
systematically investigated aspects that might influence the
choice between them, and extensively discussed the associ-
ated performance tradeoffs. Moreover, in an implementation
setting where the rest of the runtime system is unchanged,
we have presented a detailed experimental comparison be-
tween these architectures both on large highly concurrent
programs and on synthetic benchmarks. To the best of our
knowledge, all these fill a gap in the literature.

It would be ideal if the paper could now finish by an-
nouncing the “winner” heap architecture. Unfortunately,
as our experimental evaluation shows, performance does de-
pend on program characteristics and the tradeoffs that we
discussed do exhibit themselves in programs. Perhaps it is
better to leave this choice to the user, which is the approach
we are currently taking by providing more than one heap
architecture in the Erlang/OTP release. When the choice
between these architectures has to be made a priori, it ap-
pears that the shared heap architecture is preferable to the
private heap one: it results in better space utilization and is
often faster, except in cases with many processes with high
amounts of live data. The hybrid system seems to nicely
combine the advantages of the two other architectures, and
it would have been our recommendation if we had hard data
on the precision of the escape analysis.

However, perhaps there are other criteria that might also
influence the decision. Architectures where messages get
placed in an area which is shared between processes free
the programmer from worrying about message sizes. More-
over, they open up new opportunities for interprocess opti-
mizations. For example, within a shared heap system one
could, with a lower overhead than in a private heap scheme,
switch to the receiving processes at a message send, achiev-
ing a form of fast remote procedure call between processes.
It would even be possible to merge (and further optimize)
code from two communicating processes in a straightforward
manner as discussed in [15]. We intend to investigate this
issue.

We are currently incorporating the escape analysis into
the compiler in order to evaluate the performance of the
hybrid architecture on large applications. In addition, we
intend to investigate how concurrent or real-time garbage
collection techniques fit into the picture.
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