
On Preserving Term Sharing in the Erlang Virtual Machine

Nikolaos Papaspyrou 1 Konstantinos Sagonas 2,1

1 School of Electrical and Computer Engineering, National Technical University of Athens, Greece
2 Department of Information Technology, Uppsala University, Sweden

nickie@softlab.ntua.gr kostis@it.uu.se

Abstract
In programming language implementations, one of the most im-
portant design decisions concerns the underlying representation of
terms. In functional languages with immutable terms, the runtime
system can choose to preserve sharing of subterms or destroy shar-
ing and expand terms to their flattened representation during certain
key operations. Both options have pros and cons. The implementa-
tion of Erlang in the Erlang/OTP system from Ericsson has so far
opted for an implementation where sharing of subterms is not pre-
served when terms are copied (e.g., when sent from one process to
another or when used as arguments in spawns).

In this paper we describe our experiences and argue through ex-
amples why flattening terms during copying is not a good idea for
a language like Erlang. More importantly, we propose a sharing-
preserving copying mechanism for Erlang/OTP and describe a pub-
licly available complete implementation of this mechanism. Perfor-
mance results show that, even in extreme cases where no subterms
are shared, this implementation has a reasonable overhead which
is negligible in practice. In cases where shared subterms do exist,
perhaps accidentally, the performance savings can be substantial.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed and
parallel languages; Applicative (functional) languages; D.3.3
[Programming Languages]: Language Constructs and Features—
Dynamic storage management; D.3.4 [Programming Languages]:
Processors—Run-time environments; D.1.3 [Software]: Concur-
rent Programming—Parallel programming; D.1.1 [Software]: Ap-
plicative (functional) Programming

General Terms Algorithms, Languages, Performance

Keywords Virtual machines, message passing, marshalling, Erlang

1. A motivating experience
In February 2012, Stavros Aronis, a Ph.D. student of the second
author of this paper, had just completed a large portion of a major
refactoring of the code base of the Dialyzer static analysis tool that
was needed for its parallelization. The rewrite took about a month.
The changes consisted of a bit more than a thousand lines of code
in total, scattered in several of Dialyzer’s files [1]. After testing
that the sequential version of the refactored code base still worked

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’12, September 14, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1575-3/12/09. . . $10.00

correctly on Dialyzer’s regression test suite, Stavros was finally at
the point where he was about to make a bold step: add a spawn on
a key line of the code and try out (some limited form of) parallel
analysis for the first time. Excitement was building up, both for
Stavros and his advisor!

Unfortunately, the introduction of the spawn turned our excite-
ment into despair: on some tests the parallel version of the analysis
worked well while on some others it appeared to be running into
what looked like an infinite loop (i.e., these tests were finishing in
a few seconds in the sequential version and were not finishing after
many minutes in the parallel). Was there some error in some of the
1, 000+ lines that Stavros changed? Did the parallelization trigger
a fixpoint computation bug that Dialyzer had all along but laid hid-
den in its sequential version? Were we unlucky to hit a concurrency
error in the SMP implementation of Erlang/OTP? We had no clue.

We decided to debug this by checking whether the analysis in
the sequential version of Dialyzer in vanilla Erlang/OTP R15B
produced the same information as the one in the parallel ver-
sion or whether they differed. To determine this, we modified file
lib/dialyzer/src/dialyzer typesig.erl by inserting a sin-
gle io:format call to its code; the one shown below:

162 ...
163 State2 = traverse_scc(SCC, DefSet, State1),
164 io:format("State2 = ~p\n", [State2]),
165 State3 = state__finalize(State2),
166 ...

We were expecting that this action would shed some light. Instead,
it thickened the plot. The analysis with the print statement printed
some states and then also went into what appeared to be an infinite
loop. In contrast, the version with the io:format commented
out was finishing more or less immediately. (This happened when
running Dialyzer on e.g. the erl scan module of the standard
library or erl bif types. We stress again that this part of the story
concerns the vanilla Dialyzer of Erlang/OTP R15B.)

At this point we had enough reasons to report our experiences to
Björn Gustavsson, a member of the Erlang/OTP team at Ericsson.
His first reaction was to tell us to substitute the io:format call
on line 164 with an erlang:display(State2) call. With this
change, which bypasses the io subsystem using a low-level routine,
all the analysis states were printed more or less immediately. This
action also made it clear that Dialyzer’s analysis was not really
going into an infinite loop. Instead, what was happening is that the
states were occasionally very big and the I/O server had serious
trouble with them. Let us note at this point that the io module
in Erlang/OTP R15B is implemented using a separate I/O server:
io:format/2 sends both its arguments to the process that controls
this server so that the term to be printed gets formatted there. Since
in Erlang/OTP the send operation is implemented by copying,
its cost is proportional to the size of the term which is sent. In

1617 ...
1618 ArgV = ?mk_fun_var(ArgFun, [Dst]),
1619 DstFun = fun (Map) ->
1620 ArgType = lookup_type(Arg, Map),
1621 case t_is_none(t_inf(ArgType, Type)) of
1622 true ->
1623 case lists:member(ArgType, State#state.opaques) of
1624 true ->
1625 % the State variable is not used anywhere else in the fun ...

1617 ...
1618 ArgV = ?mk_fun_var(ArgFun, [Dst]),
1619 Opaques = State#state.opaques,
1620 DstFun = fun (Map) ->
1621 ArgType = lookup_type(Arg, Map),
1622 case t_is_none(t_inf(ArgType, Type)) of
1623 true ->
1624 case lists:member(ArgType, Opaques) of
1625 true ->
1626 ...

Figure 1. Change in the code of lib/dialyzer/src/dialyzer typesig.erl to avoid passing a term with shared subterms to a closure.

fact, as we will soon see, in the current implementation its cost
is proportional to the size of the flattened form of the term.

However, this only explained one of the problems, namely why
it was impossible to use io:format-based debugging to compare
the intermediate states of the analyses in the sequential and parallel
version. It did not explain at all why parallelization by adding a
spawn in some place also exploded in time.

The spawn mystery was solved when Björn send us the follow-
ing mail:

It is not a bug of the run-time system, but the [State2] term
contains shared subterms, making the flattened size huge.
I attach a patch that fixes the problem.

The complete effect of Björn’s patch can be seen in Figure 1. The
code on the left part of the figure is taken verbatim from Dialyzer’s
code in R15B. The code on the right is after Björn’s rewrite. Note
that the two code excerpts are semantically identical. Where they
differ is that the original code passes the entire #state{} in the
environment of the closure, while the rewritten code passes only
the part of this record that the fun needs: in this case the term in its
opaques field.

One may wonder: “How big is this State record anyway?” We
were wondering this too and performed the following experiment.
On a desktop with an i7-2600 CPU @ 3.40GHz we run the vanilla
version of Dialyzer in Erlang/OTP R15B first with the io:format
call commented out:

$ time dialyzer --build_plt lib/stdlib/ebin/erl_scan.beam
Creating PLT /home/kostis/.dialyzer_plt ...
... MORE OUTPUT FROM DIALYZER ...

done (passed successfully)

real 0m3.553s
user 0m3.500s
sys 0m0.084s

and then we uncommented it:

$ time dialyzer --build_plt lib/stdlib/ebin/erl_scan.beam
Creating PLT /home/kostis/.dialyzer_plt ...
... LOTS OF PRINTOUTS ... THE LAST ONE IS:

[{c,var,4207,unknown}]}
HUGE size (178528018324307)
Aborted

real 5386m22.363s
user 5355m20.917s
sys 0m31.486s

In other words, adding a single call to io:format turns an Erlang
program which completes its execution normally in less than four
seconds into a program that crashes Erlang/OTP after running for
almost 90 hours! The slogan of the crash gives an indication of the
size of the message heap that the io subsystem tries to allocate for
sending the State2 term in a message to the I/O process. Björn
was right: flattening makes this term huge. (In contrast, the size of
the term with shared subterms is quite small.)

One could try to argue that perhaps Erlang/OTP was never
meant to be supporting io:format-based debugging in an effi-
cient and robust way. We would of course disagree with such an
argument, but arguing about I/O fails to attack the problem in its
root. The problem is actually deeper: We hold that a language in
which concurrency is based on message passing cannot come with
an implementation of message passing that explodes when terms
contain shared subterms. What the io:format part of the story
shows is that, in Erlang/OTP, the send operation can become ex-
tremely slow if term sharing is involved. Moreover, even for very
experienced programmers, it is unclear when term sharing occurs
and to which extent this happens.

The spawn story corroborates our argument. After we realized
that the State variables in that file contain terms with lots of shar-
ing, the reason for experiencing the parallelization “infinite loop”
also became clear. In Erlang, the spawn builtin creates a new pro-
cess which will start the execution of the function (closure) in the
spawn argument. For the function to execute, its arguments must
be copied to the heap of the newly created process. In other words,
the cost of process spawning is proportional to the size of the ar-
guments that spawn has to copy. In effect, what this means is that
Erlang/OTP implementation has opted to have as its basic paral-
lelization primitive a language construct whose cost is proportional
to the size instead of the number of arguments the spawned function
has. So, there exists a possibility that parallelization of an otherwise
reasonable program may not only fail in achieving some speedup
but instead introduce an unbounded slowdown to a program!

By now, we hope that we have managed to convince our read-
ers that the problems we describe are not only possible to occur
but also important to properly address in the implementation of a
programming language like Erlang. For a number of years now,
the Erlang/OTP implementors at Ericsson have been aware of the
possibility of these problems, but they have prioritized them quite
low on their (long) TODO list, partly due to other priorities and
partly due to the perceived high overhead that a sharing-preserving
copying implementation may incur to “typical” Erlang applications
which presumably do not have enough sharing to make such an im-
plementation worthwhile.

In this paper, we propose a mechanism for a sharing-preserving
copying algorithm of Erlang/OTP and describe in detail its publicly
available implementation (Section 4). We quantify its overhead
in extreme cases where no sharing is involved and in a variety
of benchmark programs and show that the implementation has a
reasonable overhead which is negligible in practice (Section 5).
In the next two sections we describe how term sharing is created
in Erlang/OTP (Section 2) and the tagging scheme that the virtual
machine of Erlang/OTP currently uses (Section 3).

But before we begin, let us complete our story. Since we wanted
to include the parallel version of Dialyzer even in Erlang/OTP re-
leases that do not come with a sharing preserving copying imple-
mentation, such as the one we propose in this paper, we adopted the
rewrite shown in Figure 1. In fact, Dialyzer’s code contained more
occurrences of this code pattern and these we also cleaned up.

2. Term sharing in Erlang/OTP
Erlang/OTP’s erts_debug module for low-level debugging sup-
port, which is undocumented, provides two functions, size/1 and
flat_size/1, that return the size of a given term in actual heap
words. The difference between the two is that the latter performs a
simple traversal of the term, treating it like a tree, while the former
treats the term like a directed graph and counts shared subterms
only once. Let us make the difference of the two functions clear
with a simple example:

show_sizes(Term) ->
Real = erts_debug:size(Term),
Flat = erts_debug:flat_size(Term),
io:format("real = ~w, flat = ~w~n", [Real, Flat]).

This function shows both sizes (flat and real) of the term that is
passed as a parameter. If we try it on a simple list of four integers
we see that the two sizes are equal:

1> L = [1, 2, 3, 4].
[1,2,3,4]
2> demo:show_sizes(L).
real = 8, flat = 8
ok

The size is 8 because the list is stored in four cons cells and each
of them consists of two words (head and tail). On the other hand, if
we give to show_sizes a term that contains this list as a subterm
multiple times, the two sizes are now different:

3> L3 = [L, L, L].
[[1,2,3,4],[1,2,3,4],[1,2,3,4]]
4> demo:show_sizes(L3).
real = 14, flat = 30
ok

Now, what we really have is three more cons cells, each containing
a reference to L at its head, and therefore six more words. On the
other hand, if we treat this term like a tree, it is identical to the
term [[1,2,3,4], [1,2,3,4], [1,2,3,4]] which has size 30
(3 × 8 + 6, i.e., the three L’s and three more cons cells). Figure 2
shows how L really is (left) and how flat_size thinks it is (right).

Figure 2. List L3, with sharing (left) and flat (right).

The flat version of L in this example does not really exist; it
just corresponds to the way flat_size sees L. In some cases,
however, the implementation of Erlang explicitly flattens terms.
The efficiency guide included in Erlang’s documentation warns us:

Loss of sharing
Shared sub-terms are not preserved when a term is sent to
another process, passed as the initial process arguments
in the spawn call, or stored in an ETS table. That is an
optimization. Most applications do not send messages with
shared sub-terms.

To see this in practice, consider the following function that creates
a list with a shared subterm and sends it to a child process.

show_send_destroys_sharing() ->
L1 = lists:seq(1, 10),
L2 = [L1, L1, L1, L1, L1],
show_sizes(L2),
Pid = spawn(fun () ->

receive M -> show_sizes(M) end
end),

Pid ! L2,
ok.

By calling the function, we notice that the real size of the list
increases when it is received as a message by the child process.

5> demo:show_send_destroys_sharing().
real = 30, flat = 110
real = 110, flat = 110
ok

Of course the original list has not been flattened. What happened
here is that, when the list was sent as a message, the child process
received a flat copy of the list. Loss of sharing resulted from the
copying algorithm that was used.

The same happens when a new process is spawned. Consider
the following two functions:

show_spawn_destroys_sharing_in_arguments() ->
L1 = lists:seq(1, 10),
L2 = [L1, L1, L1, L1, L1],
show_sizes(L2),
spawn(?MODULE, show_sizes, [L2]),
ok.

show_spawn_destroys_sharing_in_closure() ->
L1 = lists:seq(1, 10),
L2 = [L1, L1, L1, L1, L1],
show_sizes(L2),
spawn(fun () -> show_sizes(L2) end),
ok.

Both functions print the size of L and then spawn a new process that
prints the size again. They differ in that the fist function spawns
directly a call to show_sizes, passing it the list as an argument,
whereas the second spawns a function closure that refers to the list.
Their behaviour, however, is identical and reveals that a flat copy
of the list is again created:

6> demo:show_spawn_destroys_sharing_in_arguments().
real = 30, flat = 110
real = 110, flat = 110
ok
7> demo:show_spawn_destroys_sharing_in_closure().
real = 30, flat = 110
real = 110, flat = 110
ok

The documentation has warned us that, when terms are copied
from one process to another, sharing is not preserved. It has been
explained that this is so for reasons of efficiency. What happens,
however, when we use the code in Figure 3 is not obvious, even to
somebody who has carefully read the above warning. The function
calls F for various different values of N, ranging from 10 to 30.
Each time, a list L is constructed, which contains a lot of shared
subterms; indeed, the real size of L is linear in N (exactly 4 × N

words) whereas its flat size is exponential (2N+2 − 4 words). After
constructing the list, function F calculates and prints its real size.
Then, in line 7 which we will discuss extensively, it prints the list
itself; however, as the printing of terms is by nature a flattening
process, the "~P" format is used with a depth parameter of 2 —
this means that only the upper two levels of (the flat version of) L

1 show_printing_may_be_bad() ->
2 F = fun (N) ->
3 T = now(),
4 L = mklist(N),
5 S = erts_debug:size(L),
6 io:format("mklist(~w), size ~w, ", [N, S]),
7 io:format("is ~P, ", [L, 2]), %%% BAD !!!
8 D = timer:now_diff(now(), T),
9 io:format("in ~.3f sec.~n", [D/1000000])

10 end,
11 lists:foreach(F, [10, 20, 22, 24, 26, 28, 30]).
12

13 mklist(0) -> 0;
14 mklist(M) -> X = mklist(M-1), [X, X].

Figure 3. A program that prints terms with many shared subterms.

will be printed. Also, F keeps track of the time spent in calculating
and printing. Let us first execute the function without line 7.

8> demo:show_printing_may_be_bad().
mklist(10), size 40, in 0.000 sec.
mklist(20), size 80, in 0.000 sec.
mklist(22), size 88, in 0.000 sec.
mklist(24), size 96, in 0.000 sec.
mklist(26), size 104, in 0.000 sec.
mklist(28), size 112, in 0.001 sec.
mklist(30), size 120, in 0.001 sec.
ok

Nothing extraordinary here. But when we add line 7:

9> demo:show_printing_may_be_bad().
mklist(10), size 40, is [[...]|...], in 0.000 sec.
mklist(20), size 80, is [[...]|...], in 0.084 sec.
mklist(22), size 88, is [[...]|...], in 0.292 sec.
mklist(24), size 96, is [[...]|...], in 1.165 sec.
mklist(26), size 104,
Crash dump was written to: erl_crash.dump
eheap_alloc: Cannot allocate 1781763260 bytes of

memory (of type "heap").
Abort

The first thing we notice is that it takes a significant amount of time
to print the eleven characters (the dots and brackets) that represent
the first two levels of L. Furthermore, this amount of time seems to
increase exponentially with N. On top of everything, when N = 26,
after thinking for a few seconds, the virtual machine tries to allocate
1.7 GB of memory and dies in the process.

The problem is caused by the same loss of sharing that we wit-
nessed before; it is however not as obvious, unless one understands
the way in which I/O works. In Erlang/OTP, all I/O is performed
by communicating with I/O servers, which are processes handling
I/O requests. When io:format is invoked, it sends a message to
the I/O server process with what needs to be printed and the server
takes care of the rest. Although only the first two levels of L need to
be printed, the whole of L is included in the message and, of course,
message passing makes flat copies. When trying to print the first
few elements of a data structure that really occupies 4× 26 = 104
bytes of memory, the virtual machine tries to build a flat copy of
this structure whose size would be 226+2 − 4 words, or 1.07 GB in
a 32 bit machine (the 1.7 GB mentioned in the post-mortem mes-
sage is the smallest quantum of heap space that could fit such a
structure, according to the heap-resizing algorithm that is used).

So, it is no news that the implementation of Erlang/OTP does
not try to preserve sharing when copying terms to other processes.
Unfortunately, this indirectly affects I/O too. But it can be argued
that the preservation of sharing in general is not a high priority for
the implementation of Erlang/OTP; loss of sharing is not only re-

lated to process creation and message passing. The following func-
tion manifests a loss of sharing that is related to code generation
and the constant pool (again an intended optimization).

show_optim_destroys_sharing() ->
L1 = lists:seq(1, 10),
L2 = [L1, L1, L1, L1, L1],
show_sizes(L2),
L3 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
L4 = [L3, L3, L3, L3, L3],
show_sizes(L4).

Lists L1 and L3 are obviously equal, and so are L2 and L4. But their
sizes reveal that L2 has shared subterms, whereas L4 is flat.

10> demo:show_optim_destroys_sharing().
real = 30, flat = 110
real = 110, flat = 110
ok

One may think, how big can a constant get? Usually not too big.
But (now that we know about it) let’s try to compile the following
function:

show_compiler_crashes() ->
L0 = [0],
L1 = [L0, L0, L0, L0, L0, L0, L0, L0, L0, L0],
L2 = [L1, L1, L1, L1, L1, L1, L1, L1, L1, L1],
L3 = [L2, L2, L2, L2, L2, L2, L2, L2, L2, L2],
L4 = [L3, L3, L3, L3, L3, L3, L3, L3, L3, L3],
L5 = [L4, L4, L4, L4, L4, L4, L4, L4, L4, L4],
L6 = [L5, L5, L5, L5, L5, L5, L5, L5, L5, L5],
L7 = [L6, L6, L6, L6, L6, L6, L6, L6, L6, L6],
L8 = [L7, L7, L7, L7, L7, L7, L7, L7, L7, L7],
L9 = [L8, L8, L8, L8, L8, L8, L8, L8, L8, L8],
L = [L9, L9, L9, L9, L9, L9, L9, L9, L9, L9],
L.

After a bit more of 45 minutes of struggling, the compiler tries to
allocate 3.7 GB of memory and gives up:

$ erlc demo.erl
Crash dump was written to: erl_crash.dump
eheap_alloc: Cannot allocate 3716993744 bytes of

memory (of type "heap_frag").
Abort

We quote again from the efficiency guide included in the docu-
mentation of Erlang/OTP R15B01:

In a future release of Erlang/OTP, we might implement a
way to (optionally) preserve sharing. We have no plans to
make preserving of sharing the default behaviour, since that
would penalize the vast majority of Erlang applications.

Partly doubting the last part of this statement and, more impor-
tantly, not being very happy with the current implementation, in the
rest of the paper we propose a sharing-preserving copying mecha-
nism for Erlang/OTP, which has been fully implemented and is pub-
licly available from git@github.com:nickie/otp.git (branch
preserve-sharing). We also investigate the runtime overhead
it imposes and how much it really penalizes the vast majority of
Erlang applications.

3. Erlang/OTP’s tagging scheme
This section describes how terms are represented in Erlang/OTP’s
run-time system (ERTS). In this description, we only go to as
much detail as necessary for making the paper self-contained. A
detailed description of the staged tagging scheme that is used by
ERTS, although a bit outdated, is given in a technical report by
Pettersson [9], who also provides a brief rationale and shows the
historical evolution of the tagging scheme.

(*) The representation of binaries is more complicated and not accurately
depicted in “Anything else”.

Figure 4. The representation of Erlang terms.

An Erlang term is represented by ERTS as a word.1 The two
least significant bits of this word are the term’s primary tag. They
are used in the following way (see Figure 4):

• If the primary tag is 11, the term is an immediate value. The
remaining bits of the term provide the value itself, using a
secondary tag (and possibly a tertiary one). The most common
immediate values are:

− small integer numbers,

− atoms,

− process identifiers,

− port identifiers, and

− the empty list [].
• If the primary tag is 01, the term is a cons cell (a list element).

The remaining bits of the term (after clearing the primary tag)
provide a pointer to the memory location where the cons cell
is stored. The size of the cons cell is two words, in which two
terms are stored: the head and the tail of the list. Notice that
the tail need not be a list: Erlang supports improper lists, e.g.,
[1|2] makes a cons cell that contains 1 and 2 in its two words.

• If the primary tag is 10, the term is a boxed object. The remain-
ing bits of the term (after clearing the primary tag) provide a
pointer to the memory location where the boxed object is stored.
The contents of this memory depend on what the boxed object
really is but the first word always contains the object’s header.
Boxed objects are used for representing the following:

− tuples,

− big integer numbers and floating-point numbers,

− binaries,

− external process identifiers, ports and references, and

− function closures.

1 This is not entirely accurate. The so called “halfword” virtual machine
uses only half a word (32 bits) for term representation in 64 bit computer
architectures, to provide faster execution [6]. However, this is a technical
issue which does not affect the results we present in this paper, although it
complicates the implementation slightly.

Notice that the primary tag of an Erlang term cannot be 00; this tag
is only used in the header word of boxed objects.2 Notice also that
there is a special header word, called THE_NON_VALUE, which is
not used as a header in boxed objects and has one more interesting
property: it does not represent a legal pointer to a memory location.

The representation of boxed objects is probably the most com-
plicated part of term representation in Erlang/OTP. The next four
least significant bits, after the primary tag of 00, form a secondary
tag in the header word which reveals the nature of the boxed ob-
ject. The remaining bits are used to represent the boxed object’s
size,3 which is a natural number n. The secondary tag is used in the
following way:

• If the secondary tag is 0000, the object is a tuple of size n. Its
elements are Erlang terms and are stored in n words, following
the header.

• If the secondary tag is 0101, the object is a function closure.
The next n words contain information about the function to
be called (e.g., the address of its code in memory). They also
contain one word that represents the number m of free variables
used by the function closure. The next m+1 words contain: in
the first word an Erlang term that is the process identifier of
the process that created the function closure, and in the next
m words Erlang terms that contain the values of the m free
variables of the closure.

• The other values of the secondary tag correspond to boxed
objects that do not contain Erlang subterms in them. In most
cases (a notable exception is binaries, whose representation is
quite complicated) the size of the boxed object is n+ 1.

4. Copying and term sharing
When copying a term, Erlang/OTP traverses the term twice. Dur-
ing the first traversal, the flat size of the term is calculated (func-
tion size_object in erts/emulator/beam/copy.c). Then, the
space necessary for holding the copy is allocated (e.g., on the heap
of the recipient process, on the heap of a newly spawned process or
in a temporary message buffer). Finally, a second traversal creates a
flat copy of the term in the allocated space (function copy_struct
in erts/emulator/beam/copy.c).4

In this section we will show how to create a sharing-preserving
copy of a term using again two traversals, in the same spirit —
to be precise, using two traversals that visit each shared subterm
only once, in contrast to flat traversals. In our implementation, the
first one is implemented by function copy_shared_calculate
and the second by function copy_shared_perform.

4.1 Design issues
For creating a sharing-preserving copy, we need to know which
subterms are shared. This can be accomplished by keeping track of
visited subterms, when traversing, and using “forwarding pointers”
instead of copying anew when a subterm is revisited. The idea is
obviously not new: copying garbage collectors work in a similar

2 Strictly speaking, a primary tag of 00 has some more uses in words that
are not Erlang terms (e.g., various pointers in stack frames) and is also used
during garbage collection.
3 The Erlang/OTP code calls arity what we prefer to call size here.
4 In principle, one traversal suffices for creating a flat copy of a term.
However, such an implementation would have to allocate the necessary
space incrementally, during the traversal, checking all the time whether
there is enough space. Whenever space does not suffice, the implementation
needs to ensure that the garbage collector never sees partially copied terms.
The Erlang/OTP implementors have opted for the simpler (and arguably
more efficient) strategy that uses two traversals.

way [3], as well as the implementations of marshalling/serialization
routines for data structures [2, 4, 5, 7, 8, 10, 11].

During traversal, two pieces of information must be kept for
each subterm: (a) whether the subterm has been visited or not, and
(b) the forwarding pointer that will be used for avoiding multiple
copies. A major design issue in the copying algorithm is where this
information will be stored. One option is to store it in a separate
lookup table, e.g., a hash map. This option unfortunately requires
extra memory proportional to the size of the original term and
imposes a (probably non-negligible) run-time overhead.

Another option is to store (parts of) the information inside
the subterms, if term representation permits; this is what copying
garbage collectors usually do. By storing information inside the
subterms when copying, however, we are altering the original term
and this causes two problems:

1. We obviously have to restore the term, after the copying takes
place, and therefore a second traversal is unavoidable. (Copying
garbage collectors do not have this problem, as the original term
is discarded, after being copied.)

2. We have to make sure that no part of the original term will
be accessed during the time that we copy it (e.g., by another
process running simultaneously or by the garbage collector).

We can easily deal with the first problem, as we will be travers-
ing the term twice anyway. During the first traversal, we count the
term’s size and at the same time we flag subterms as visited and
store sharing information in them. During the second traversal, we
copy the term and at the same time restore the original contents.

The second problem is much harder to deal with in a highly
concurrent language like Erlang, at least in a general way. Let
us identify a set of facts and assumptions that currently hold for
Erlang/OTP, which are important for the validity of our approach.
Let P be the process that copies the term t, e.g., the one sending t
as message to another process.

A1. All tagged pointers contained in t and all of its subterms will
point either to objects in P ’s heap, or to objects outside P ’s
heap that are globally accessible and do not need to be copied,
e.g., constants in the module’s constant pool.

A2. The heap of process P cannot be accessed by any other process,
running concurrently.

A3. Copying takes place atomically per scheduler, i.e., when P
starts copying a term t it cannot be stopped before the copying
finishes. Also, during the copying, the heap of P cannot be
garbage collected.

Based on these assumptions, it is possible to devise a copying
algorithm that only alters subterms located in P ’s heap (we will call
these subterms and the objects that they point to “local”) and avoids
copying subterms that are outside of it — for all such non-local
subterms, only pointers are copied. In this way, a better sharing
of subterms is achieved: constants can be shared between different
copied terms.

4.2 Term mangling
After making sure that altering the original term cannot do harm to
program execution, we are faced with the problem of how exactly to
alter the original term, in order to incorporate sharing information.
It is clear that, given Erlang/OTP’s representation of terms, it is not
possible to find room for storing forwarding pointers inside heap
objects and then to be able to restore their original contents. We
will instead have to store forwarding pointers in an external lookup
table (we will call it the sharing table) but, for efficiency reasons,
we would like to use space in that table only for subterms that

Figure 5. State transition diagram for heap objects.

are really shared, not to store forwarding pointers for every copied
subterm.

At any given time during the two traversals, each heap object
(cons cell or boxed object) can be in one of four different states at
any given time:

• original: the first traversal has not yet visited the object for the
first time;

• visited: the first traversal has visited the object exactly once;
• shared, unprocessed: the first traversal has visited the object at

least twice but the second traversal has not yet visited the object;
• shared, processed: the first traversal has visited the object at

least twice and the second traversal at least once.

The state of a heap object can change during the copying according
to the transition diagram shown in Figure 5. Each transition is
labeled by the traversal during which it may occur. Between the
two traversals, all objects corresponding to local subterms will be
either visited or shared and unprocessed. After the second traversal,
all objects will have been restored to the original state.

For each local object, we need to distinguish between these
four states and we would be happy to store these (two bits of)
information inside the object itself; if we achieve this, then only
the forwarding pointers of shared and processed objects will have
to be stored in the sharing table, during the second traversal. We
will refer to this squeezing of two bits of information inside a heap
object as “mangling”.

Mangling boxed objects is relatively easy, as the object header
is bound to have a primary tag of 00, in the original state. We can
use the other three combinations of the the primary tag’s two bits
to denote the other three states, as shown in Figure 6. For visited
objects, the remaining part of the header will be left unchanged.
However, when a shared object is found, we can allocate a new
entry for it in the sharing table and replace the remaining contents
of the header with a pointer to this entry. Of course, we must store
the original contents of the header in the entry itself, so as to be
able to restore it later.

The situation is much more complicated for cons cells, which
are simply too small for easily squeezing in them the extra two
bits of information. We only need to be able to distinguish between
original, visited and shared; once a cons cell becomes shared, we
can allocate an entry in the sharing table and then we can have
all the space we need. With a first look, there is no room for
this information. Looking closer, however, we see that neither of
the two terms in the cons cell (the head or the tail) can have a
primary tag of 00. This observation gives us the mangling scheme
in Figure 6. Cons cells whose tail is a list or an immediate value
should be the most common (the cells of all proper lists are like
this). We can encode the visited state for such cells by replacing
the primary tag of the CAR or that of the CDR with 00, without
losing information. This leaves us with only one option for visited
cells with a boxed tail: to replace the primary tags of both the
CAR and the CDR with 00. In this way, we lose two bits of
information: when we restore a visited cell, we won’t know the
original primary tag of the CAR. We must again store these two bits

Boxed objects

original visited shared
unprocessed

shared
processed

header header header header
x |00 x |01 e |10 e |11

Cons cells

original visited shared
unprocessed

shared
processed

CAR CDR CAR CDR CAR CDR CAR CDR
x |01 y |01 x |01 y |00

e |00 NONV e |01 NONV

x |11 y |01 x |11 y |00
x |10 y |01 x |10 y |00
x |01 y |11 x |00 y |01
x |11 y |11 x |00 y |11
x |10 y |11 x |00 y |10
x |01 y |10 x |00* y |00
x |11 y |10 x |00* y |00
x |10 y |10 x |00* y |00

Entries in the sharing table

object kind first second forwarding
pointer

reverse
pointer

cons cells x |Tx y |Ty ptr? ptr
boxed objects x |Tx NONV ptr? ptr

Memorandum
Primary tags in original objects:

00 (header), 01 (cons cell), 10 (boxed object), 11 (immediate value).
NONV The special THE_NON_VALUE term, tagged with 00.
* The primary tag of the CAR is placed in the bit store data structure.
e The corresponding entry in the shared subterms table.

Figure 6. Mangling of heap objects.

of information externally. However, we do not really need a table
for this purpose; a stored sequence of bits is just enough as long as
we make sure that, during the second traversal, the order in which
we visit subterms is the same as in the first traversal. We call this
sequence of bits the “bit store” and we notice that its size should
normally be very small: just two bits for each subterm that happens
to be a list with a boxed tail, e.g., something like [1|{ok,2}] or
[3|<<4>>] in Erlang syntax.

Using the bit store, we are now able to distinguish between
original and visited cons cells. To encode the shared ones, we can
use the special term THE_NON_VALUE in the CDR, as we know it
cannot appear there in any other way, mangled or not. (Remember
that this term is tagged with 00 and does not correspond to a valid
pointer.) A shared cell corresponds to an entry in the sharing table;
we can store a pointer to this entry in the CAR and use its primary
tag for encoding if it has been processed or not. This gives us the
complete picture for mangling cons cells.

For each entry in the sharing table, four words are necessary.
The first two hold the information that we had to erase in the
original object (both the CAR and the CDR in the case of cons
cells). The second word will be THE_NON_VALUE if and only if the
entry corresponds to a boxed object. The third word will contain
the forwarding pointer, once the shared object is processed. The
fourth word will contain a reverse pointer to the original shared
heap object; it will be required for restoring the original state of
shared objects.

Algorithm 1. Size calculation and mangling.
Input: A term t
Output: The real size (in words) of t, contained in variable size
Output: The bit store B
Output: The sharing table T

B := an empty bit store
T := an empty sharing table
Q := an empty queue of terms
size := 0
obj := t

loop
switch (primary tag of obj)
case 01: {cons cell}

if the pointer of obj is local then
if the object is visited then

add an entry e for it in T
make the object shared and unprocessed (Fig. 6)

else if the object is original then
make the object visited: may add to B (Fig. 6)
size := size + 2
add the head of the list to Q
obj := the tail of the list
continue {with the next iteration of the loop}

end if
end if

case 10: {boxed object}
if the pointer of obj is local then

if the object is visited then
add an entry e for it in T
make the object shared and unprocessed (Fig. 6)

else if the object is original then
make the object visited (Fig. 6)
n := the size of the object stored in the header
size := size + 1 + n
switch (secondary tag of the header)
case 0000: {tuple}

add the n elements of the tuple to Q

case 0101: {function closure}
m := the number of free variables
size := size + 1 +m
add the process creator of the closure to Q
add the m free variables of the closure to Q

end switch
end if

end if
end switch

if Q is empty then
return

else
remove a term from Q and store it in obj

end if
end loop

4.3 The copying algorithm
Algorithms 1 and 2 describe the two traversals that implement
the copying of a term, preserving the sharing of subterms. Algo-
rithm 1 corresponds to function copy_shared_calculate in our
implementation. It is responsible for efficiently calculating the real
size of a term and for identifying the shared subterms; in the pro-
cess, it mangles the term. Algorithm 2 corresponds to function

copy_shared_perform in our implementation. It is responsible
for creating the actual copy and, at the same time, for unmangling
the original term. Notice that the two algorithms, as presented here,
do not handle the case of binaries, as this would make the presen-
tation much longer and more complicated; our implementation, of
course, supports the copying of binaries.

The two algorithms communicate by means of the bit store B
and the sharing table T . The bit store is created by Algorithm 1,
which fills it with the missing two bits of information for all sub-
terms that are improper lists with a boxed tail, as explained in the
previous section. It is then used by Algorithm 2, which reads the
missing bits in order to restore the original term. The sharing ta-
ble is created by Algorithm 1, which stores there information that
has been removed from the term (CAR and CDR for cons cells,
the header for boxed objects) and also the reverse pointer. It is then
used by Algorithm 2, which stores and uses the forwarding pointer
for each shared subterm and, before finishing, restores the shared
subterms to their original state.

Both algorithms use a queue of terms Q to implement a breadth-
first traversal of the original term. (Lists are treated as a special
case for reasons of efficiency; as a result, the tail of an improper
list is visited before the list’s elements.) The maximum size of Q is
proportional to the height of the term to be copied; in the worst case
this will be equal to the size of the term, however, in most cases it
will be much smaller. In our implementation, the memory allocated
for the Q of Algorithm 1 is then reused for the Q of Algorithm 2
(which requires exactly the same size).

There are some non-trivial issues in Algorithm 2 that are worth
explaining. The variable obj contains the current subterm of the
original term that is being processed. On the other hand, the vari-
able addr contains the address of the term variable where the copy
of obj has to be placed. Initially, obj is equal to the term t which
must be copied and addr points to a term variable t′ which will
hold the final result.

As the outer loop iterates, heap objects (i.e., cons cells and
boxed objects) are copied to the preallocated memory space that
is pointed to by hp and the pointer hp advances. The copies of
these objects are placed in the terms pointed to by addr ; it is
therefore necessary each time to find the next target of addr .
To accomplish this, we use variables scan and remaining and a
special value HOLE that does not correspond to a valid Erlang term
(in our implementation, we are using a NULL pointer tagged as a list
with 01). Initially, scan = hp and remaining = 0. The algorithm
maintains the following invariants:

1. it is always scan ≤ hp;

2. scan + remaining is either equal to hp or points to the start of
a heap object;

3. addr points either to the result term (initially) or to a term that
contains a HOLE and is part of a heap object located before scan;

4. the heap objects that are located in addresses before scan do
not contain HOLE terms, with the only possible exception of the
term pointed to by addr ; and

5. the heap objects that are located in addresses between scan and
hp contain exactly as many HOLE terms as the size of Q.

During the copying, visited objects are unmangled. Shared ob-
jects are unmangled too when they are first processed, only this
unmangling takes place inside the entry of T that corresponds to
them; the reason is that shared objects must continue to be distin-
guishable from unshared ones. The final loop finalizes the unman-
gling of shared terms by restoring their original contents.

Benchmark Iter × Size Without
sharing

With
sharing

Overhead
(%)

mklist(25) 1 × 134M 4.146 6.457 55.76

mktuple(25) 1 × 101M 2.742 3.840 40.02

mkfunny(47) 1 × 101M 2.754 3.896 41.44

mkimfunny1(52) 1 × 130M 4.421 7.610 72.12

mkimfunny2(32) 1 × 109M 3.204 4.436 38.42

mkimfunny3(23) 1 × 112M 3.976 5.963 49.97

mkimfunny4(60M) 1 × 120M 2.412 2.974 23.31

mkimfunny5(72) 1 × 120M 4.472 6.103 36.47

mkcls(53) 1 × 131M 4.790 7.386 54.21

42 10M × 0 3.470 2.649 −23.66
[] 10M × 0 3.866 2.674 −30.82
ok 10M × 0 4.142 2.600 −37.21
[42] 10M × 2 3.323 2.894 −12.90
{42} 10M × 2 3.376 2.849 −15.62
<<>> 10M × 2 3.300 2.830 −14.24
<<42>> 10M × 3 3.415 2.850 −16.54
<<17, 42>> 10M × 3 3.414 2.816 −17.53
list:seq(1, 20) 10M × 40 5.736 7.775 35.57

mklist(5) 5M × 124 6.755 9.147 35.41

mktuple(5) 5M × 93 7.163 8.567 19.60

mkcls(3) 2.5M × 220 6.685 8.230 23.11

list:seq(1, 250) 1M × 500 2.964 5.036 69.91

mklist(8) 0.5M × 1020 4.691 6.617 41.06

mktuple(8) 0.5M × 765 4.764 6.045 26.88

mkcls(6) 0.25M × 1640 4.493 6.465 43.88

Figure 7. The results of the “stress test” benchmarks.

5. Performance evaluation
It is obviously very easy to come up with benchmarks showing that
an implementation which preserves the sharing of subterms when
copying is arbitrarily faster than one that does not. The motivating
examples of the first sections are proof enough. In this section, we
intend to study the performance of “average” Erlang applications
which are not expected to exchange messages with a lot of sharing
very often. We classify our benchmarks in two categories:

• “Stress tests” for the copying algorithm: a set of simple pro-
grams that create Erlang terms of various sizes that do not share
any subterms and copy them around.

• “Shootout benchmarks”, that come from “The Computer Lan-
guage Benchmarks Game”.5 These are programs created to
compare performance across a variety of programming lan-
guages and implementations.

Figures 7 and 8 summarize the results of executing the bench-
mark programs in the working “master” branch of vanilla Er-
lang/OTP (to become R16B), as well as in our version (derived
from the same branch) that implements the sharing-preserving
copying of terms. The experiments were performed on a machine
with four Intel Xeon E7340 CPUs (2.40 GHz), having a total
of 16 cores and 16 GB of RAM, running Linux 2.6.32-5-amd64
and GCC 4.4.5. (Similar results, not reported here, were obtained
by running the same benchmarks on a quad-core 2.5GHz Intel
(Q8300), with 4GB of RAM and 2x2MB of L2 cache, running
a Linux 2.6.26-2-686 kernel.) All times are in seconds and were

5 Available from http://shootout.alioth.debian.org/.

http://shootout.alioth.debian.org/

Algorithm 2. Copying and unmangling.

Input: A term t
Input: The bit store B
Input: The sharing table T
Input: A pointer hp to the memory where t must be copied
Output: A term t′ that is a copy of t

Q := an empty queue of terms
obj := t
addr := the address of the result term t′

scan := hp
remaining := 0

loop {the actual copying}
switch (primary tag of obj)
case 01: {cons cell}

if the pointer of obj is local then
if the object is shared and processed then

fwd := the forwarding pointer from the entry in T
the term pointed to by addr := fwd |01

else
if the object is shared and unprocessed then

find the head and tail of the list from T
store hp as the forwarding pointer in T

end if
make the object (or its copy in T) original:

may use B (Fig. 6)
add the head of the list to Q
store HOLE to the CAR of hp
obj := the tail of the list
the term pointed to by addr := hp |01
addr := the address of the CDR of hp
hp := hp + 2
continue {next iteration of the loop}

end if
else

the term pointed to by addr := obj
end if

case 10: {boxed object}
if the pointer of obj is local then

if the object is shared and processed then
fwd := the forwarding pointer from the entry in T
the term pointed to by addr := fwd |10

else
if the object is shared and unprocessed then

find the header of the boxed object from T
store hp as the forwarding pointer in T

end if
make the object (or its copy in T) original (Fig. 6)
n := the size of the object stored in the header
the term pointed to by addr := hp |10
store the header in hp
switch (secondary tag of the header)
case 0000: {tuple}

for i := 1 to n do
add the i-th element of the tuple to Q
store HOLE to the i-th element of hp

end for
hp := hp + 1 + n

case 0101: {function closure}
m := the number of free variables
add the process creator of the closure to Q
copy n words to their place in hp

store HOLE to the process creator of hp
for i := 1 to m do

add the i-th free variable to Q
store HOLE to the i-th free variable of hp

end for
hp := hp + 2 + n+m

default: {anything else}
copy n words to their place in hp
hp := hp + 1 + n

end switch
end if

else
the term pointed to by addr := obj

end if
case 11: {immediate value}

the term pointed to by addr := obj

end switch

if Q is empty then
break {exit the copying loop}

else
remove a term from Q and store it in obj
loop {find the next addr}

if remaining = 0 then
if scan points to a word containing a HOLE then
{this is the CAR of a cons cell}
addr := scan
scan := scan + 2
break {exit the loop, addr found}

else
{this is the header a boxed cell}
n := the size stored in the header
switch (secondary tag of the header)
case 0000: {tuple}

remaining := n
scan := scan + 1

case 0101: {function closure}
remaining := 1+ the number of free variables
scan := scan + 1 + n

default: {anything else}
scan := scan + 1 + n

end switch
end if

else if scan points to a word containing a HOLE then
addr := scan
scan := scan + 1
remaining := remaining − 1
break {exit the loop, addr found}

else
scan := scan + 1
remaining := remaining − 1

end if
end loop

end if
end loop

loop {unmangle shared subterms}
for all e in T do

unmangle the object corresponding to e (Fig. 6)
end for

end loop

Benchmark Without
sharing

With
sharing

Overhead
(%)

binary-trees 48.774 44.892 −7.96
chameneos-redux 75.810 73.154 −3.50
fannkuch-redux 8.972 9.552 6.46

k-nucleotide 149.152 151.870 1.82

mandelbrot 5.273 5.074 −3.77
pidigits 5.296 5.330 0.64

regex-dna 24.169 22.633 −6.36
reverse-complement 13.229 13.476 1.87

spectral-norm 12.908 11.675 −9.55
threadring 4.124 3.986 −3.35

Figure 8. The results of the “shootout” benchmarks.

taken by executing the benchmark program 15 times and taking the
median value.

5.1 Stress tests
The code of the benchmarks that were used as stress tests can be
found in our repository (git@github.com:nickie/otp.git, in
stress.erl). These benchmarks are worst-case scenaria for our
implementation which tries to locate shared subterms in terms of
various sizes that are bound to contain none; on the other hand the
vanilla implementation of Erlang/OTP takes this for granted and
uses a far more efficient traversal.

The stress tests are classified in three categories: (a) those that
copy a single very large term once, (b) those that copy an extremely
small term 10 million times, and (c) those that copy small (but non-
trivial) terms many times. (Copying a term is done by sending it to
another waiting process.) In Figure 7 the first column describes the
term that is copied and the second column contains the number of
iterations and the term’s size in words.

For the first category of tests, we notice that there is an average
overhead of 45.75% (ranging from 23.31% to 72.12%), which is
due to the more costly checks that our implementation performs, as
well as the mangling and unmangling of terms. A smaller average
overhead of 36.93% (ranging from 19.60% to 69.91%) is observed
for the third category of tests, for the same reasons.

In the case of the second category, however, we had a sur-
prising result. Our implementation turned out to be on the aver-
age 21.06% faster (ranging from 12.90% to 37,21%). The biggest
gain was when copying terms of zero size (i.e., immediate values
like 42, [] and ok). Of course, this has nothing to do with the
identification of shared subterms, as with this kind of terms there
is no traversal to be done; it seems that our implementation, un-
like the code of vanilla Erlang/OTP R15B01, takes a shortcut in
erts_alloc_message_heap_state and does not try to allocate
heap space of size zero. On the other hand, when copying a term
such as [42] of non-zero size, the difference that is observed is
due to the fact that the vanilla implementation always copies this
term (to a new cons cell on the heap), whereas our implementation
avoids copying it when the compiler has identified this term as a
constant and put it in the constant pool, outside the process heap.

5.2 Shootout benchmarks
The code of the shootout benchmarks that we used can also be
found in our repository, in the directory shootout. We only con-
sidered benchmarks that spawn processes and use message passing.
From Figure 8, we immediately observe that these applications are
not penalized by the sharing-preserving implementation of copy-
ing. In fact, performance is slightly better in some of them, not

because sharing is involved but because only very small terms are
copied and, therefore, for the same reasons as explained before.

6. Concluding remarks
This paper proposed a mechanism for preserving sharing when
copying Erlang terms. It also described in detail a publicly available
implementation of this mechanism. As shown by the performance
evaluation, preserving term sharing when copying comes with only
a small cost, which is negligible in practice, while it can have
significant benefits both when sharing is involved but also when
copying constant terms. We think that it is possible to rewrite
Algorithm 2 without an explicit queue Q, using the target heap to
traverse the term. Low-level optimizations can also be performed
on both algorithms to further improve their performance. Both
modifications are rather technical in nature and are left for the
implementation that will be included in Erlang/OTP. A sharing
preserving external term format appropriate for message passing
across Erlang nodes will also be investigated as future research.

We feel that our mechanism fixes a shortcoming in the current
implementation of the Erlang/OTP system, whose time has come
to do something about. We are looking forward to seeing our
implementation included in a future version of Erlang/OTP.

Acknowledgments
This work has been partially supported by the European Union
grant IST-2011-287510 “RELEASE: A High-Level Paradigm for
Reliable Large-scale Server Software”.

We thank Björn Gustavsson for his help with solving the spawn
mystery which motivated this work and Kenneth Lundin, Patrik
Nyblom, Rickard Green and Sverker Eriksson for clarifications
about the current implementation of term copying in Erlang/OTP.
We also thank Richard Carlsson and the anonymous reviewers for
comments that have improved the presentation of our work.

References
[1] S. Aronis and K. Sagonas. On using Erlang for parallelization: Expe-

rience from parallelizing dialyzer. In draft proceedings of the Sympo-
sium on Trends in Functional Programming, June 2012.

[2] Boost Framework. The serialization library, release 1.50.0,
2008. URL http://www.boost.org/doc/libs/1_50_0/libs/
serialization/doc/.

[3] C. J. Cheney. A nonrecursive list compacting algorithm. Commun.
ACM, 13(11):677–678, 1970.

[4] HackageDB. The binary package, version 0.5.1, 2012. URL http:
//hackage.haskell.org/package/binary.

[5] HackageDB. The cereal package, version 0.3.5.2, 2012. URL http:
//hackage.haskell.org/package/cereal.

[6] P. Nyblom. The “halfword” virtual machine. Talk given
at the Erlang User Conference, Nov. 2011. Available
from http://www.erlang-factory.com/conference/
ErlangUserConference2011/speakers/PatrikNyblom.

[7] OCaml Standard Library. The Marshal module, version 3.12,
2011. URL http://caml.inria.fr/pub/docs/manual-ocaml/
libref/Marshal.html.

[8] Oracle. Java object serialization specification, version 1.7.0.5,, 2012.
URL http://docs.oracle.com/javase/7/docs/platform/
serialization/spec/serialTOC.html.

[9] M. Pettersson. A staged tag scheme for Erlang. Technical Report
2000-029, Department of Information Technology, Uppsala Univer-
sity, Nov. 2000.

[10] Python Standard Library. The pickle module, version 2.7.3,, 2012.
URL http://docs.python.org/library/pickle.html.

[11] Ruby Standard Library. The Marshal package, version 1.9.3, 2012.
URL http://www.ruby-doc.org/core-1.9.3/Marshal.html.

http://www.boost.org/doc/libs/1_50_0/libs/serialization/doc/
http://www.boost.org/doc/libs/1_50_0/libs/serialization/doc/
http://hackage.haskell.org/package/binary
http://hackage.haskell.org/package/binary
http://hackage.haskell.org/package/cereal
http://hackage.haskell.org/package/cereal
http://www.erlang-factory.com/conference/ErlangUserConference2011/speakers/PatrikNyblom
http://www.erlang-factory.com/conference/ErlangUserConference2011/speakers/PatrikNyblom
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://docs.python.org/library/pickle.html
http://www.ruby-doc.org/core-1.9.3/Marshal.html

	A motivating experience
	Term sharing in Erlang/OTP
	Erlang/OTP's tagging scheme
	Copying and term sharing
	Design issues
	Term mangling
	The copying algorithm

	Performance evaluation
	Stress tests
	Shootout benchmarks

	Concluding remarks

