
All you wanted to know about the HiPE compiler
(but might have been afraid to ask)

K. Sagonas, M. Pettersson, R. Carlsson, P. Gustafsson, T. Lindahl
Information Technology Department, Uppsala University, Sweden

hipe@csd.uu.se

ABSTRACT
We present a user-oriented description of features and char-
acteristics of the High Performance Erlang (HiPE) native
code compiler, which nowadays is part of Erlang/OTP. In
particular, we describe components and recent additions to
the compiler that improve its performance and extend its
functionality. In addition, we attempt to give some recom-
mendations on how users can get the best out of HiPE’s
performance.

1. INTRODUCTION
During the last few years, we have been developing HiPE,

a high-performance native code compiler for Erlang. HiPE
offers flexible, fine-grained integration between interpreted
and native code, and efficiently supports features crucial for
Erlang’s application domain such as light-weight concur-
rency. HiPE exists as a new component (currently about
80,000 lines of Erlang code and 15,000 lines of C and as-
sembly code) which nowadays is fully integrated with Eric-
sson’s Erlang/OTP implementation; in fact, HiPE is avail-
able by default in the open-source version of R9. The HiPE
compiler currently has back-ends for UltraSPARC machines
running Solaris and Intel x86 machines running Linux or
Solaris.

The architecture and design decisions of HiPE’s SPARC
and x86 back-ends have been previously described in [5]
and [11] respectively. A brief history of HiPE’s develop-
ment appears in [6]. As performance evaluations in these
reports show, HiPE considerably improves the performance
characteristics of Erlang programs, and on small sequen-
tial programs makes Erlang/OTP competitive in speed to
implementations of other ‘similar’ functional languages such
as Bigloo Scheme [13] or CML (Concurrent SML/NJ [12]).

Performance evaluation aside, all the above mentioned re-
ports address quite technical compiler and runtime system
implementation issues which most probably are not so infor-
mative for Erlang programmers who are simply interested
in using HiPE for their everyday application development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Erlang Workshop ’03 29/08/2003, Uppsala, Sweden
Copyright 2003 ACM 1-58113-772-9/03/08 ...$5.00.

To ameliorate this situation, the current paper is targeted
towards HiPE users. Its aims are to:

1. describe features – and sometimes secrets – of the
HiPE compiler that are of interest to its users;

2. introduce recent and planned additions to the HiPE
compiler in a way that focuses on how these new fea-
tures affect users (i.e., without obfuscating their pre-
sentation by getting deep into technical details); and

3. give recommendations on how users can get the best
out of HiPE’s performance.

To make the paper relatively self-contained and provide
sufficient context for the rest of its contents, Section 2 be-
gins by overviewing HiPE’s current architecture, then de-
scribes basic usage, compiler options and recent improve-
ments, and finally presents some extensions to HiPE’s func-
tionality which are currently underway and will most prob-
ably be included in release R9C. Section 3 offers advise on
HiPE’s use, followed by Section 4 which reveals and doc-
uments limitations and the few incompatibilities that cur-
rently exist between the BEAM and the HiPE compiler.
Finally, Section 5 briefly wraps up.

We warn the reader that the nature of certain items de-
scribed in this paper is volatile. Some of them are des-
tined to change; hopefully for the better. HiPE’s homepage1

might contain a more up-to-date version of this document.

2. HIPE COMPILER: A USER-ORIENTED
OVERVIEW

2.1 HiPE’s architecture
The overall structure of the HiPE system is shown in

Fig. 1. The Erlang/OTP compiler first performs macro pre-
processing, parsing, and some de-sugaring (e.g., expanding
uses of the record syntax) of the Erlang source code. After
that, the code is rewritten into Core Erlang [2, 1]. Various
optimizations such as constant folding, and (optional) func-
tion inlining, are performed on the Core Erlang level. After
this, the code is again rewritten into BEAM virtual machine
code, and some further optimizations are done. (The BEAM
is the de facto standard virtual machine for Erlang, devel-
oped by Erlang/OTP. It is a very efficiently implemented
register machine, vaguely reminiscent of the WAM [14].)

The HiPE compiler has traditionally started from the
BEAM virtual machine code generated by the Erlang/OTP

1http://www.csd.uu.se/projects/hipe/

transformations

inlining

Erlang

source file

Core Erlang

type analysis

BEAM

Front−end

RTL

Symbolic

SPARC
HiPE
Loader

Interpreter

X86

Icode

BEAM
Memory

Native
Code

Bytecode

Data
BEAM

BEAM

HiPE Core Erlang CompilerErlang/OTP Compiler

Erlang/OTP Runtime System

BEAM

HiPE Compiler

Disassembler

Figure 1: Structure of a HiPE-enabled Erlang/OTP
system.

compiler. The BEAM code for a single function is first
translated to ICode, an assembly-like language with a high-
level functional semantics. After optimizations, the ICode is
translated to RTL (“register-transfer language”), a low-level
RISC-like assembly language. It is during this translation
that most Erlang operations are translated to machine-level
operations. After optimizations, the RTL code is translated
by the backend to actual machine code. It is during this
translation that the many temporary variables used in the
RTL code are mapped to the hardware registers and the
runtime stack. Finally, the code is loaded into the runtime
system.

The Erlang/OTP runtime system has been extended to
associate native code with functions and closures. At any
given point, a process is executing either in BEAM code
or in native code: we call this the mode of the process. A
mode switch occurs whenever control transfers from code in
one mode to code in the other mode, for instance when a
BEAM-code function calls a native-code function, or when
the native-code function returns to its BEAM-code caller.
The runtime system handles this transparently, so it is not
visible to users, except that the native code generally exe-
cutes faster.

A new feature, described further below, is that the HiPE
compiler can compile directly from Core Erlang. When used
in this way, the compiler compiles a whole module at a time,
and performs global analyses and optimizations which are
significantly more difficult to perform (and thus not avail-
able) in the traditional mode.

2.2 Basic usage
The normal way of using the HiPE native code compiler is

via the ordinary Erlang compiler interface, by adding the
single compilation option native. From the Erlang shell,
using the c shell function, this looks as follows:

1> c(my module, [native]).

This will compile the file my module.erl to native code and
load the code into memory, following the normal module
versioning semantics of Erlang.

Calling the standard compiler function compile:file/2

(which by default does not load the resulting code) will pro-

duce a .beam file that contains both the native code and the
normal BEAM code for the compiled module; e.g.:

compile:file(my module, [native])

produces a file my module.beam which can be loaded later.
When a .beam file is loaded, the loader will first attempt
to load native code, if the file contains native code that is
suitable for the local system, and only if this fails is the
BEAM code loaded. In other words, the .beam files may
be “fat”, containing code for any number of different target
machines.

The compiler can also be called from the external program
erlc (which indirectly calls the compile:file/2 function).
E.g., from a UNIX command line shell or make-file:

erlc +native my module.erl

producing a file my module.beam.
Additional compiler options may be given between the

erlc command and the file name by prefixing them with +.
Quoting may be necessary to avoid expansion by the shell,
as for example in:

erlc +native +’{hipe,[verbose]}’ my module.erl

Generating native code and loading it on-the-fly into the
system is possible even in cases when the Erlang source
code is not available but the .beam file (containing BEAM
bytecode) exists. This can be done for whole modules using:

hipe:c(my module)

or even for individual functions {M,F,A} using:

hipe:c({M,F,A}).

The function hipe:c/2 can also be used, which takes the list
of the HiPE compiler options as its second argument.

Finally, should you forget everything else, you can always
type the following from the Erlang shell:

2> hipe:help().

which will display a short user’s guide to the HiPE compiler.

2.3 HiPE compiler options
For the average user, it should not be necessary to give

any extra information to the compiler than described in the
previous section. However, in some cases it may be useful
or even necessary to control the behavior of the native code
compilation. To pass options to the HiPE compiler via the
normal Erlang compiler interface, these must be wrapped
in a term {hipe, ...}. For example:

3> c(my module, [native, {hipe, [verbose, o3]}]).

will pass the flags verbose and o3 to the HiPE compiler.
Note that if only a single option is given, it does not have
to be wrapped in a list, as in e.g.:

c(my module, [native, {hipe, verbose}]).

The main useful options are the following:

o0, o1, o2, o3 Selects the optimization level, o0 being the
lowest. The default is o2. Upper case versions of these
options also exist, i.e., O2 is an alias for o2, etc.

verbose Enables HiPE compiler verbosity. Useful if you
want to see what is going on, identify functions whose
native code compilation is possibly a bottleneck, or
just check that the native code compiler is running.

If a module takes too long time to compile, try using a
lower optimization level such as o1. You can also try keep-
ing the current optimization level, but specifically select the
faster but less precise linear scan algorithm for register al-
location [7]. (Register allocation is one of the major bottle-
necks in the optimizing native code compilers.) This is done
by adding the option {regalloc,linear scan}, as in:

c(my module, [{hipe, [{regalloc,linear scan}]}]).

If you wish to always use certain HiPE compiler options
for some particular module, you can place them in a compile

directive in the source file, as in the following line:

-compile({hipe, [o1]}).

Note: options early in the list (i.e., further to the left)
take precedence over later options. Thus, if you specify e.g.

{hipe, [o3, {regalloc,linear scan}]}

the o3 option will override the regalloc option with the
more advanced (and more demanding compilation-time wise)
o3-level iterated coalescing register allocator. The correct
way would be:

{hipe, [{regalloc,linear scan}, o3]}

which specifies o3-level optimizations but with fast register
allocator.

More information on the options that the HiPE compiler
accepts can be obtained by:

hipe:help options().

2.4 Recent improvements

2.4.1 Local type propagator
Erlang, being a dynamically typed language, often pro-

vides the developer with freedom to experiment with data
structures whose handling is possibly still incomplete, and
rapidly prototype applications. However, this also means
that a lot of run time is spent in performing type tests (that
usually succeed) to ensure that the operations performed are
meaningful, e.g., that a program does not accidentally suc-
ceed in dividing a float by a list or taking the fifth element
of a process identifier.

One of the recent additions to the HiPE compiler is a local
type propagator which tries to discover as much of the avail-
able (per-function) type information as possible at compile
time. This information is then propagated throughout the
code of the function to eliminate redundant type tests and
to transform polymorphic primitive operations that operate
on general types into faster operations that are specialized
to the type of operands actually being used.

Since the type propagator is a recent addition that is still
under development and further extensions of its functional-
ity are underway, we have not yet conducted a proper eval-
uation of the time performance improvements that one can
expect from it in practice. However, preliminary numbers
indicate that the size of the native code is noticeably re-
duced, something which in turn has positive effects on the

later optimization passes, often resulting in compile times
even shorter than those of the HiPE compiler in R9B.

The type propagator is enabled by default at the normal
optimization level o2 (or higher).

2.4.2 Handling of floats
In the runtime system, atomic Erlang values are repre-

sented as tagged 32-bit words; see [10]. Whenever a tagged
value is too big to fit into one machine word the value is
boxed, i.e., put on the heap with a header word preceeding
it which is pointed to by the tagged value. Floating point
numbers have 64-bit precision and are therefore typically
boxed. This means that whenever they need to be used as
operands to a floating point operation, they need to be un-
boxed, and after the operation is performed the result must
then be boxed and stored back on the heap.

To avoid this overhead, starting from R9B, the BEAM
has been enhanced with special floating point instructions
that operate directly on untagged values. This has sped up
the handling of floats considerably since the number of box-
ing/unboxing operations are reduced. However, since the
BEAM code is interpreted, floating point arithmetic is still
not taking advantage of features available at the floating
point unit (FPU) of the target architecture, such as ma-
chine registers. More specifically, the operands are put into
the FPU, the operation is performed, and then the result is
taken out and stored in memory.

In the HiPE compiler, floating point values are mapped
to the FPU and are kept there for as long as possible, elimi-
nating even more overhead from floating point calculations.
In [8] we have described in detail the two back-end specific
schemes used in the mapping. Our performance compari-
son shows that HiPE-compiled floating point intensive code
can be considerably faster than floating-point aware BEAM
bytecode. Table 1 gives an idea of the performance improve-
ments that can be expected across a range of programs ma-
nipulating floats.

To maximize the gain of the floating point instruction the
user is encouraged to use appropriate is float/1 guards
that currently communicate to the BEAM compiler the float-
ing point type information2 and to try to keep floating point
arithmetic instructions together in blocks, i.e., not split them
up by inserting other instructions that can just as well be
performed before or after the calculations.

The more efficient, target-specific compilation of floating
point arithmetic is enabled by default starting at optimiza-
tion level o1.

2.4.3 Handling of binaries
Proper support for the bit syntax [9] was introduced into

Erlang/OTP in R8B. Initially, the HiPE compiler used a
rather näıve compilation scheme: binary matching instruc-
tions of the BEAM were translated into calls to C functions
which were part of the interpreter’s supporting routines. As
a result, the HiPE-compiled code was actually slightly slower
than the BEAM code because of costs in switching between
native and interpreted code (cf. also Section 3). To remedy
this, we proposed and implemented a scheme that relies on
a partial translation of binary matching operations. This
scheme identifies special “common” cases of binary match-

2
Explicitly writing such guards will become unnecessary when

the global type analysis gets fully integrated in HiPE; see Sec-
tion 2.5.2.

Table 1: Performance of BEAM and HiPE in R9B on programs manipulating floats (times in ms).

Benchmark BEAM HiPE speedup
float bm 14800 4040 3.66
barnes-hut 10250 4280 2.39
fft 16740 8890 1.88
wings 8310 7370 1.12
raytracer 9110 8500 1.07
pseudoknot 3110 1440 2.16

(a) Performance on SPARC.

Benchmark BEAM HiPE speedup
float bm 1930 750 2.57
barnes-hut 1510 600 2.51
fft 2830 1450 1.95
wings 1160 850 1.36
raytracer 1200 1070 1.12
pseudoknot 380 140 2.71

(b) Performance on x86.

ings and translates these completely into native code, while
the remaining “uncommon” cases still call C functions in
order to avoid extensive code bloat. The implementation of
this compilation scheme is described in [4] and is included
in the HiPE compiler as of the R9B release of Erlang/OTP.

The performance of this scheme on several different bench-
marks involving binaries is shown in Table 2. The first
three benchmarks test the speed of binary matching: the
bsextract benchmark takes a binary containing a GTP C
message as input, extracts the information from the mes-
sage header, and returns it. The bsdecode benchmark is
similar but rather than simply extracting a binary, it also
translates the entire message into a record. The ber decode

benchmark, generated by the ASN.1 compiler, parses a bi-
nary. The last two benchmarks, bsencode and ber encode,
test the speed of binary creation rather than matching.

As expected, speedups are obtained when there is infor-
mation available at compile time to identify cases which can
be compiled fully to native code. Such, for example, is the
case when the binary segment sizes are constant or when it
is possible to determine statically that a segment of a bi-
nary starts at a byte boundary. In other words, to achieve
best time performance, it might be advisable to use some
extra space to guarantee that each element starts at a byte
boundary. For example, if one wants to use binaries to de-
note 16 integers where each integer needs 7 bits it is possible
to pack them so that they only take up 14 bytes. If each
integer is put a byte boundary, the binary will take up more
space (16 bytes), but the binary matching operations will
be performed faster.

The HiPE compiler option inline bs enables native code
compilation of the bit syntax. This option is selected by
default at optimization level o1 or higher, and the only rea-
sons for a user to disable it is either to test its performance
effects or if code size is a serious concern.

2.5 Planned extensions for the near future

2.5.1 Better translation of binaries
The compilation scheme introduced in R9B made binary

matching faster, but more work has since been done to make
it even faster. In the upcoming R9C release, a new scheme
for compiling binary matching will be included. Rather than
relying on a partial translation and having BEAM be in con-
trol, the entire binary matching operation will fall in the
hands of the native code compiler. This has made it possi-
ble to avoid several unnecessary mode switches. With this
scheme most binary matching code will make no calls to the
C functions which are used strictly as a last resort when a

single operation becomes very complex.
In addition to this a new scheme to compile binary cre-

ation has been developed. It is developed in a similar fashion
to the binary matching scheme by changing calls to C func-
tions into specialized versions of these functions that are
then translated into native code.

As seen in Table 3, the performance of HiPE compiled
code has been improved substantially. The speedup for the
matching benchmarks ranges from 1.5-4 times compared to
BEAM. The speedup for benchmarks that create binaries
is more than 2 times on x86 and more than 1.5 times on
SPARC.

In connection with the effort to compile directly from Core
Erlang to native code a project has started to further im-
prove the compilation of binary matching as new possibil-
ities open up when the structure of the matching becomes
visible to the compiler. The result of this project will likely
be available in the R10 release.

2.5.2 Global type analysis
As described in Section 2.4.1, the HiPE compiler now in-

cludes a local type propagator which works on individual
functions. However, if no assumptions can be made about
the arguments to the functions, only the most basic type
information can be found. We have therefore implemented
a global type analyzer which processes a whole module at a
time. It can generally find much more detailed type infor-
mation, but the precision depends to a large extent on the
programming style of the analyzed code. Since an exported
function can potentially be called from anywhere outside the
module and with any inputs, it is not possible to make any
assumptions about the types of the arguments to exported
functions. The best precision is achieved when only the nec-
essary interface functions are exported, and the code does all
or most of its work within the same module. When module
boundaries are crossed, type information is lost. For most
built-in functions, however, we can know what types of data
they accept as input and what types they return.

We are currently working on how to take advantage of
the gathered type information (in combination with the lo-
cal type propagator). First of all, we are often able to re-
move unnecessary type checks from the code. Second, it is
sometimes possible to avoid repeatedly tagging and untag-
ging values (cf. Section 2.4.2). Third, global type analysis
makes it possible to avoid creating tuples for returning mul-
tiple values from a function, when the result of the function
is always immediately unpacked – instead, multiple values
can be passed directly in registers or on the stack.

Note that the global type analysis is not a type checker

Table 2: Performance of BEAM and HiPE in R9B on programs manipulating binaries (times in ms).

Benchmark BEAM HiPE speedup
bsextract 15540 8450 1.84
bsdecode 27070 26860 1.01
ber decode 14350 9130 1.57
bsencode 14210 15870 0.90
ber encode 18720 16280 1.15

(a) Performance on SPARC.

Benchmark BEAM HiPE speedup
bsextract 14500 7350 1.97
bsdecode 13490 12970 1.04
ber decode 16500 9200 1.79
bsencode 17540 16030 1.09
ber encode 21870 17420 1.26

(b) Performance on x86.

Table 3: Performance of BEAM and HiPE in a pre-release of R9C on programs manipulating binaries.

Benchmark BEAM HiPE speedup
bsextract 13380 4060 3.30
bsdecode 26060 21110 1.23
ber decode 13980 5720 2.44
bsencode 16960 11070 1.53
ber encode 18150 9510 1.91

(a) Performance on SPARC.

Benchmark BEAM HiPE speedup
bsextract 14700 3560 4.13
bsdecode 13670 7780 1.76
ber decode 15610 6070 2.57
bsencode 16790 7290 2.30
ber encode 22560 10860 2.08

(b) Performance on x86.

or type inference system, i.e., the user is not able to spec-
ify types (because the user cannot be completely trusted),
and furthermore, the fact that an input parameter is always
used as e.g. an integer does not mean that the passed value
will always be an integer at runtime. Indeed, the current
implementation does not even give a warning to the user if
it detects a type error in the program, but just generates
code to produce a runtime type error. This might change
in the future, to make the type analyzer useful also as a
programming tool.

2.5.3 Compilation from Core Erlang
A new feature of the HiPE compiler is the ability to com-

pile to native code directly from the Erlang source code,
(i.e., instead of starting with the BEAM virtual machine
code, which was previously the only way). This is done
by generating HiPE’s intermediate ICode representation di-
rectly from the Core Erlang code which is produced by the
Erlang/OTP compiler. No BEAM code needs to have been
previously generated. The advantages of this are better con-
trol over the generated code, and greater ability to make use
of metadata about the program gathered on the source level,
such as global type analysis information.

Currently, the way to do this is to add an extra option
core when compiling to native code:

c(my module, [native, core]).

However, this method of compiling is not yet fully functional
in the coming R9C release, in that some programming con-
structs are not yet handled properly. We intend to have
compilation from source code completely implemented in
release R10.

We expect that in the future, compilation from source
code will be the default method of the HiPE compiler. The
compilation from BEAM will however still be available, for
those cases when the source code is not available, or it is for
other reasons not possible to recompile from the sources.

3. RECOMMENDATIONS ON HIPE’S USE

3.1 Improving performance from native code

• If your application spends most of its time in known
parts of your code, and the size of those parts is not
too large, then compiling those parts to native code
will maximize performance.

• Largish self-contained modules with narrow external
interfaces allow the compiler to perform useful module-
global type analysis and function inlining, when com-
piling via Core Erlang.

• While very deep recursions are not recommended, they
are much more efficient in native code than in BEAM
code. This is because the HiPE runtime system in-
cludes specific optimizations (generational stack scan-
ning [3, 11]) for this case.

• Monomorphic functions, functions that are known to
operate on a single type of data, are more likely to be
translated to good code than polymorphic functions.
This can be achieved by having guards in the func-
tion heads, or by avoiding to export the functions and
always calling them with parameters of a single type,
known through guards or other type tests.

• When using floating point arithmetic, collect the arith-
metic operations in a block and try to avoid breaking
it up with other operations; in particular try to avoid
calling other functions. Help the analysis by using the
guard is float/1. You might still benefit from this
even if you do not manage to keep the operations in a
block; the risk of losing performance is minimal.

• Order function and case clauses so that the cases that
are more frequent at runtime precede those that are
less frequent. This can help reduce the number of type
tests at runtime.

3.2 Avoiding performance losses in native code

• If the most frequently executed code in your applica-
tion is too large, then compiling to native code may
give only a small or even negative speedup. This is
because native code is larger than BEAM code, and in
this case may suffer from excessive cache misses due
to the small caches most processors have.

• Avoid calling BEAM-code functions from native-code
functions. Doing so causes at least two mode switches
(one at the call, and one at the return point), and these
are relatively expensive. You should native-compile
all code in the most frequently executed parts, includ-
ing Erlang libraries you call, otherwise excessive mode
switching may cancel the performance improvements
in the native-compiled parts.

• Do not use the -compile(export_all) directive. This
reduces the likelihood of functions being inlined, and
makes useful type analysis impossible.

• Avoid crossing module boundaries too often (making
remote calls), since the compiler cannot make any as-
sumptions about the functions being called. Creative
use of the pre-processor’s -include and -define di-
rectives may allow you to combine performance and
modular code.

• Avoid using 32-bit floats when using the bit syntax,
since they always require a mode switch. It is also
costly to match out a binary that does not start at a
byte boundary, mainly because this requires that all
the data of the binary is copied to a new location. If
on the other hand a binary starting at a byte bound-
ary is matched, a sub-binary which only contains a
pointer to the data is created. When variable segment
lengths are used it is beneficial to have a unit that is
divisible by 8, because this means that byte boundary
alignment information can be propagated.

3.3 Cases when native code does not help

• Be aware that almost all BIF calls end up as calls to
C functions, even in native code. If your application
spends most of its time in BIFs, for instance accessing
ETS tables, then native-compiling your code will have
little impact on overall performance.

• Similarly, code that simply sends and receives mes-
sages without performing significant amounts of com-
putation does not benefit from compilation to native
code; again, this is because the time is mostly spent in
the runtime system.

4. THE TRUTH, THE WHOLE TRUTH,
AND NOTHING BUT THE TRUTH

Significant work has been put into making HiPE a ro-
bust, “commercial-quality” compiler.3 As a matter of fact,
we have mostly tried to follow BEAM’s decisions in order
to preserve the observable behavior of Erlang programs,

3
At the time of this writing, July 2003, we are not aware of any

outstanding bugs.

even if that occasionally meant possibly reduced speedups
in performance. Still, a couple of small differences with code
produced by BEAM exist, and the user should be aware of
some limitations. We document them below.

4.1 Incompatibilities with the BEAM compiler

• Detailed stack backtraces are currently not generated
from exceptions in native code; however, where possi-
ble, the stack trace contains at least the function where
the error occurred. Performing pattern matching on
stack backtraces is not recommended in general, re-
gardless of the compiler being used.

• The old-fashioned syntax Fun = {M,F}, Fun(...) for
higher-order calls is not supported in HiPE. In our
opinion, it causes too many complications, including
code bloat. Proper funs should be used instead, or
explicit calls M:F(...).

• On the x86, floating-point computations may give dif-
ferent (more precise) results in native code than in
BEAM. This is because the x86 floating-point unit
internally uses higher precision than the 64-bit IEEE
format used for boxed floats, and HiPE often keeps
floats in the floating-point unit when BEAM would
store them in memory; see [8].

4.2 Current limitations

• Once inserted into the runtime system, native code is
never freed. Even if a newer version of the code is
loaded, the old code is also kept around.

• The HiPE compiler recognizes literals (constant terms)
and places them in a special literals area. Due to ar-
chitectural limitations of the current Erlang/OTP run-
time system, this is a single area of a fixed size deter-
mined when the runtime system is compiled. Loading
a lot of native code that has many constant terms will
eventually cause the literals area to fill up, at which
point the runtime system is terminated. A short-term
fix is to edit hipe_bif0.c and explicitly make the lit-
erals area larger.

5. CONCLUDING REMARKS
We have presented a user-oriented description of features

and characteristics of the HiPE native code compiler, which
nowadays is integrated in Erlang/OTP and easily usable by
Erlang application developers and aficionados. We hold
that HiPE has a lot to offer to its users. Some of its benefits
are described in this paper. Others, perhaps more exciting
ones, await their discovery.

One final word of advice: HiPE, like any compiler, can
of course be treated as a “black-box”, but we generally rec-
ommend to creatively explore its options and flexibility and
add color to your life!

6. ACKNOWLEDGMENTS
The HiPE compiler would not have been possible without

the prior involvement of Erik “Happi” Stenman (formerly
Johansson) in the project. Its integration in Erlang/OTP

would still be a dream without close collaboration with mem-
bers of the Erlang/OTP group at Ericsson (Björn Gustavs-
son, Kenneth Lundin, and Patrik Nyblom), and the active
encouragement of Bjarne Däcker. HiPE’s development has
been supported in part by the ASTEC (Advanced Software
Technology) competence center with matching funds by Er-
icsson Utvecklings AB.

7. REFERENCES
[1] R. Carlsson. An introduction to Core Erlang. In

Proceedings of the PLI’01 Erlang Workshop, Sept.
2001.

[2] R. Carlsson, B. Gustavsson, E. Johansson,
T. Lindgren, S.-O. Nyström, M. Pettersson, and
R. Virding. Core Erlang 1.0 language specification.
Technical Report 030, Information Technology
Department, Uppsala University, Nov. 2000.

[3] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI’98, pages 162–173. ACM Press, 1998.

[4] P. Gustafsson and K. Sagonas. Native code
compilation of Erlang’s bit syntax. In Proceedings of
ACM SIGPLAN Erlang Workshop, pages 6–15. ACM
Press, Nov. 2002.

[5] E. Johansson, M. Pettersson, and K. Sagonas. HiPE:
A High Performance Erlang system. In Proceedings of
the ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, pages 32–43.
ACM Press, Sept. 2000.

[6] E. Johansson, M. Pettersson, K. Sagonas, and
T. Lindgren. The development of the HiPE system:
Design and experience report. Springer International
Journal of Software Tools for Technology Transfer,
2003. To appear.

[7] E. Johansson and K. Sagonas. Linear scan register
allocation in a high performance Erlang compiler. In
Practical Applications of Declarative Languages:
Proceedings of the PADL’2002 Symposium, number
2257 in LNCS, pages 299–317. Springer, Jan. 2002.

[8] T. Lindahl and K. Sagonas. Unboxed compilation of
floating point arithmetic in a dynamically typed
language environment. In R. Peña and T. Arts,
editors, Implementation of Functional Languages:
Proceedings of the 14th International Workshop,
number 2670 in LNCS, pages 134–149. Springer, Sept.
2002.

[9] P. Nyblom. The bit syntax - the released version. In
Proceedings of the Sixth International Erlang/OTP
User Conference, Oct. 2000. Available at
http://www.erlang.se/euc/00/.

[10] M. Pettersson. A staged tag scheme for Erlang.
Technical Report 029, Information Technology
Department, Uppsala University, Nov. 2000.

[11] M. Pettersson, K. Sagonas, and E. Johansson. The
HiPE/x86 Erlang compiler: System description and
performance evaluation. In Z. Hu and
M. Rodŕıguez-Artalejo, editors, Proceedings of the
Sixth International Symposium on Functional and
Logic Programming, number 2441 in LNCS, pages
228–244. Springer, Sept. 2002.

[12] J. H. Reppy. CML: A higher-order concurrent
language. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 293–305. ACM Press, June 1991.

[13] M. Serrano and P. Weis. Bigloo: a portable and
optimizing compiler for strict functional languages. In
A. Mycroft, editor, Proceedings of the Second Static
Analysis Symposium, number 983 in LNCS, pages
366–381. Springer, Sept. 1995.

[14] D. H. D. Warren. An abstract Prolog instruction set.
Technical Report 309, SRI International, Menlo Park,
U.S.A., Oct. 1983.

