
Functional Manipulation of Bit Streams ∗

Per Gustafsson Konstantinos Sagonas
Department of Information Technology

Uppsala University, Sweden
{pergu,kostis}@it.uu.se

Abstract
Binary (i.e., bit stream) data are omnipresent in computer and net-
work applications but most functional programming languages cur-
rently do not provide sufficient support for them. Starting from a
language with a built-in binary datatype — albeit a crippled one
by various implementation restrictions — we extend it so that it
becomes as flexible as lists, which is another ubiquitous datatype
in functional programs. We then define various familiar higher-
order functions on binaries, show how these allow common tasks
from the network and multimedia application domains to be pro-
grammed in a compact and concise way, and discuss implemen-
tation issues that arise when incorporating these extensions in a
functional language.

1. Introduction
Functional programming languages traditionally manipulate ob-
jects such as numbers (integers and floats), atoms (sequences of al-
phanumeric constants), and compound terms such as lists and struc-
tures (tuples). Some of them also provide a notation for records that
allows abstraction and often (some form of) object oriented-style
program development. Erlang supports all these types of objects,
but also includes a datatype typically not found in other functional
languages: binaries.

Binaries were first introduced into Erlang in 1992 to provide an
efficient container for object code. Subsequently, it was recognized
that binaries can be used in applications that perform extensive I/O,
networking TCP/IP-style of communication, in GUI systems, and
most importantly in protocol programming which is the bread-and-
butter of telecommunication applications. Recognizing the impor-
tance of binaries, in 1999, a proposal for a binary datatype was
presented in [10] and a revised version of it was subsequently in-
troduced into the Erlang/OTP system in 2000.

To show how binaries are useful in a functional language, con-
sider a relatively simple task: given a bit stream consisting of a
sequence of 3-bit chunks, we want to return a bit stream consisting

∗ Research supported in part by grant #621-2003-3442 from the Swedish Research
Council and by the Vinnova ASTEC (Advanced Software Technology) competence
center with matching funds by Ericsson AB.

of those 3-bit chunks that start with a one, i.e., drop 3-bit chunks
starting with a zero. To do this as conveniently as possible in a func-
tional language we would want the bit stream to be represented as a
list of triples. Then we could perform this task using the following
program1 written in the syntax of Erlang:

drop_0XX([{1,B2,B3}|Rest]) ->
[{1,B2,B3}|drop_0XX(Rest)];

drop_0XX([{0,_,_}|Rest]) ->
drop_0XX(Rest);

drop_0XX([]) ->
[].

or by using a list comprehension simply as:

drop_0XX(List) ->
[{1,B2,B3} || {1,B2,B3} <- List].

Although such concise one-line solutions appeal to the heart
of most functional programmers, there are at least two problems
with this approach. First, symbolic term representation comes with
a large space overhead: if we use two words to represent a cons
cell and four to represent a 3-tuple, we need six words in total to
represent each 3-bit chunk. On a 64-bit machine, this would amount
to a use of 384 bits to represent 3 bits of information.2 Second, the
input bit stream is likely to have originated from somewhere else.
We either received it from the network or read it from a file, so if
we want to manipulate it as a list, we need to transform it to and
from this representation.

Ideally, we would like to store the stream of N bits in a format
that only requires N bits plus possibly a small constant overhead.
Binaries provide such a format. At the same time we would like to
be able to program with this format as easily as we do with lists.
That is, we would like to write the drop 0XX function manipulating
binaries as simply as we did for the structured term representation
of the bit stream, i.e., with code like the one below:

drop_0XX(Bin) ->
<<<<1:1,B:2>> || 1:1,B:2 <- Bin>>.

Alas, currently such concise code cannot be written in Erlang. This
is both because the analogue of list comprehensions on binaries
does not exist and due to various restrictions, imposed by the un-
derlying implementation, which often make code that manipulates
binaries quite complicated. In this paper we address these issues.

1 Performance-conscious functional programmers might prefer the version with an
accumulator parameter to make it tail-recursive or with the first clause written as:

drop 0XX([{1, , } = T|Rest]) ->

[T|drop 0XX(Rest)];

which avoids the tuple construction. Throughout this paper, in order to focus on the
main issues, we do not worry about such optimizations and do not perform them
manually. We instead leave this task to the compiler.
2 One could possibly think of more efficient symbolic representations of the bit stream,
but they are still likely to introduce a substantial space overhead.

Contributions The contributions of this paper are as follows:
• We extend the Erlang binary datatype in various directions

to allow manipulation of bit streams to be as convenient and
flexible as manipulation of lists without sacrificing efficiency.

• We introduce higher-order functions on binaries such as binary
comprehensions and fold-like built-ins and discuss issues re-
lated to their efficient implementation.

• We illustrate the usefulness of these extensions by presenting
very compact solutions (functional pearls?) to common pro-
gramming tasks from the network protocol and multimedia pro-
cessing application domains.

All these issues are described in the context of Erlang, but there
is nothing which is particularly Erlang-specific in the core of our
proposed language extensions. Also, we are not aware of any work
that tries to achieve these goals in another functional language.
(The only work that comes mildly close is [9] that describes an
API for adding bit streams into Haskell, albeit using the C foreign
language interface and without having the ability to perform pattern
matching or apply higher-order functions on these bit streams.)

Overview To make the paper self-contained and to set the basis
for our proposed extensions, the next section reviews the binary
datatype and binary pattern matching as currently implemented in
the Erlang/OTP system. Our extensions to binary construction and
pattern matching are described in Section 3. Section 4 introduces
higher-order operations on binaries and binary comprehensions in
particular. We then use these extensions to provide concise solu-
tions to simple tasks from the above-mentioned application do-
mains (Section 5). In Section 6 we discuss issues that arise when
implementing the proposed extensions, and the paper ends with
some concluding remarks.

2. Binaries as in Erlang/OTP R10B
The binary datatype in Erlang/OTP R10B represents a finite se-
quence of 8-bit bytes. Two basic operations can be performed on a
binary: creation of a new binary and matching against an existing
binary.

2.1 Creation of binaries using the bit syntax
Erlang’s bit syntax, described in [5] but see also [10], allows the
user to conveniently construct binaries and match these against
binary patterns. A bit syntax expression (called a Bin in [5]) is the
building block used to both construct binaries and match against
binary patterns. A Bin is written with the following syntax:

<<Segment1, Segment2, . . ., Segmentn>>

The Bin represents a sequence of bytes. Each of the Segmenti’s
specifies a segment of the binary. A segment represents an arbitrary
number of contiguous bits in the Bin. The segments are placed next
to each other in the same order as they appear in the bit syntax
expression.

Segments Each segment expression has the general syntax:
Value:Size/SpecifierList

where both the Size and the SpecifierList are optional. When
they are omitted, default values are used for these specifiers. The
Value field must however always be specified. In a binary match,
the Value can either be an Erlang term, a bound variable, an
unbound variable, or the don’t care variable ’ ’. The Size field
can either be an integer constant or a variable that is bound to an
integer. The SpecifierList is a dash-separated list of up to four
specifiers that specify type, signedness, endianess, and unit. The
different forms of type specifiers are shown in Table 1 together with

a brief description of their use; they are explained in detail below.
If all of these type specifiers are used, the syntax of each segment
expression is:

Value:Size/Type-Signedness-Endianess-unit:Unit

The Size specifier gives the size of the segment measured in units.
Thus the size of the segment in bits (hereafter called its effective
size) will be Size ∗ Unit.

Types The bit syntax allows three different types to be specified
for segments of binaries: integers, floats, and binaries.
• The integer type specifier is the default and the segment can

then be of any size. For integers, the user can also specify en-
dianess and signedness (see Table 1). If unspecified, the default
specifiers for an integer segment are a size of 8 bits, unsigned,
big-endian, and a unit of 1.

• The float type specifier only allows effective sizes of 32 or 64
bits. The user can also specify endianess. The default specifiers
for a float segment are a size of 64 bits, a big-endian format,
and a unit of 1.

• The binary specifier allows effective sizes that are evenly
divisible by 8. Specifying endianess or signedness does not
modify how a binary is matched. The default specifiers for a
binary segment is the size all which means the binary is being
matched out completely. If the size of the segment is specified,
the default unit used is 8 bits.

Endianess An endianess specifier determines the order in which
bytes form an integer or a float are stored. The specifier big means
that the bytes are in big-endian order, while the specifier little
signifies that the bytes are in little-endian order. For example, the
bit syntax expression <<298:16/integer-big>> is equivalent to
<<1,42>>, whereas the expression <<298:16/integer-little>>
is equivalent to <<42,1>>.

Signedness A signedness specifier allows matching of either
signed or unsigned integers. The default value is unsigned. This
means that the binary segment will be interpreted as an unsigned
integer. The signed specifier causes the binary segment to be inter-
preted as an integer in two’s complement representation. We note
that the signed and unsigned specifiers are actually allowed in
all expressions, but they only have a meaning when used in binary
segments whose type is integer.

Tail of a binary As mentioned, if the binary type specifier is
used without an explicit size specifier, its size gets expanded to the
size all by default. In the last segment of a binary this use is similar
to the familiar list cdr operator since a size of all means that the
binary is matched against the complete remaining binary (cf. also
Example 2.1 below). A segment of type binary however, must be
a sequence of 8-bit bytes (i.e., have a size evenly divisible by eight).

Default expansions All specifiers have default values and some-
times the defaults depend on the values of other specifiers. To sum-
marize the rules which apply, we show how some segments are
expanded in Table 2.

Segment Default expansion
X X:8/integer-unsigned-big-unit:1
X/float X:64/float-big-unit:1
X/binary X:all/binary
X:Size/binary X:Size/binary-unit:8

Table 2. Some binary segments and their default expansions

integer The segment’s bit sequence will be interpreted as an integer. (default)
float The segment’s bit sequence will be interpreted as a float. The segment’s size can then only be 32 or 64.
binary The segment’s bit sequence will not be interpreted. The default unit size of a binary is 8.
The following three specifiers apply to integers and floats only.
big The segment’s bytes are in big-endian order. (default)
little The segment’s bytes are in little-endian order.
native The segment’s bytes are in the byte ordering of the machine on which the program runs.
The following two specifiers apply to integer segments only.
signed The segment’s bit sequence will be interpreted as an integer in 2’s complement representation.
unsigned The segment’s bit sequence will be interpreted as an unsigned integer. (default)
unit Always followed by ‘:’ and an integer between 1 and 256 which denotes the unit size. The unit size is used to determine

the segment’s effective size which is the product of the unit size and the Size field. The unit is typically used to ensure
either byte-alignment in a binary match or that a new binary has a size that is divisible by 8 regardless of the value of
the Size field. The default unit size is 1 for integers and floats and 8 for binaries.

Table 1. Binary segment specifiers: short description

2.2 Binary matching
The syntax for matching if Binary is a variable bound to a binary
is as follows:

<<Segment1, Segment2, . . ., Segmentn>> = Binary

The Valuei fields of the Segmenti expressions that describe each
segment will be matched to the corresponding segment in Binary.
For example, if the Value1 field in Segment1 contains an unbound
variable and the effective size of this segment is 16, this variable
will be bound to the first 16 bits of Binary. How these bits will be
interpreted is determined by the SpecifierList of Segment1 .

Example 2.1 As shown below, binaries are generally displayed
as a sequence of comma-separated unsigned 8 bit integers inside
<<>>’s. The Erlang code:

Binary = <<10, 11, 12>>,
<<A:8, B/binary>> = Binary

results in the binding A = 10, B = <<11, 12>>.3

Here A matches the first 8 bits of Binary. Because of the default
values (cf. Table 2), these eight bits are interpreted as an unsigned,
big-endian integer. B is matched to the rest of the bits of Binary.
These bits are interpreted as a binary since that type specifier has
been chosen. Because of that, B matches to the rest of Binary, as
this is the default size for the binary type specifier.

Size fields of segments are not always statically known. In fact,
it is often the case that the value of the size field is decided by the
matching of a variable in an earlier segment.

Example 2.2 The Erlang code:
<<Sz:8/integer,
Vsn:Sz/integer,
Msg/binary>> = <<16,2,154,42>>

results in the binding: Sz = 16, Vsn = 666, Msg = <<42>>.

Naturally, pattern matching against a binary can occur in a
function head or in an Erlang case statement just like any other
matching operation. The next example shows this.

Example 2.3 Consider the case statement
3 In Erlang, variables begin with a capital letter or an underscore, and are possibly
followed by a sequence of letters, underscores and digits. A leading underscore in a
variable name is typically used to indicate that the variable is unused.

case Binary of
<<42:8/integer, X/binary>> ->

handle bin(X);
<<Sz:8, V:Sz/integer, X/binary>> when Sz > 16 ->

handle int bin(V, X);
<< :8, X:16/integer, Y:8/integer>> ->

handle int int(X, Y)
end.

Here Binary will match the pattern in the first branch of the case
statement if its first 8 bits represented as an unsigned integer have
the value 42. In this branch of the case statement, X will be bound
to a binary consisting of the rest of the bits of Binary. If this is
not the case, then Binary will match the second pattern if the first
8 bits of Binary interpreted as an unsigned integer have a value
greater than 16. Notice that this is a non-linear and guarded binary
pattern. Finally, if Binary is exactly 32 bits long, X will be bound
to an integer consisting of the second and third bytes of the Binary
(taken in big-endian order). If neither of the patterns match, the
whole match expression will fail. Three examples of matchings and
a failure to match using this code are shown in Table 3.

Binary Matching of X
<<42,14,15>> <<14,15>>

<<24,1,2,3,10,20>> <<10,20>>
<<12,1,2,20>> 258
<<0,255>> failure

Table 3. Matchings for the code in Example 2.3

The following two examples show how endianess and signed-
ness specifiers impact binary pattern matching.

Example 2.4 If B and L are unbound variables, the matching:
<<B:16/integer-big>> = <<0, 42>>

results in the binding B = 42 as the eight low bits of B are 42, while
the matching:

<<L:16/integer-little>> = <<0, 42>>

results in the binding L = 10752 (i.e., 42 * 256) since 42 now
appears in the eight high bits.

Example 2.5 If U and S are unbound variables, the code:
<<U:8/integer-unsigned>> = <<255>>,
<<S:8/integer-signed>> = <<255>>

results in the binding U = 255, S = -1.

3. Binaries as we want them
The binary syntax greatly simplifies the implementation of network
protocols in Erlang. However, sometimes the restrictions on the
construction of binaries, currently imposed by the underlying im-
plementation, make the use of binaries cumbersome. Let us again
consider the task of dropping all 3-bit chunks that begin with a zero.
Ideally, using the binary syntax, one would want to write something
like the code in Figure 1.

drop 0XX(<<1:1, X:2, Rest/binary>>) ->
<<1:1, X:2, drop 0XX(Rest)>>;

drop 0XX(<< :3, Rest/binary>>) ->
drop 0XX(Rest);

drop 0XX(<<>>) ->
<<>>.

Figure 1. drop 0XX using binaries without size restrictions

However, the restriction that binaries (and sub-binaries in them)
are of a size which is a multiple of eight currently make such code
impossible to write.

Instead, the simplest way that this task can currently be pro-
grammed in Erlang/OTP R10B using the binary syntax described
in the previous section (i.e., without converting to e.g. a list repre-
sentation) is shown as Program 1.

Program 1 Drop all 3-bit chunks which start with a zero
-module(drop_0XX_R10B).
-export([drop_0XX/1]).

drop_0XX(Bin) ->
drop_0XX(Bin, 0, 0, <<>>).

drop_0XX(Bin, N1, N2, Acc) ->
Pad1 = (8 - ((N1+3) rem 8)) rem 8,
Pad2 = (8 - ((N2+3) rem 8)) rem 8,
case Bin of
<<_:N1, 1:1, X:2, _:Pad1, _/binary>> ->

NewAcc = <<Acc:N2/binary-unit:1, 1:1,X:2, 0:Pad2>>,
drop_0XX(Bin, N1+3, N2+3, NewAcc);

<<_:N1, _:3, _:Pad1, _/binary>> ->
drop_0XX(Bin, N1+3, N2, Acc);

<<_:N1>> ->
Acc

end.

As we can see the program becomes quite complicated, since at
each construction point the size of binaries has to be evenly divis-
ible by eight. To ensure this, we have to keep track of the number
of bits we have consumed and the number of bits that we have
kept in order to pad the binaries to an admissible size. Having to do
this is not programmer-friendly.4 More importantly, it subtly under-
mines the use of the bit syntax for writing high-level specifications
of common tasks; programming becomes unnecessarily low-level
when there is little reason it should become so. In this particular
example, we find Program 1 so revolting, we suggest to our readers
to not try to understand it; we just invite them to contrast it with the
program in Figure 1.

Another problem with the current restrictions on binaries shows
up when performing complex pattern matching. Consider extract-
ing the options from an IP packet. A function which does that, using
binaries as in Erlang/OTP R10B, is shown in Figure 2(a). First we

4 The situation is quite similar to what a C programmer would have to do in order to
keep track of which bits to extract from the current byte of the incoming bit stream
and how much padding is needed in the output stream.

ip options(IPPacket) ->
<<4:4, HeaderLength:4, Rest/binary>> = IPPacket,
<<Header:HeaderLength/binary-unit:32,

Data/binary>> = IPPacket,
<<4:4, HeaderLength:4, RestOfHeader:152,
Options/binary>> = Header,

Options.

(a) Using binaries as in Erlang/OTP R10B

ip options(IPPacket) ->
<< <<4:4, HeaderLength:4, RestOfHeader:152,

Options/binary>>:HeaderLength/binary-unit:32,
Data/binary >> = IPPacket,

Options.

(b) Using nested binary patterns

ip options(IPPacket) ->
<<4:4, HeaderLength:4, RestOfHeader:152,
Options:(32*(HeaderLength-5))/binary,
Data/binary>> = IPPacket,

Options.

(c) Using a complex size expression

Figure 2. Functions extracting the options from an IPv4 packet

have to find out the length of the IP header. Then the header is ex-
tracted from the packet and finally the options are extracted from
the header. If nested binary patterns were allowed, we could write
this in a much more elegant way as shown in Figure 2(b). Note
however that allowing arbitrary complex binary patterns requires a
non-trivial level of sophistication from the binary pattern match-
ing compiler; for example, notice the double occurrence of the
HeaderLength variable. Another, less compiler-challenging, solu-
tion to extracting the options from an IP packet is to allow any ex-
pression in the size field of a binary segment. Then the ip options
function could be written in the manner shown in Figure 2(c).

A final, minor inconvenience with the current implementation
of binaries in Erlang/OTP is that the type of a segment must be
specified when a binary is created. Consider this piece of code:

X = <<1,2,3>>, Bin = <<X,4,5>>.

In the current version of the bit syntax this gives rise to a “bad
argument” exception. To get the intended effect one is forced to
write:

X = <<1,2,3>>, Bin = <<X/binary,4,5>>.

In binary construction, we lift this restriction and make the type of
each segment be the same as the type of the term that the expression
evaluates to.5

3.1 More flexible binaries: summary of changes
In short, the difference between the binaries as they are currently
implemented in Erlang/OTP R10B and the more flexible binaries
that we propose in this paper are:

1. A binary (or sub-binary) can have any bit-size, not necessarily
one which is divisible by eight.

2. The Size field of a segment can contain an arbitrary arithmetic
expression (which evaluates to a non-negative integer).

3. No unit specifier is needed since Size is an arbitrary expres-
sion. This allows the user to uniformly specify the size of seg-
ments in bits, irrespectively of the segment’s type (cf. § 2.1).

4. No type specifier is needed in binary construction.

5 It is of course an error if an expression evaluates to a term whose type is not one of
the allowed types of binary segments.

binand(<<1:1, B1/binary>>, <<1:1, B2/binary>>) ->
<<1:1, binand(B1, B2)>>;

binand(<< :1, B1/binary>>, << :1, B2/binary>>) ->
<<0:1, binand(B1, B2)>>;

binand(<<>>, <<>>) ->
<<>>.

binnot(<<1:1, B/binary>>) ->
<<0:1, binnot(B)>>;

binnot(<<0:1, B/binary>>) ->
<<1:1, binnot(B)>>;

binnot(<<>>) ->
<<>>.

Figure 3. A possible implementation of bitwise operators

5. In pattern matching, we allow for nested binary patterns as in:
<<S:16, <<1:8, Bin/binary>>:S, Rest/binary>>.

How these changes can be implemented in Erlang/OTP is discussed
in Section 6. Besides allowing certain tasks to be programmed
more conveniently, these changes are also needed for the binary
comprehensions introduced in Section 4.1. Having the following
operators as language-level built-ins will also come in handy.

3.2 Bitwise operations
Adding built-in bitwise operations on binaries is a natural exten-
sion. For example, this allows taking the Boolean and of two bi-
naries which have the same size. This is often useful, for example
when binaries are used as a bit vector to represent a set. In that case
and-ing two binaries gives the intersection of two sets.

We propose three different binary operators and one unary op-
erator. The three binary operators are binand, binor, binxor and
the unary operator is binnot. These four operators can be defined
easily using binary matching and construction. We give the defini-
tions of two of them in Figure 3.

4. Higher-order functions on binaries
4.1 Binary comprehensions
Binary comprehensions are expressions that are intended to encap-
sulate recursion patterns on the binary datatype. They are analogous
to the widely-used list comprehensions [8], which in turn are ex-
pressions which are syntactic sugar for the combination of map and
filter on lists. The main difference between a list and a binary in
this case is that what constitutes an element in a list is something
a priori and unambiguously defined. In contrast, because binaries
are terms without (much of a) structure, for binary comprehensions
the user must explicitly specify what is considered an element of a
binary.

4.1.1 Introductory examples
As a first example of the usefulness of binary comprehensions, we
show how binnot could be implemented using this construct. One
possible implementation is the following:

binnot(Bin) ->
<<bnot(X):1 || X:1 <- Bin>>.

where bnot/1 is the built-in bitwise Boolean not operator of
Erlang for integers. As can be seen, here we consider each bit as
an element in the binary. If we knew that the actual element size
of the binary is something else, for example that we have a binary
whose size is divisible by eight (i.e., a binary which is a sequence
of bytes), we could have defined binnot in the following way:

binnot(Bin) ->
<<bnot(X):8 || X:8 <- Bin>>.

In short, in a binary comprehension it is both possible and
mandatory to specify what should be considered an element of the
input binary and how the output segments of the output binary are
to be constructed.

The binnot example shows how a binary comprehension can
be used to perform a map operation on binaries. The following
example introduces filtering as well. Consider the drop 0XX task of
the introduction. It is quite clear that each 3-bit chunk is an element
in the binary. If the binary were converted to a list where each
element consisted of a 3-bit binary, we would write the following
list comprehension to drop the 3-bit binaries starting with a zero:

[<<1:1,B:2>> || <<1:1,B:2>> <- List]

Note that here the binary pattern after the || works as a filter as
well as a selector; only elements in the list which match the pattern
are kept in the output list of 3-bit binaries.

In this example the elements were already defined when the list
was constructed. For a binary comprehension the elements must
be defined in the comprehension. Using binary comprehensions,
drop 0XX would simply be written as:
drop_0XX(Bin) ->

<<<<1:1,B:2>> || 1:1,B:2 <- Bin>>.

Notice that this function works in exactly the same way as the func-
tion of Figure 1. Here we are forced to wrap the “output” segment
in a binary construction because the syntax for binary comprehen-
sions allows for only a single binary segment as output. Also notice
that the ability to create binaries of arbitrary size — of 3 bits in this
case — is a prerequisite for flexible binary comprehensions.

Sometimes more complicated, perhaps user-defined, filtering is
needed in which case a filter expression is written at the end of
the binary comprehension. In the following example, which shows
the power both of creating binaries whose size is possibly not a
multiple of eight and of using filters in binary comprehensions, we
only want to use elements which are in a certain range.

Example 4.1 (UU-decode) If UUencodedBin is a binary file that
has previously been UU-encoded then we can decode it with this
binary comprehension:
uudecode(UUencodedBin) ->
<<(X-32):6 || X <- UUencodedBin, 32=<X, X=<95>>.

That is, if the value of a byte is between 32 and 95, we should
subtract 32 from that value and put it in the next six bits of the new
binary we are creating. (Recall that the default expansion for the
segment X above is X:8/integer-unsigned; cf. also Table 2). If
the value is not in that range it is dropped. (This applies to line
breaks which are inserted into UU-encoded binaries to make sure
that it is possible to display the binary.)

4.1.2 Definition of binary comprehensions
We propose the following syntax for binary comprehensions:

<<Seg || Seg1,. . .,Segk <- Bin, FilterExpr>>

In a binary comprehension we have three distinct parts. One which
describes how each new element in the binary shall look, one which
describes what we consider as “basic” elements in the input binary,
and one which filters these elements. Seg is a segment representing
the elements of the resulting binary, Seg1,. . .,Segk are segments

used to describe elements in the old binary Bin, and FilterExpr
is a filtering expression used to decide which elements from the
old binary should be used to construct the new one. The filtering
expression can contain any Boolean expression, or be a sequence
of Boolean expressions separated by commas (,). When Boolean
expression are separated by commas as in Example 4.1 all of them
have to evaluate to the Erlang atom ’true’ for the filter to evaluate
to true. That is, we can view comma as a shorthand for Boolean
and. This is consistent with the syntax and semantics of filtering
expressions in list comprehensions in Erlang.

4.1.3 Binary comprehensions with multiple generators
Although our binary comprehensions have filtering capabilities
and permit pattern matching in binary generators, the observant
reader has no doubt noticed that we have not catered for multiple
generators. This ability indeed exists in list comprehensions in
Erlang; for example, the following:

[{X,Y} || X <- [1,2,3], Y <- [4,5], is odd(X)]

produces the list of pairs: [{1,4},{1,5},{3,4},{3,5}].
There is nothing wrong with multiple generators, but our expe-

rience is that they are rarely used in practice. One could possibly
conceive of interesting uses for multiple generators in binary com-
prehensions, so, in the spirit of consistency, expressions like:

<<<<X:8,Y:8>> || X <- <<1,2,3>>,
Y <- <<4,5>>, is_odd(X)>>

producing the binary <<1,4,1,5,3,4,3,5>> should also be al-
lowed. However, in order not to complicate the following section
unnecessarily and to focus on the main issues, we will ignore the
presence of multiple generators in the rest of this paper.

4.1.4 Translation of binary comprehensions to Erlang code
Binary comprehensions are very handy but, with binaries extended
as in Section 3, they are just syntactic sugar, in the same way that
list comprehensions are.

To see how they can be expressed in the language, let us rewrite
all of the matching segments such that the value fields always
contain unbound variables to ease translation. We need to add
an extra constraint to FilterExpr for each segment that either
contains a bound variable or a constant to preserve the semantics.

That is, let us define Segi = Vari:Sizei/SpecifierListi if
Segi = Valuei:Sizei/SpecifierListi and Valuei is a bound
variable or a constant, otherwise Segi = Segi. Let us also define
FilterExpr* as (FilterExpr ’and’ Vari == Valuei) for all
i such that Segi 6= Segi. This allows us to rewrite:

<<Seg || Seg1,. . .,Segk <- Bin, FilterExpr>>

as
<<Seg || Seg1,. . ., Segk <- Bin, FilterExpr*>>

which can be implemented in Erlang as shown in Figure 4.

4.2 Fold on binaries
Among the most commonly used higher-order functions on lists are
fold-like built-ins (or library functions). These functions are used
to successively apply a function to all the elements of a list and get
back an often aggregate value. They come in two flavors, foldl
and foldr, and quite often are also used in combination with map
(i.e., mapfoldl, mapfoldr). In this section, we concentrate on
foldl. In Erlang, foldl is defined as follows:

foldl(Fun, Acc, []) -> Acc;
foldl(Fun, Acc, [Hd|Tail]) ->

NewAcc = Fun(Hd, Acc),
foldl(Fun, NewAcc, Tail).

Fun = fun(B,F) ->
case B of
<< Seg1,. . ., Segk,Rest/binary>> ->

case FilterExpr* of
true -> <<Seg, F(Rest,F)>>;
false -> F(Rest,F)

end;
<<>> ->

<<>>
end

end,
Fun(Bin,Fun).

Figure 4. An implementation of binary comprehensions in Erlang

When trying to define the analogue of this function on binaries
we are again faced with the following question: what exactly should
be considered an element of a binary? Since binaries do not have a
predefined uniform structure the way lists do, the most reasonable
answer is that it is up to the function parameter to specify what
it considers as an element, consume it, and return the remaining
binary for later consumption. bfoldl on binaries, the analogue of
foldl on lists, is thus defined as:

bfoldl(Fun, Acc, <<>>) -> Acc;
bfoldl(Fun, Acc, Bin) ->

{NewAcc, NewBin} = Fun(Bin, Acc),
bfoldl(Fun, NewAcc, NewBin).

i.e., the function parameter returns a pair consisting of the new
accumulator and the remaining binary. This way, it is possible to
have a very flexible definition of what an element of the input
binary is. In Sections 5.4 and 5.5 we show uses of bfoldl.

5. Applications
To show the usefulness of the new operations on binaries we give
some examples from application areas where processing of bit
streams is ubiquitous. The areas are multimedia processing and net-
work programming. The applications we consider are protocols for
digital audio encoding and decoding, and picture and file encoding
and compression.

5.1 µ-law
Audio files are transmitted over the network using a variety of
formats. One such format, designed to be space efficient, is µ-law
compressed files [3]. Such files are compressed to half the size of
the original audio as each 16-bit sample is translated into an 8-bit
representation.

5.1.1 µ-law encoding
The encoding method is non-trivial but quite simple. First the
Sound sample is transformed from 2’s complement form to a
Biased sign magnitude form where the magnitude is an integer
in the range [132..32767]. This can be done quite simply with a
binary comprehension:

<<to_sign_magn(Sample) ||
Sample:16/integer-signed <- Sound>>

which simply takes each 16 bit sample in 2’s complement form
and applies the to sign magn function on it. The to sign magn
function is defined in the following way:

to_sign_magn(Sample) ->
<<sign(Sample):1, (min(abs(Sample), 32635)+132):15>>.

This function transforms the sample from 2’s complement form
into sign magnitude form and increases the magnitude with 132.

In the next step this representation is translated to an 8 bit
representation where the first bit represents the sign, the next three
bits represent the position of the first 1 in the magnitude, and the
last four bits represent the values of the four bits following the
leading 1. This can also be done with a binary comprehension as
follows:

<<to_byte(Sign,Magn) || Sign:1,Magn:15/binary <- Biased>>

In this case, Sign contains the sign bit and Magn will be a binary
consisting of 15 bits representing the magnitude of the sample.
These are used as arguments to the to byte function which is
defined in the following way:

to_byte(Sign, Magn) ->
to_byte(Sign, Magn, 7).

to_byte(Sign, <<1:1, Mantissa:4, _/binary>>, N) ->
<<Sign:1, N:3, Mantissa:4>>;

to_byte(Sign, <<0:1, Rest/binary>>, N) ->
to_byte(Sign, Rest, N-1).

What this function does is it searches for the position of the first 1
in the Magn binary. Since the range of the magnitude is 132–32676
there will be at least one 1 in the first 8 bits. The position of the first
1 is therefore coded in the following way:

7 6 5 4 3 2 1 0

That is, if the third bit contains the first 1, its position is 5. The
following four bits are called the mantissa and in the byte that
the to byte function creates the first bit contains the sign, the
following three contains the position, and the last four bits contain
the mantissa.

Finally we take the one complement of this value which can be
done easily using the new binary operators of Section 3.2:

binnot(Encoded)

The complete code for µ-law encoding is shown as Program 2.

Program 2 µ-law encoding Erlang module
-module(mu_law).
-export([encode/1]).

encode(Sound) ->
Biased = <<to_sign_magn(Sample) ||

Sample:16/integer-signed <- Sound>>,
Encoded = <<to_byte(Sign, Magn) ||

Sign:1,Magn:15/binary <- Biased>>,
binnot(Encoded).

to_sign_magn(Sample) ->
<<sign(Sample):1, (min(abs(Sample), 32635)+132):15>>.

sign(Sample) when Sample >= 0 -> 0;
sign(Sample) when Sample < 0 -> 1.

to_byte(Sign, Magn) -> to_byte(Sign, Magn, 7).

to_byte(Sign, <<0:1, Mantissa:4, _/binary>>, N) ->
<<Sign:1, N:3, Mantissa:4>>;

to_byte(Sign, <<1:1, Rest/binary>>, N) ->
to_byte(Sign, Rest, N-1).

5.1.2 µ-law decoding
To decode these values we start by taking their 1’s complement.
After that we translate the bytes to sign magnitude form again with
this binary comprehension:

Biased = <<to_short(Sign, Exp, Mantissa) ||
Sign:1,Exp:3,Mantissa:4 <- Encoded>>,

where to short is defined in the following way:
to_short(Sign, Exp, Mantissa) ->

<<Sign:1, 1:(8-Exp), Mantissa:4, 1:1, 0:(2+Exp)>>.

That is, put the Sign bit first, then put the leading one in the correct
place followed by the mantissa and an additional 1 and fill the
remaining bits with zeroes.

Finally, we must translate the sign magnitude representation
into 2’s complement representation and remove the bias. This can
be done with the following binary comprehension:

<<unbias(Sign,Magn) || Sign:1,Magn:15 <- Biased>>

where the function unbias is defined as follows:
unbias(0, Magn) -> <<(Magn - 132):16>>;
unbias(1, Magn) -> <<(132 - Magn):16>>.

5.2 PNG
The portable network graphics (PNG) file format [7, 4] is a rather
recent format for picture files intended to replace the widely-used
but patent-based GIF format. The structure of the PNG format is
quite simple. It consists of an initial signature and then a series of
chunks. Each of the chunks consists of a length field, a type field,
the chunk data, and a checksum. A certain type of chunk contains
the raw compressed data whereas the rest of the chunks contains
metadata. To recreate the raw data in order to decompress it we can
use a simple binary comprehension assuming that the PNG variable
below is bound to a binary where we have removed the signature
from the original file.

<<RawData || Length:32, 73,68,65,84,
RawData:(Length*8)/binary,
_Crc:32 <- PNG>>

The decimal numbers 73,68,65,84 is the content of the type field
for the chunk containing raw data. This means that only the chunks
that contain raw data match the generator pattern and only the data
from those chunks makes up the resulting binary. We can then
decompress this data and use the uncompressed data and the chunks
containing metadata to generate the picture.

5.3 yEnc
To encode a binary file in the yEnc format [2] the binary compre-
hension in the following program is sufficient:
yenc(Bin) ->

<<yenc_byte(Byte) || Byte <- Bin>>.

yenc_byte(Byte) ->
Enc = (Byte+42 rem 256),
case critical(Enc) of
true -> <<61, Enc+64>>;
false -> <<Enc>>

end.

where critical is a function which returns true when a byte
needs to be escaped and false otherwise. A byte is deemed critical
and needs to be escaped if it represents NULL, TAB(ASCII 9),
LF(ASCII 10), CR (ASCII 13), or ’=’.

All the previous examples have shown uses of binary compre-
hensions; the next two sections show how bfoldl can be used.

5.4 Bit sum
One simple common programming task is to find the number of
bits which are set in a binary. For example, this allows finding the
cardinality of a set when sets are represented using bit vectors. This
calculation can be performed by computing the sum of all bits in
the binary. That is, if we consider each bit which is set as indicating
the presence of an element, taking the sum of all bits gives us the
number of elements in the set. If the representation were with a list,
this would be a classic case where foldl would be used. Thus, it
seems appropriate to use bfoldl to solve this problem for binaries.
Indeed, using bfoldl this task can be programmed as simply as:

bitsum(Bin) -> bfoldl(fun add_bit/2, 0, Bin).

add_bit(<<X:1,Rest/binary>>, N) -> {N+X,Rest}.

5.5 Zip
Zip archives [6] are a commonly used format to store compressed
files. Each zip archive starts with a list of local file headers which
contains the file data. It subsequently contains some records which
describe the directory structure and indicate if encryption has been
used or not.

Program 3 returns a pair consisting of the sum of the com-
pressed sizes of all of the files in the zip archive in its first element
and the sum of the uncompressed sizes in its second element.

Program 3 Extracting total local file sizes from a zip archive
-module(zip).
-export([sizes/1]).

-define(MAGIC, 16#04034b50).
-define(SPEC, integer-little).

sizes(ZipData) ->
bfoldl(fun add_lfh_size/2, {0, 0}, ZipData).

add_lfh_size(<<?MAGIC:32/?SPEC, _:80, _Crc32:32/?SPEC,
CompSz:32/?SPEC, UncompSz:32/?SPEC,
FNameSz:16/?SPEC, ExtraSz:16/?SPEC,
_:(8*FNameSz), _:(8*ExtraSz), _:(8*CompSz),
Rest/binary>>, {CS, UCS}) ->

{{CompSz+CS, UncompSz+UCS}, Rest};
add_lfh_size(_Bin, AccPair) ->

{AccPair, <<>>}.

In this case we only consider local file headers as elements in
the binary. As soon as we find something else we are done, as the
local file headers are always at the start of the zip archive.

Each local file header structure is quite simple. It starts with
a magic number 0x04034b50. Then there are 10 bytes (80 bits)
which are used for flags and to store information about the file. The
next four bytes contain a 32-bit cyclic redundancy checksum. After
that, we have the size of the compressed file and the size of the
uncompressed file. Then there is a two-byte field which describes
how many bytes are used to store the file name, followed by another
two-byte field which describes the size of the extra field. This is
followed by the file name and the extra field and finally we have
the compressed file. All the integers in a local file header are stored
in little-endian format which explains the use of the SPEC macro.

5.6 A very rough comparison
Measuring expressiveness of languages in terms of lines of code is
very difficult and often dubious. We nevertheless present in Table 4
the number of lines of code needed to program the core of certain
applications manipulating binary data in various languages. (Blank
lines, comments, lines of code for performing I/O and memory

Header

Size=5

0

11

255

17

0

Header

O=1

S=3

Header

O=0

S=5

Figure 5. Internal representation of binaries in Erlang/OTP R10B

management are not included.) The chosen languages are C, Java,
Erlang as implemented in Erlang/OTP R10B, and Erlang with the
extensions and changes proposed in this paper. We do not attempt to
draw any general conclusions from such a comparison, but we sim-
ply present it as further evidence on the compactness of programs
manipulating bit streams using the binary datatype extensions pro-
posed in this paper. We are not aware of other languages where
drop 0XX or UU-decode are essentially one-liners. Appendix A
contains sources for the Erlang R10B programs and further infor-
mation about the origin of the C and Java programs.

Program in C Java Erlang (R10B) Erlang (this)
drop 0XX 51 33 14 2
µ-law encode 30 18 25 13
UU-decode 19 14 10 2

Table 4. Lines of code needed to process bit stream data

6. Implementation issues
We first describe how binaries and the bit syntax are currently
implemented in Erlang/OTP R10B (§ 6.1). We then describe the
changes that need to be made in order to implement more flexible
binaries (§ 6.2) and efficient binary comprehensions (§ 6.3).

For reference, Table 5 contains a list of some of the instructions
of the BEAM (the virtual machine of Erlang/OTP R10B) involv-
ing binaries. It should be stated that the description of § 6.1 fo-
cuses only on issues relevant to this paper (for example, it does not
discuss garbage collection support). For a more complete descrip-
tion of such issues and of how Erlang’s bit syntax is translated into
BEAM instructions and then into native code see [1].

6.1 Implementation of binaries in Erlang/OTP R10B
Representation of binaries In BEAM, binaries are internally rep-
resented using two different constructs:

1. a binary data block which contains a header field, a size field
and binary data, and

2. a binary header which contains a header, a pointer to a binary
data block, an offset O, and a size S.

A binary header represents a binary consisting of the bytes starting
at byte O in the corresponding binary data block and ending at
byte O + S in the data block. (Recall that the the size on bits of
binaries in Erlang/OTP R10B is a multiple of eight.) In Figure 5,
we show the representation of the binary <<0,11,255,17,0>> and
its nested sub-binary <<11,255,17>>. As shown, several binary
headers can point to the same binary data block.

bs start match Calculates auxiliary information needed before the matching starts.
bs skip bits Used in binary pattern matching when the segment to match against involves an anonymous variable.
bs get Type Used in binary pattern matching to read a number of bits from the binary and construct a term of type Type from them.

Comes in flavors: bs get integer, bs get float, and bs get binary.
bs put Type Used in binary construction to turn a term of type Type into a bit stream.

After conversion, a number of bits from this stream are written to the binary which is being constructed.
Comes in flavors: bs put integer, bs put float, and bs put binary.

bs init2 Allocates memory for the binary data block and returns a pointer to the data block and an initial offset which is zero.
bs final Creates the binary header from the base pointer and final offset which denotes the total size of the resulting binary.

Table 5. Some BEAM instructions for binaries: short description

Implementation of binary matching A simple binary matching
expression of the form:

<<Seg1,. . .,Segn>> = Bin.

where each Segi is of the general form:
Valuei:Sizei/Typei-Specifiersi-unit:Uniti

is translated in the manner indicated as Translation 1.

Translation 1 Implementation of binary matching in BEAM
〈Offset0, BinSize, Base〉 = bs start match(Bin),
EffSize1 = Size1 ∗ Unit1
〈X1,Offset1〉 = bs get Type1〈Specifiers1〉(EffSize1, Offset0,

BinSize, Base),
Value1 = X1

...
EffSizen = Sizen ∗ Unitn

〈Xn,Offsetn〉 = bs get Typen〈Specifiersn〉(EffSizen, Offsetn−1,
BinSize, Base),

Valuen = Xn

if (Offsetn == BinSize) Success else Failure

Each bs get Typei〈Specifiersi〉(EffSizei, Offseti−1, BinSize,
Base) instruction reads EffSizei bits starting at Offseti−1 bits from
the Base pointer, if (Offseti−1+EffSizei) ≤ BinSize, otherwise
the matching fails. The bits that are read are transformed to the
Erlang term Xi of type Typei. How this transformation happens
is governed by the Specifiersi. Finally, Offseti gets defined as
Offseti−1+EffSizei.

The binary matching fails either if any of the bs get Typei

instructions fails, or if any of the matchings (Valuei = Xi) fails,
or if we have not matched the complete binary (i.e., Offsetn is not
equal to BinSize).

Implementation of binary construction In binary construction
we have the following situation:

NewBin = <<Seg1,. . .,Segn>>

where again each Segi has the general form:
Expri:Sizei/Typei-Specifiersi-unit:Uniti

This statement gets translated as indicated in Translation 2.
First, all of the expressions in the value fields are evaluated.

Then the size of the resulting binary, BinSize, is calculated from
the effective sizes. Then, the binary construction is initialized,
a data area that is large enough is allocated, and the pointer to
this area is returned along with an Offset0 which initially is 0.
Each bs put Type〈Specifiers〉(EffSize, Value, Offset, Base) in-
struction transforms the Value to a bit pattern determined by the
Type and the Specifiers. The first EffSize bits of this bit pattern
are written to the data area starting at Offset bits from the Base
pointer. After the instruction is executed, Offseti gets defined as

Translation 2 Implementation of binary construction in BEAM
Value1 = Expr1, EffSize1 = Size1 ∗ Unit1,

...
...

Valuen = Exprn, EffSizen = Sizen ∗ Unitn,
BinSize = lists:sum([EffSize1 ,. . .,EffSizen]),
〈Offset0, Base〉 = bs init2(BinSize),
Offset1 = bs put Type1〈Specifiers1〉(EffSize1, Value1,

Offset0, Base),
...

Offsetn = bs put Typen〈Specifiersn〉(EffSizen, Valuen,
Offsetn−1, Base),

NewBin = bs final(Offsetn, Base)

Header

Size=3

0 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1

0 1 1 0 * * * *

Header

O=0

S=1

bo=4 bs=3

Header

O=0

S=2

bo=0 bs=4

Figure 6. Two binaries with bit sizes which are not multiple of 8

Offseti−1+EffSizei. Finally, the call to the bs final instruction cre-
ates the new binary from the last Offset and the Base pointer.

6.2 Implementation of more flexible binaries
Allowing binaries consisting of any number of bits requires few
changes to the current representation of binaries. The binary data
blocks can remain unchanged, but the binary headers must contain
two extra fields bo and bs which represent a bit offset and a bit
size, respectively. Each of these values ranges from 0-7 and together
with the original offset and size fields they represent the offset and
size in bits for a binary. That is the exact size in bits of a new flexible
binary is S ∗ 8 + bs and the total offset in bits is O ∗ 8 + bo.

Figure 6 shows an example of two binaries whose data resides
in the same binary data block. One of the binaries consists of all
bits in the data block and the other (the one on top) consists of bits
4 to 14 in the data block, i.e., 11110010111.

Allowing arbitrary arithmetic expressions in the size field of
a binary segment is also unproblematic and requires rather small
changes to the Erlang/OTP compiler. The only modification is to
calculate the effective sizes of segments from arithmetic expres-
sions rather than as simply as: EffSize = Size ∗ Unit.

On the other hand, removing the need to specify the type during
the construction of binary segments slightly complicates binary
construction. Partly because it complicates the calculation of a
segment’s effective size and partly because a new instruction,

bs put any〈Specifiers〉(Effsize, Value, Offset, Base)

must be implemented. This instruction determines the runtime type
of Value and performs the actions of the appropriate bs put Type
instruction.

6.3 Implementation of binary comprehensions
The direct translation from binary comprehension to binary pattern
matching as shown in Figure 4 is very inefficient. Each time a
new segment is added to the binary which is being constructed,
the entire binary constructed so far must be copied. This results in
quadratic complexity in the number of segments used to create the
resulting binary.

One way to avoid the quadratic complexity is to create a binary
for each segment, collect these binaries in a list, and at the end
of the binary comprehension use this list of binaries to create the
resulting binary. The binary comprehension:

<<Seg || Seg1,. . ., Segk <- Bin, FilterExpr*>>

would then be source-transformed to the Erlang code of Fig-
ure 7. The list to binary function is a built-in Erlang function
which converts a list into a binary. If its input is list of binaries
[b1,...,bn], then its result is the binary <<b1,. . .,bn>>.

Fun = fun(B,F) ->
case B of
<< Seg1,. . ., Segk,Rest/binary>> ->

case FilterExpr* of
true -> [<<Seg>>|F(Rest,F)];
false -> F(Rest,F)

end;
<<>> ->

[]
end

end,
list to binary(Fun(Bin,Fun)).

Figure 7. Linear implementation of binary comprehensions

This approach results in a reasonable implementation of binary
comprehensions, but it requires that the entire binary is created in
small pieces which are then copied into the final binary.

Another approach, which avoids this copying, requires that we
first calculate an upper limit on the final size of the resulting binary.
We can then allocate a memory area for the binary data block and
write the segments to the data block as they are created. When all
segments have been written, we can create the binary header for
the resulting binary and adjust the size of the binary data block
appropriately. The implementation of this scheme is not a matter
of a simple source transformation of the binary comprehension to
Erlang code anymore, but needs to be done as part of the translation
to BEAM bytecode. We show this for the case where all size
expressions of segments evaluate to constants. The translation of
a binary comprehension of the form:

<<Seg || Seg1,. . ., Segk <- Bin, FilterExpr*>>

is shown as Translation 3. Each segment Seg of the resulting binary
is of the general form Expr:SizeExpr/Specifiers, while each match-
ing segment Segi is of the form Vari:SizeExpri/Typei-Specifiersi.
Because all size expressions evaluate to constants, we can simply
calculate an upper limit on the size of the resulting binary by the
formula:

SizeLimit =
size(Bin)

∑
k

i=1
SizeExpr

i

× SizeExpr

and leave it up to the bs final instruction to adjust the size of the
memory area for the binary data block.

In those rare cases where size expressions do not evaluate to
constants, as e.g. in:

<<42:N || S:8,N:(S*S) <- Bin>>

and it is not possible to calculate a tight upper limit on the size
of the resulting binary when the binary comprehension is encoun-
tered, one can either employ a more involved translation scheme or
simply use the translation of Figure 7.

7. Concluding remarks
The treatment of binary files, and bit-level data structures in gen-
eral, is a neglected area in functional languages. With only few
notable exceptions, Erlang being one of them, most functional lan-
guages do not provide direct support in terms of a concrete datatype
and a syntax for performing pattern matching on bit streams. We do
not really see any good reason for Erlang to continue being an ex-
ception in providing such support; perhaps this paper paves the way
towards this direction.

Since their introduction in Erlang, binaries have been heavily
used in a variety of applications and programmers have often found
innovative uses for them. The extensions to the binary datatype
presented in this paper make binaries flexible and the higher-order
functions we propose make programming involving binaries more
concise and more “functional” in style. We have every reason to
believe that, in programs manipulating bit stream data, binary com-
prehensions will eventually become as common as list comprehen-
sions are in programs which manipulate lists.

References
[1] P. Gustafsson and K. Sagonas. Native code compilation of Erlang’s

bit syntax. In Proceedings of ACM SIGPLAN Erlang Workshop,
pages 6–15. ACM Press, Nov. 2002.

[2] J. Helbing. yEnc: Efficient encoding for Usenet and eMail, June
2002. See also www.yenc.org.

[3] International Telecommunication Union. G.711: Pulse code
modulation (pcm) of voice frequencies. Series G: Transmission
Sytems and Media, Digital Sytems and Networks. Standardization
Sector of ITU, Geneva, Switzerland, Nov. 1998.

[4] Joint ISO/IEC International Standard and W3C Recommendation.
Portable network graphics (PNG) specification, W3C/ISO/IEC
version, Nov. 2003.

[5] P. Nyblom. The bit syntax - the released version. In Proceedings
of the Sixth International Erlang/OTP User Conference, Oct. 2000.
Available at http://www.erlang.se/euc/00/.

[6] PKWARE Inc. Appnote.txt - .zip file format specification, version
6.2.0, Apr. 2004. Available at:
www.pkware.com/company/standards/appnote/.

[7] G. Roelofs. PNG: The Definite Guide. O’Reilly and Associates, June
1999. See also www.libpng.org/pub/png/.

[8] P. Wadler. List comprehensions. In S. L. Peyton Jones, editor, The
Implementation of Functional Programming Languages, chapter 7,
pages 127–138. Prentice-Hall International, 1987.

Translation 3 Generic translation of binary comprehensions into BEAM bytecode when size expressions evaluate to constants
EffSize1 = SizeExpr1 % evaluates the SizeExpr

...
EffSizen = SizeExprn
ElementSize = lists:sum([EffSize1 ,. . .,EffSizen])
EffSize = SizeExpr
SizeLimit = (size(Bin) / ElementSize) * EffSize
〈MOffset, BinSize, MBase〉 = bs start match(Bin)
〈COffset, CBase〉 = bs init2(SizeLimit)

1:
if (MOffset == BinSize) goto 2
〈Var1, MOffset〉 = bs get Type1〈Specifiers1〉(EffSize1, MOffset, BinSize, MBase)

...
〈Varn, MOffset〉 = bs get Typen〈Specifiersn〉(EffSizen, MOffset, BinSize, MBase)
if (FilterExpr(Var1,. . .,Varn) == false) goto 1
Value = Expr(Var1,. . .,Varn)
COffset = bs put any〈Specifiers〉(Value, EffSize, COffset, CBase)
goto 1

2:
NewBin = bs final(COffset, CBase)

Program Taken from
µ-law encode in C http://www.speech.cs.cmu.edu/comp.speech/Section2/Q2.7.html
µ-law encode in Java http://www.developer.com/java/other/article.php/3286861
uudecode.c http://www.koders.com/c/fidFDC554B9F9F6340C894141C53BE08C5299D93B5F.aspx
UUDecoder.java http://www.cs.duke.edu/csed/java/src1.3/sun/misc/UUDecoder.java

Table 6. Origin of the C and Java programs of Table 4

[9] M. Wallace and C. Runciman. The bits between the lambdas: Binary
data in a lazy functional language. In Proceedings of ISMM’98: ACM
SIGPLAN International Symposium on Memory Management, pages
107–117, New York, N.Y., Oct. 1998. ACM Press.

[10] C. Wikström and T. Rogvall. Protocol programming in Erlang using
binaries. In Proceedings of the Fifth International Erlang/OTP User
Conference, Oct. 1999. Available at http://www.erlang.se/euc/99/.

A. Additional programs
For completeness, we include in this appendix the complete source
code for UU-decode (Program 4) and µ-law encode (Program 5)
written using binaries as in Erlang/OTP R10B. Table 6 shows the
origin of some of the C and Java programs of Table 4. (The C and
Java programs for drop 0XX are the only ones written by us.)

Program 4 UUdecoding module in Erlang/OTP R10B
-module(uu_R10B).
-export([decode/1]).

decode(EncodedBin) ->
decode(EncodedBin, 0, <<>>).

decode(<<X, Rest/binary>>, N, Acc) when 32=<X, X=<95 ->
NewN = N+6,
Pad = (8-(NewN rem 8)) rem 8,
NewAcc = <<Acc:N/binary-unit:1, (X-32):6, 0:Pad>>,
decode(Rest, NewN, NewAcc);

decode(<<_, Rest/binary>>, N, Acc) ->
decode(Rest, N, Acc);

decode(<<>>, _N, Acc) ->
Acc.

Program 5 µ-law encoding module in Erlang/OTP R10B
-module(mu_law_R10B).
-export([encode/1]).

encode(Bin) ->
Biased = bias_and_sign_magn(Bin),
Encoded = encode_to_byte(Biased),
binnot(Encoded).

bias_and_sign_magn(<<Sample:16, Rest/binary>>) ->
<<sign(Sample):1, (min(abs(Sample), 32635)+132):15,

bias_and_sign_magn(Rest)/binary>>;
bias_and_sign_magn(<<>>) -> <<>>.

sign(Sample) when Sample >= 0 -> 0;
sign(Sample) when Sample < 0 -> 1.

encode_to_byte(<<Sign:1, Magn:15, Rest/binary>>) ->
Exp = exp_lut(Magn bsr 7),
Mant = (Magn bsr (Exp+3)) band 15,
<<Sign:1, Exp:3, Mant:4, encode_to_byte(Rest)/binary>>;

encode_to_byte(<<>>) -> <<>>.

exp_lut(X) when X < 2 -> 0;
exp_lut(X) when X < 4 -> 1;
exp_lut(X) when X < 8 -> 2;
exp_lut(X) when X < 16 -> 3;
exp_lut(X) when X < 32 -> 4;
exp_lut(X) when X < 64 -> 5;
exp_lut(X) when X < 128 -> 6;
exp_lut(X) when X < 256 -> 7.

binnot(<<X, Rest/binary>>) ->
<<bnot(X), binnot(Rest)/binary>>;

binnot(<<>>) -> <<>>.

