
Int J Softw Tools Technol Transfer (2003) 4: 401–404 / Digital Object Identifier (DOI) 10.1007/s10009-003-0108-7

Special section onASTEC: an experience in the establishment
of collaboration between academia and industry

Preface by the section editors

Bengt Jonsson1, Konstantinos Sagonas2

1Department of Computer Systems, Uppsala University, Sweden; e-mail: bengt@docs.uu.se
2Computing Science Department, Uppsala University, Sweden; e-mail: kostis@csd.uu.se

Published online: 12 June 2003 – Springer-Verlag 2003

Abstract. ASTEC (Advanced Software TEChnology) is
a competence center for industrially relevant research on
software technology, centered in Uppsala, Stockholm, and
Väster̊as. It is organized as a consortium between a group
of Swedish companies and academic institutions, sup-
ported and partially funded by VINNOVA, the Swedish
Agency for Innovation Systems. In this introduction, we
outline the main ideas behind the creation of ASTEC,
its activities, and some of the experiences that we have
gained from running the center. This issue also contains
a set of companion articles, which describe some of the
main projects and results obtained in the context of
ASTEC.

Keywords: Competence centers – Software engineering
– Embedded systems – Academia-industry collaboration

1 Introduction

This collection of articles presents work conducted within
ASTEC (Advanced Software TEChnology), a Swedish
competence center which concentrates on tools and tech-
niques for software development.1 Since 1995, a total of 29
competence centers, intended as focussed (both research-
wise and geographically) environments for collabora-
tion between academia and industry in various research
areas, ranging from forestry to high-speed electronics,
have been supported by the Swedish National Board for
Industrial and Technical Development (NUTEK), and
(from 2001) the Swedish Agency for Innovation Systems
(VINNOVA).2 NUTEK and VINNOVA have, over the
last decade, supported a number of national research

1 See also www.astec.uu.se.
2 In 2001, NUTEK ceased to exist and some of its responsibilities
were transferred to the newly formed VINNOVA

activities in strategic and industrially relevant research
areas. ASTEC was formed in 1995 and is the only one
of these competence centers that focuses exclusively soft-
ware technology.
Industrial and academic collaboration should be particu-
larly relevant for research on software systems: many ad-
vances in software technology occur in universities but on
the other hand the major part of software production oc-
curs in industry. Such a collaboration thus offers a unique
opportunity for industry to exploit recent advances in
software technology and for researchers in academia to
evaluate the effectiveness of new techniques in a “real-
world” environment.
Though this observation is probably universal, it is

particularly applicable to a country like Sweden. Several
major products of Swedish industry, e.g., data commu-
nication and process control systems, are to a signifi-
cant extent based on software. Swedish academia has
a strong tradition of research in the areas of formal
methods, functional and logic programming, real-time
and embeddded systems which have potential appli-
cations to software development. The indirect impact
of this research on industrial practice, through mobil-
ity of individuals and ideas, has been noticeable: func-
tional programming and formal methods have influ-
enced software development in the Swedish telecommu-
nications industry, as witnessed, e.g., by the creation
of the languages Erlang [1], SDL [3], and TTCN [6].
ASTEC is intended to build upon this tradition, and
strengthen direct contacts between academic research
and industrial practice, so that advances in academic
research can indeed benefit industrial software develop-
ment, which in turn can guide the agenda for academic
research.
ASTEC is a consortium of academic and industrial

partners with a strong interest in research on industrially
applicable software technology. The actual partners are:

402 B. Jonsson, K. Sagonas: ASTEC: An experience in the establishment of collaboration between academia and industry

– research groups at Uppsala University, the Royal In-
stitute of Technology, the Swedish Institute of Com-
puter Science (SICS), and Mälardalen University,
working mainly on formal methods, functional, logic
and constraint programming, compilation, and on em-
bedded, distributed, and real-time systems, and
– companies with a substantial software production and
thus a large interest in software development: ABB,
CC-Systems AB, Ericsson, Mecel AB, Validation AB,
and Volvo Technical Development Corp., and com-
panies that produce tools for software development:
IAR Systems AB, OSE Systems AB, Prover Technol-
ogy AB, Telelogic AB, UPAALAB, Virtutech AB, and
Volcano Technologies AB3.

A substantial body of financial support is provided by
VINNOVA. The industrial and academic partners also
contribute significant resources, so that VINNOVA, the
industries, and academia each contribute around one
third of the total resources to the competence center.

2 Research program

The purpose of ASTEC is to conduct research on in-
dustrially applicable techniques for software specifica-
tion, design, and implementation. As a basis for the re-
search activities, the ASTEC consortium has developed
a strategic research plan, which sets up long-term re-
search goals. The overall vision of the research plan is to
contribute in developing high-level specification and pro-
gramming techniques, together with powerful automatic
tools, which can assist in producing high-quality software
for complex applications with less effort. The technical
challenges have been structured into the following three
areas:

– Verification and validation is concerned with high-
level notations for expressing requirements and de-
sign specifications, together with tools and (formal)
methods for analysis of specifications for the purposes
of verification, validation, test generation, and tracing
of requirements.
– Programming language implementation and
compilation is concerned with the implementation
and use of high-level (concurrent) programming lan-
guages, together with the development of compilation
technology for (time- or space-) efficient program exe-
cution and code generation for different architectures.
– Real-time, embedded, and distributed systems
is concerned with features specific to software develop-
ment for real-time, embedded, or distributed systems,
such as predictability, timeliness, scheduling, and dis-
tribution.

In short, ASTEC focuses on techniques for software in
which aspects of automatic control and communication

3 “AB” is the Swedish equivalent of “Inc.”.

are dominant. Thus, two application areas within the
scope of ASTEC are:

– Automotive and vehicle control systems, includ-
ing embedded and safety-critical software, often de-
ployed on a distributed network, and
– Data- and telecommunication systems, with re-
quirements on mobility, high distribution, massive
concurrency, and code replacement without disrup-
tion of the continuous operation of the system.

Within the scope of this plan, research is conducted aim-
ing both at being of high scientific quality and at the
same time being industrially relevant. Some typical mo-
tivations for particular research projects are to develop
and/or apply a new technique to an industrial problem, or
to develop further some technique already in use, maybe
to the point where it can be applied in industrial practice
or in commercial software tools.
There are several advantages to forming a consortium

and formulating a strategic research plan, rather than
just running individual collaboration projects on an ad
hoc, case-by-case basis. A consortium, like the one of
a competence center, provides infrastructure for contin-
uous collaboration in the form of long-term goals, per-
sonal contacts, agreed-upon rules for ownership and ex-
ploitation of research results. The administrative over-
head needed to start a new project is minimal, since per-
sonal contacts and rules are already established.

3 Experiences

This special issue illustrates aspects of the activities that
have been conducted under the aegis of ASTEC mainly
during the period 1997–2001. Some of these projects
are still ongoing. Several ASTEC projects are not rep-
resented in the following collection of articles, partly
because of space restrictions, and partly because some
projects have been less successful than others. Trying to
consider why certain projects have yielded more interest-
ing results, we will in this section attempt to generalize
slightly and elaborate on some of the factors that we be-
lieve have been important for the success of a long-term
collaboration project between academia and industry.
From the perspective of academia, some industrial

problems may appear rather easy at first sight. If a su-
perficial solution to an abstraction of a problem is pro-
posed, one may later discover that the proposed tech-
nique did not yield the expected benefits because the
original problem contained many difficulties stemming,
e.g., from a variety of environmental constraints. For in-
stance, formal specification and modeling may seem to
improve the software development process for many types
of applications. However, without support from tools
that assist in activities like debugging, code generation,
documentation, test generation, confidence building, etc.
the gains may be rather limited, and may not outweigh

B. Jonsson, K. Sagonas: ASTEC: An experience in the establishment of collaboration between academia and industry 403

the cost of formalization. Our experience is that for-
mal methods can bring benefits when combined with de-
veloping an industrial-strength tool that supports these
methods. As another example, certain compiler optimiza-
tions may yield substantial performance improvements
on synthetic benchmarks, but in practice one often dis-
covers that the actual performance in big applications
is a result of many factors, such as memory manage-
ment, calling functions from libraries that are outside the
reach of the optimizations, cache behavior when the ap-
plication contains a variety of components, etc. A gen-
eral lesson learned is that industrially relevant research
should take these factors into account when drawing
conclusions.
Related to the above, a notable advantage of the

competence center framework is that it offers access to
production-size industrial software products which can
be used as case studies. As mentioned, the effects of op-
timizations on small programs are often different from
those observed on entire software systems. Evaluating
compilation techniques on production-size software be-
sides revealing the obstacles that must be solved in order
to integrate a technique into a commercial tool, often re-
veals new problems that can become the topic for further
research. As another example, when attempting to for-
mally model and verify industrial-size software products,
it appears that the notion of “correct software” becomes
very elusive, to the point where one may come to the con-
clusion that this notion is meaningless: in most cases, it is
impractical to define a complete set of requirements. The
interesting question then becomes how to best integrate
formal verification technology into the development and
maintenance of software.
Finally, long-term research collaborations between in-

dustry and academia require personal contacts and com-
mitment from both sides. A situation that in our expe-
rience works well, is when some person is affiliated with
both partners. For example, some Ph.D. students within
the context of ASTEC are or have been half-time em-
ployed by one of the participating companies. The ma-
jority of their time within the company is spent on work
related to their Ph.D. research, partly on research itself,
and partly on integrating the results into the company’s
products and on internal development. Our experiences
from these students is positive, but it is important that
the topic of the doctoral research be supported within the
framework of a collaboration between academia and the
company.

4 About this issue

Having briefly described our experiences, we overview the
articles in this issue grouping them based on the three
main research areas of ASTEC. The boundary between
these areas and the corresponding activities described is
not always clear cut.

4.1 Verification and validation

The first article by Fredlund, Gurov, Noll, Dam, Arts,
and Chugunov [2] presents a tool for verifying software
written in Erlang. Erlang [1] is a concurrent functional
programming language designed to ease the development
of large-scale distributed control applications. So far, it
has been used quite successfully in the telecommunica-
tion industry, both within Ericsson Telecom, where it was
designed and developed, and by other companies. Essen-
tially, the verification approach considered in the article
consists in proving, with a Gentzen-style proof system,
that Erlang code satisfies a set of properties formalized
in Park’s µ-calculus [9] extended with Erlang-specific fea-
tures. The article reviews the mathematical machinery,
motivates the chosen framework and discusses reason-
ing principles, such as inductive and compositional rea-
soning, which are essential for successful verification of
typical software written in Erlang. The main design ob-
jectives of the verification tool, a proof assistant, are to
achieve a satisfactory degree of automation, proof reuse,
easy navigation through proof tableaux, and meaningful
feedback about the current proof state, so as to require
user intervention only when this is really necessary, and to
assist its user in taking informed proof decisions. The ex-
periences of applying the verification tool in an industrial
case study are summarized in the paper and in a conclud-
ing section an approach for supporting verification in the
presence of program libraries is outlined, to permit veri-
fication of modular Erlang software. The results reported
in the paper is the outcome of a joint project between the
Formal Design Techniques group at the SICS and Eric-
sson’s Computer Science Laboratory.

4.2 Programming language implementation
and compilation

The work on the concurrent functional programming
language Erlang within the context of ASTEC is not
restricted to the verification of its applications. In [7],
Johansson, Pettersson, Sagonas, and Lindgren describe
their experiences from embarking on a multi man-year
project, called HiPE (High Performance Erlang), aiming
to improve the performance aspects of publicly available
Erlang implementations. Until recently, Erlang imple-
mentations were based on emulators of virtual machines
and thus were slow even compared to implementations
of other functional languages. An outcome of the HiPE
project is the freely available homonymous system which
is an efficient just-in-time native code compiler for Er-
lang. The article describes the different phases of HiPE’s
development, the main compilation techniques used in
HiPE, and reports on HiPE’s performance both on bench-
marks and on large-scale industrial applications of Er-
lang. In addition, the authors critically examine the de-
sign decisions taken and report on their experiences from
participating in an academic project trying to keep up

404 B. Jonsson, K. Sagonas: ASTEC: An experience in the establishment of collaboration between academia and industry

with the concurrent development the open-source Erlang
system – upon which HiPE is based – by the research
department of Ericsson. Since October 2001, HiPE is in-
tegrated in the open source and commercial versions of
the Erlang/OTP system from Ericsson.

4.3 Real-time embedded and distributed systems

In the next article, Engblom, Ermedahl, Sjödin, Gustafs-
son, and Hansson describe their experiences in developing
worst-case execution-time (WCET) analyses for embed-
ded real-time programs [4]. The purpose of WCET an-
alysis is to provide information about the worst possible
execution time of a piece of code before using it in an
actual system. In real-time embedded systems (e.g., in
embedded microcontrollers), safe (and preferably tight)
WCET estimates are used to e.g., perform scheduling,
to determine whether performance goals are met for pe-
riodic tasks, and to check that interrupts get serviced
in sufficiently short reaction times. The article presents
a modular architecture for an WCET tool and describes
how control-flow graphs of programs should be repre-
sented and analyzed, how pipeline and cache behavior
and timing should be modeled, how the components of
the tool can be validated, and how the WCET analysis
can be integrated in an industrial development environ-
ment. This work has been performed in close cooperation
with the embedded systems programming tools manufac-
turer IAR Systems AB.
Finally, in [5], H̊akansson, Jonsson, and Lundqvist

present a technique for automatically generating on-line
test oracles from specifications for embedded systems
written in temporal logic. Since embedded systems are in-
creasingly employed in safety-critical applications such as
in cars and airplanes, the validation that various safety
requirements are met by their specification and their
implementation becomes necessary. As it is tedious to
perform a large number of tests manually, testing that
the system conforms to its safety requirements should

be automated so that a wide range of possible input
values is covered. Also, ideally, test executions that al-
ready revealed problems should be automatically filtered
out. The article describes how a restricted subset of
TRIO [8], an expressive first-order logic with special con-
structs for handling metric (linear) time, can be used in
a syntax-directed way to express quantitative properties
of durations and properties of time-dependent behavior.
It is argued that this approach presents a lesser effort
at integrating the use of temporal logic as a language
for expressing requirements into the process of devel-
oping embedded software. This automatic generation of
test oracles has been implemented and exercised in two
case-studies at Volvo Technical Development Corp., on
a cruise control and on a throttle module, and the article
reports on these experiments.

References

1. Armstrong J, Virding R, Wikström C, Williams M (1996)
Concurrent Programming in Erlang. Prentice Hall

2. Fredlund L-Å, Gurov D, Noll T, Dam M, Arts T, Chugunov G
(2003) A verification tool for Erlang. Int J Softw Tools Technol
Transfer 4(4): 404–419

3. Belina F, Hogrefer D (1991) SDL with applications to protocol
specification. Prentice Hall

4. Engblom J, Ermedahl A, Sjödin M, Gustafsson J, Hansson
H (2003) Worst-case execution-time analysis for embedded
real-time systems. Int J Softw Tools Technol Transfer 4(4):
436–454

5. H̊akansson J, Jonsson B, Lundqvist O (2003) Generating on-
line test oracles from temporal logic specifications. Int J Softw
Tools Technol Transfer 4(4): 455–470

6. ISO/IEC 9646-3 (1997) Information Technology – Open Sys-
tems Interconnection – Conformance testing methodology and
framework – Part 3: The Tree and Tabular Combined Nota-
tion (TTCN). Available at ftp://ftp.npl.co.uk/pub/ttcn/

7. Johansson E, Pettersson M, Sagonas K, Lindgren T (2003)
The development of the HiPE system: Design and experience
report. Int J Softw Tools Technol Transfer 4(4): 420–435

8. Morzenti A, Mandrioli D, Ghezzi C (1992) A model-parametric
real-time logic. ACM TOPLAS, 14(4): 521–573, Oct 1992

9. Park D (1976) Finiteness is mu-ineffable. Theor Comput Sci 3:
173–181

